
Suffix trees and string complexity

Luke O'Connor Tim Snider

Department of Computer Science
University of Waterloo, Ontario, Canada, N2L 3G1

email: 1jpocomQwatmath.uwaterloo.ca

Abstract

Let s = (sl, sl,. . . , J,,) be a sequence of characters where si E 2, for 1 5 i 5 n.
One measure of the complexity of the sequence s is the length of the shortest
feedback shift register that will generate s, which is known s the maximum order
complexity of s [17,18]. We provide a proof that the expected length of the shortest
feedback register to generate a sequence of length n is less than 2 log, n +- a (l) , and
also give several other statistics of interest for distinguishing random strings. The
proof is based on relating the maximum order complexity to a data structure known
M a suf l ix tree.

1 Introduction

A common form of stream cipher are the so-called running key ciphers [4, 91 which are
deterministic approximations to the one time pad. A running key cipher generates an
ultimately periodic sequence s = (sl, s2,.. . ,a,), 3, E Z,,, 1 5 a 5 n, for a given seed or
key K. Encryption is performed i ~ s with the one time pad, using s as the key stream,
but perfect security is no longer guaranteed. Considerable effort has been devoted to
developing algorithms for generating sequences s that are pseudorandom [ll, 13, 19,281.
The purpose of such work is to define sequences that are efficiently generated and satisfy
one, or possibly scveral, mcasures of randomness for finite strings. Let be the set
of all sequences s of length n where s, E 2, for 1 5 i 5 n. A stnibtic is a function
a : -+ R which measures some property of a sequence, such as the length of the
longest gap for binary sequences, or the distribution of the binary derivative [14]. If the

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 138-152, 1993.
0 Spnnger-Verlag Berhn Heldelberg 1993

139

distribution of a can be computed, in particular its expectation E (a) , a may be used
to distinguish between random and nonrandom sequences by discarding those sequences
s for which a (s) deviates significantly from the mean. If there are several statistics
al, a2, - . - , aj available for which the expectations are known, the more likely we are to
detect nonrandom sequences. A collection of statistical tests for randomness is given in
Knuth [21].

A notion attributed to Kolmogorov f22] characterizes the randomness of a sequence
s as the encoded length of the smallest Turing machme program to produce S. Unfor-
tunately, the Kolmogorov complexity of a sequence is not computable in general [23,
$2.51, and consequently, the model of computation must be simplified in order to obtain
a computable complexity measure. Finite state machines [4, 111 (FSM) are a class of
automatons that consist of a finite set of states Q = { q l , q 2 , . . . , q,,,}, and a transition
function 6 : Q -+ Q. There is also an output function A : Q -+ A which outputs a char-
acter from the alphabet A on each transition. The function 6 is the 'program' associated
with a FSM, and in this case, when executed will cause an infinite sequence of characters
to be printed. If the state sequence of a FSM M after t transitions is yi, q;, . . . , yi, then
the output of M Will be A(6,), A(qi), . . . , A(q:). We will informally say that the size
of an FSM MI or the length of its description, is defined s the size of the information
required to identify state q,, plus the space required to store S, denoted

A FSM is a special instance of a deterministic f inite automaton (DFA) [15] where
6 only depends on the current state, rather than also depending on a current input
symbol. It is clear that DFAs with the abdity to write output symbols, known as Moore
machines, can mimic M Y FSM. Alternately, a FSM is a Moore machine whch prints the
same output string for every input string w .

Feedback s h f t registers (FSR) are a special class of FSMs which have much practical
import as they can be directly implemented in hardware, and are fundamental to the de-
sign of most digital circuitry. A FSR consists of rn stages, or memory cA, ~ 1 , ~ 2 , . . . ,=,
and a feedback polynomial f (X) E Z1(zl, tt,. . . , q,,]. A state transition in a FSR cor-
responds to a shift of the register contents (t, = z , - ~ , 2 5 i 5 m), and the assignment
2 1 = f(21, 2 1 , . . . , tm). The size or description of each state in an FSR is then m, the
size of the shift register, and If(X)l is the cost of storing f (X): i t follows that the size
of the machine is m + I f (X) l . With respect to FSRs, the complexity of a sequence s i s
given as the smallest FSR that generates s.

AS with the class of Turing machines, we are now left with the probiem of a c t u d y
determining m and f (X) for a given sequence s, or t h e shortest program which describes
the sequence. A further attraction of FSRs is that when f (X) is restricted to be a linear

161.

140

polynomial (degree at most l), the celebrated R/Iassey-Berlekamp algorithm [24] can be
used to determine m and f (X) in time which is a polynomial function of the sequence
length. such a machine is known as a linear feedback shift register (LFSR). The number
of stages required to generate a given sequence s = (sl, S 2 , . . . ,s,) with a linear feedback
polynomial is known as the lineur compltzity or lineur span of a sequence, and will be
denoted as L (s) . For example, if s = 01010111~010 then L (s) = 5, and the corresponding
feedback polynomial is f (X) = z3 + z,. The following theorem is due to Rucppel (281.

Theorem 1.1 Let s = (31, szr.. . , 3,) where s, E Z2 for 1 5 i 5 n. Then assuming the
uniform distribution on Q;, the expected linear span E(L(s)) of a binary sequence is

(1)
n 4+ [n is odd] + O(1).

18
E(L(s)) = 5 -t

0

Our original notion was to find the smdes t program to generate a given sequence, with
respect to some machine class. The actual program size of a LFRS is m + If(X)ll but
the linear span is typically measured as simply rn, since the number of terms in f(x) is
bounded by rn. The size of a LFSR is then at most 2rn + 1, where we have included a
constant term in f (X) .

A natural extension of these idcas is to permit the feedback function f (X) of the FSR
to be a polynomial of arbitrary degree. We reiterate that the linear case is attractive as
the linear span can be directly computed, but there has been little work in computing
spans of higher order with the exception of Chan and Games 171. Let Fj,(s) be the
span of the sequence s = s l , s2, . . . , s, where f (X) is a polynomial of degree at most I s ,
0 5 k 5 n. For a fixed sequence length n it follows that

where F~(s) = L (s) is the linear span of s. The inequalities in eq. (2) state that the size
of the shift register may decrease as we allow the degree of f(X) to increase. We may
illustrate this possible reduction in memory by considering de Bruijn sequences [S]. Chan
and Games [7] have studied the quadratic span of these scqucnces, and their results show
a large difference between the linear and quadratic spans. For example, the de BnJjn
sequences of length 63 = 26 - 1 have an expected linear span of at least 62, while the
expected quadratic span is at most 12.

There will always exist a pair (no,nl) where 1 5 n0,nl 5 n such that F,(s) = no
for ni 5 i 5 n, which states that at some point the size of the shift register cannot

141

be reduced any further by permitting higher order feedback polynomials. Let M'(s) be
the span of S, defined as the length of the shortest FSR generates s. The span gives a
lower bound on the amount of information that must be stored in the states of a FSR to
generate a given sequence. We note that for a de Bruijn sequence of length 2" - 1 the
span is exactly n. Chan and Games (71 have commented that in general, determining the
span of an arbitrary sequence s appears to be difficult given the nonlinearities involved.
Surprisingly, there are several efficient nonalgebraic algorithms for determining the s p a
of a sequence s. Later in this paper we will prove the following theorem.

Theorem 1.2 Let s = (sll s2,. . . ,sn) where J; E 2, for 1 5 i _< n. Then assuming the
uniform distribution on a;, the expected span E(M's)) of s is then

E(M'(s)) = 2log,n + o(1).

Similar results to this theorem have been proven by Arratia, Gordon and Waterman (31,
Apostolic0 and Szpankowski [2], Jansen [17] and Maurer [25). In this paper we prove
Theorem 1.2 by showing that Af' (s) is equivalent to the height of a data structure known
as a s& tree 1261. From this equivalence it will also follow that M'(s) can be computed
in O (n) time for sequences of length n. Also from this characterization there are several
other statistics of interest that can be computed which can be used to distinguish random
from nonrandom sequences.

The results of theorem 1.1 and 1.2 indicate that the length of the shift register to
generate a sequence is iduenced dramatically by the degree of the feedback polynomid:
the apected linear span of binaty sequence of length n is roughly ?, while the upectcd
span for the same sequence is approximately 21og n. For example, if s is a binary sequence
of length lo', then the expected linear span is approximately 500,OOO while the expected
s p a is less than 50. The striking difference between the linear span and the span of a
sequence can bc accounted for by considering the space required to store the feedback
polynomial f(X). AS noted for the linear case, the size 01 the feedback polpornid is
bounded by the linear span itself. But for the c s e where j (X) is unrwtricted, the
size of f(x) may be an exponential function of the span. Thus the dramatic saving in
memory c& for the shift register with arbitrary feedback is explained by cncoding mom
information about the sequence into the feedback polynomial.

The paper is organized as follows. In 52.1 we review previous work on modtling
sequence complexity with FSRs using nonlinear feedback. In 52.2 we introduce the
SU& tree, give its rdation to maximum order complexity, and present some asymptotic

properties of suffix trees. In $3 we examine the expected size of a feedback polynomial,
both theoretically and experimentally, and prove that the expected size of a feedback
polynomial is exponential in the length of the FSR.

2 Computing the span of a sequence

2.1 Previous work

Chan and Games [7] have presented an algorithm for computing the quadratic span of
a sequence. The algorithm determines the coefficients of the feedback polynomial by
repeatedly solving systems of linear equations. A feedback polynomial f(X) over the m
indeterminates zl, x 2 , . . . ,z, is quadratic if it can be written in the form

m m

where a;d E 2 2 for 1 5 i , j 5 m, i # j . For exunplc, if s = q, sz, . . . , 3 8 is a sequence of
length 8, then the coefficients of the feedback polynomial for a shift register of length 3
are given as the solution to

If there is no solution to the linear system in eq. (4), then the quadratic span of 6

necessarily exceeds 3. The Chan and Games algorithm, aa w d l M the Masscy-Berickamp
algorithm, is an on-line algorithm, which means that the algorithm processes the sequence
one character at a time (left to right) and computes the span for the portion of the
sequence that has been read. Let the span of the first k characters of s be nlr, such
that f h (x) is the current feedback polynomial. If 5k+l # f(dk-,,,+l ,..., sk), then a
discrepancy is said to occur. When a discrepancy occurs the length of the shift register
may have to be incremented. For thc linear span, a change in the current span only
occurs if nk < $, and if this is the case, then the new linear span is given as (k + 1) - n h

[as]. Part of the efficiency of the Massey-Berlekamp algorithm is the knowledge of the
correct increment to be made when a discrepancy occurs. For the quadratic case, the

143

appropriate increment to be made when a discrepancy occurs is not known, and must be
found by searching an interval of possible increments. The Chan and Games algorithm
is very general, and can in fact be used to computc Fk(s) for 0 5 k 5 n. Perhaps for
this reason, Games and Chan commented that determining the span of a sequence is
a difficdt problem, as their algorithm becomes less efficient for higher degree feedback
polynomials.

A result similar to Theorem 1.2 was also presented in the thesis of Jansen [17]. Jansen
has shown that M'(s) can be characterized as a property of the Directed Acydic Word
Graph (DAWG) [5] for a sequence s. The DAWG for a sequence s is a finite automaton
that recognizes all substrings or subwords of s, or accepts the Ianguage L. = {u I vuz =
s}. For this reason, the DAWG is also c d e d the subword automaton. It CM be shown
that if the longest path in the DAWG for s from the start vertex to a vertex of outdegree
at least 2 is k, then M'(s) = k + 1 [li']. While we may determine the span of s from the
DAWG for S, there is no obvious way to determine any analytical information concerning
the span from considering the DAWG since enumerating automatons is difficult in general.
Jansen proved several of his results using statistical and combinatorial arguments which
did not refer to the DAWG (see 93.4 of the thesis). Some properties of the DAWG are
presented in [6, 121.

2.2 Pattern-matching algorithms

Pattern-matching algorithms are concerned with methods for finding and/or retrieving
a pattern or substring w from a given piece of text Y [I]. If there are to be repeated
searches on the text Y, then Y may be preprocessed and stored in a particular da ta
structure to make searches of Y more efficient. Aho e l al. [l] present a data structure
which is useful to solve the following three pattern-matching problems: (a) given t a t Y
and pattern w , find ail occurrences of w in Y ; (b) given text Y , determine the longest
repeated substring of Y ; (c) given two texts and Y2, determine the longest string that
is a substring of both Yl and Y2. For this paper, it will be the solution of problem (6)
that is of interest.

The data structure they presented is called a posrtion free, or later, a 3u& tree [%I.
Let w = ~ 1 , WZ,. . . , w,,, S be a string of length n + 1 such that 0 is a unique character
that only appears in position n + 1. Then every position in w is uniquely identified by
at least one substring of w, namely w i , wi+,, . . . , w,,, S , which are known as the s u B e s
of W. Let ~ (i) be the shortest substring of w that uniquely identifies position i of W.

Consider inserting u (l) , u (2) , . . . , u (n) into a tree T(w) , which is called the sufi tree for

144

W. The tree T (w) will have n leaves, corresponding to the first n positions of W, and
the edges of the tree are labeled so that the path from the root to the leaf representing
position i is u (i) for 1 5 i 5 n. The height of a suffix tree h (T (w)) is the length of the
longest path from the root to some leaf in the tree.

Example 2.1 The suffix tree for s = OlOlOlllOOlOS is given in Figure 1. 0

Figure 1: SuffLx tree for OIO1O111OO1OS

The span of a sequence s is greater than k when there exist two substrings =

s , , J , + ~ , - I .,3,+k-1 and s' = s,,s,+~, . . . , SI+kA1 such that sf+,, = s;+,,, 0 5 < k,
and s ,+k # SJ+k. we wil l say that the substring J' = s , , J , + ~ , . . . , s , + ~ - ~ occurs in s with
two drfiercnt successor characters. Thus no function f(z1, t2,. . . , z h) of k variables
generate the sequence J since

f (s , , s l + l , . . . , S , + k - l) = si+h # Jj+k = f (9 , , s l + l , - . . r s i + h - ~) . (5)

For the string W, let LRS(w) be the longcst repeated substnng of w, and let ILRS(w)l
be the length of the LRS of w. Then observe that]LRS(w)l 5 h(T(w)) - 1. From Figure
1, for s = 0101011100109, LRS(s) = 0101 and jLRS(s)/ = 4. In this case [LRs(w)(=
h(T(w)) - 1 which is not true in general. In fact, the difference between the span of a

finite sequence and the length of its longest common substring can differ dramaticdy.
Consider the (n + 1)-bit string

s = 10,0, ..., 0s -
n- 1

for which ILRS(s)l = n - 2, while the span M (s) = 1 (where we assume that the shift
register does not have to generate $ as it is only appended to terminate the suffixes).
The span of a sequence is then the longest string s' that occurs in s with two different
successor characters @1,& such that PI,& $ {$}. This relation is formally proved next.

Theorem 2.1 The span of s is equal to the longest path from the root of T (s) to a leaf
u, where the parent of u has at least two children whose edges are not labeled by $.

Proof. Let the length of the path from the root to 71 be k, such that the path represents
the substring s;, s;+l,. . . , s;+k-1 from s. Since the parent of tl has two children whose
edges are not labeled by the 3 character, then the substring s;, s;+l,.. . , si+k--l O C C U ~ S

twice in s with different successor characters, both distinct from S. Further, for m y
j , 1 5 j I k - I , there is a substring of length j , namely si+j,si+j+i,. . . , ~ i + ~ - i , with
different successor characters, distinct from $. Thus no FSR of length shorter than k can
generate s, and it follows that M (s) 2 k.

It remains to prove that M (s) 5 k. Let 1.2 be any Leaf in T (s) of maxim- depth
k' > I s . Since U' # U, then the parent of u' must be an internal node of degree 2, with
one child whose edge is labeled as S. W.l.o.g, let u' be the child that has the edge labeled
$. If u' occurs in position a of s then ~ (i) = si, s , + ~ , . . . , s,,, $. Thus if the character s
is deleted fiom s, then the string d(;) = J ~ , J , + ~ , . . . ,s, occurs at least twice in S, and
eithcr has a unique successor character, or no successor character. It follows that s can
be generated with a FSR of length k' - 1.

By repeating the above argument for dl leaves at depths k' - I, k' - 2,. -. , k + 1, it
follows that s can be generatcd by a FSR of length less than (k + 1) - 1 = k. Thus

0 M'(5) = k which completes the proof.

In general we may assume that the height of the suffix tree is an upper bound on the
maximum order complexity. The experiments of Jansen 1171 suggest that this bound is
tight in the expected case. The possible discrepancy between (LRS(s)l and M'(s) , a
shown in eq. (6) and formalized in Theorem 2.1, is due to the fact that s is finite. A
string s is said to be a semi-infinite string, or a ststring (121, if 8 = ~ 1 , 31, 83,. - and
thus extends infinitely to the right. The ith SU& ~ (i) of s is defined as the substring
v (i) = 3%) S;+ir ai+2,. . ., for a 2 1, and a s& tree "(s") can be built from the first IL 2 1
suffixes of s. The analysis of su& trees by Apostolico and S~pankowski [2] is done using
sistrings but is directly adapted to the case of finite strings.

Recall that for a sequence s, the s u f f i x tree T (s) for s is a tree containing strings
u (l) , 1 ~ (2] , . . . , u (n) , where u (i) is the smallest string that identifies position i in S. The

146

strings ~ (l) , ~ (2) , . . . , v (n) are not independent as they may overlap. The (search) tree
that results from inserting n independent strings a'(I), v ' (2) , . . . , ~ ' (n) is a digital search
tree called a t r ie . The properties of digitd search trees have been extensively studied
[lo, 20, 27, 301, and in particular, the expected height of a random trie built with n
strings drawn from an alphabet with p symbols is 2log,n + o(1og n). The properties of
2"s") are similar (asymptoticdy equivalent) to the properties of a s u f f i x tree built using
a string of length n [16].

The structure of a suffix tree depends upon the overlaps that exist between the given
suffixes of a string. For suffixes u (i) and u (j) , 1 5 i # j 5 n, let xj be defined as the
length of the longest prefix that is common to both ~ (i) and u (j) . Then we may define
the following statistics:

Then B, is called the nth-height, which corresponds to the height of a su& tree built
on R suffuies; h, is called the nth-shallowness, and D, is the average depth of the suifix
tree. We note that each of these quantities can be computed directly bs the s d E x tree
for a sequence can be constructed in O(n) time using linear O(n) space [26]. Further
usume that the characters of s are drawn randomly and independently from Z,, such
that the j t h character of s is p; with probability q, for 0 5 i 5 p - 1. If q; = p-' then
the strings occur with uniform probabdity, which is known as the Bernoulli model [2].

Recall that j(n) - g(n) if and only if j (n) = g(n) + o(1).

Theorem 2.2 (Apostolico and Szpankowski [Z]) Assuming the Bernoulli model, for
0

For binary sequences Jansen [17] has computed the span of dl sequences up to length
22, and the empirical average was close to 210g2n, which agrees with E (H ,) . Other
estimates of E(H,,) have also been obtained, for example (31, but the derivation from
the su& tree seems thc most robust. In fact, Apostobco and Szpankowski [2] are still
able t o compute the expected values of &,A, and D, when the Bernoulli model is not
assumed. For example, when the q, are not equal, expected value of H,, becomes

large n, E (K) - 2 log,, n, E(h,) - log, n, E(Dn) - logp n.

'l

where In is the natural logarithm, qmor the maximum of the qi , a d c a constant.

147

3 Properties of feedback polynomials

In this section we will restrict ourselves to considering binary sequences, because such
sequences are of the most practical importance. Let the ieedback polynomial of a
FSR be f(X). It then follows that f (X) E Zz[tl, z2, . . . , t,], which is the set of all

polynomial expressions involving the indeterminate zl, z2,. . . ,z,. The polynomials of
&[zl, 2 2 , . . . , z,] correspond to boolean functions f : {0,1}" + (0,l) . Conversely, any
m-bit boolean function f can be represented as a polynomial Q f (X) E Zz[t~, q, -. - ,G,,],
which is known as the Ring Sum Expansion (ME) [29] or Algebraic Normal Form (ANF)
[28] of f . Let Z,"[zl, t2,. . . , z,] be the set of 2*'" A N F polynomials, which axe exactly
those polynomials that remain in Zz[zl, z2). . .) z,] when the elements of the ring are are
simplified according to zi = tf, 1 5 i 5 m.

We are interested in two quantities associated with feedback polynomials: the size,
or number of terms, and the degree. For f (X) E Z/[zl, z2,. . . ,z,], let T (f (X)) be the
number of terms in f (X) , and let deg(f(X)) be the degree of f (X) . Then the space
required to store f (X) is bounded by n . T (f (X)) .

Theorem 3.1 Assuming the uniform distribution on Z t [t l , 2 2 , . . . , z,]
1
2

E(deg(f, m)) = rn - - + 0

Proof. Let B(m,k) = &j5k (y) be the s u m of the first k -+ 1 binomial coeffidents,
0 5 k 5 m. Then

148

Thus we expect dl taps of the FSR to be involved in the feedback polynomial. Fur-
ther it follows from the binomial theorem that E(T(f(X))) = 2"-'. Thus a random
polynomial in Z![;cl, 2 2 , . . . ,%,,,I has a number of terms exponential in m, and a degree
approximately m. Again consider the example of computing the linear span and span of
of sequence of length n = 10'. The total storage for the LFSR is approximately 750,000
bits, assuming half the coefficients in f (X) are nonzero. Then fiom Theorem 1.2, the
smallest shift register will have approximately 21og n stages, and from Theorem 3.1, as-
suming that the feedback polynomial is drawn at random from 22A[~1,2z,...,Zzio(yn],
f (X) will have 2'hn-1 > t ems, which is far larger than the length of the sequence!

We note that the feedback polynomial to generate a given sequence is not unique in
general. Let the span of a sequence s be m, and let j (X) be a feedback polynomial.
There are 2" m-bit strings, and let k, 1 5 k 5 2", of these strings occur as substrings
in s. It then foUows that there are in fact 22"-k polynomials g (X) that agree with f (X)
on the k input strings found in s. We may still speak of t h e feedback polynomial f(x)
associated with every sequence s by defining f (X) to be the polynomial which generates
s, and for which f (X) + 1 has the smallest number of roots.

3.1 Experimental results

For this experiment we generated random bit sequences using the C library function
srundom. The span for each sequence was calculated by comparing suffixes and a feedback
function generated for the sequence. The feedback function was simplified to give a count
of the number of terms using MAPLETM. This w a applied to 100,000 32-bit sequences.
The mean span was 8.65 with a standard deviation of 1.59. The following table shows
the number of terms in the feedback function for different length spans.

4 Conclusion

We have shown that the sufEx tree provides an alternate characterization of the maximum
order complexity of a sequence. With this characterization it is then possible to accurately
determine distribution of the maximum order complexity of a sequence, and also several
other statistics. Also we have given some evidence to indicate that the linear complexity
of a sequence is expected to be less than the maximum order complexity when both the
length of the shift register and the size of the feedback polynomial are taken into account.
One open problem is then to determine that order k of a feedback polynomial for which
F~(s) + f (X) is minimized for sequences s of length n.

149

Span
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

of cases
11

2871
20917
29822
22228
12485
6328
2887
1339
638
256
109
60
30
11
5
0
2
1

Mean # of terms
15.82
30.30
53.86
92.47
154.25
251.68
415.13
666.99
1078.58
1713.08
2679.77
4335.17
14028.02
24725.47
10025.73
12698.00
0.00

560.00
874.00

Std. Dev.
3.24
4.84
11.80
11.80
66.08
140.59
292.70
599.33
1103.69
2199.19
4304.51
9380.74
32298.27
64266.20
14349.16
11095.74

0.00
464.00
0.00

Table 1: Number of terms for different spaas

150

ACKNOWLEDGEMENTS

We would like to thank Alfred0 Viola, Richard Games, and the Eurocrypt referees for
their comments on earlier versions of the paper.

References

(11 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, 1974.

[2] A. Apostolico and W. Szpankowski. Self-alignments in words and their applications.
Technical Report CDS-TR-732, Purdue University, 1987.

[3] R. Arratia, L. Gordon, and M. Waterman. An extreme value theory for sequence
matching. The Annals of Stattstics, 14(3):971-993, 1986.

[4] H. Beker and F. Piper. Cipher System. Wiley, 1982.

[5] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Baussler, and R McConnell. Linear size
finite automata for the set of all subwords of a word: outline of results. Bulletin of
the European Association of Theontical Computer Science, 21:12-20, 1983.

[S] A. Blumer, E. Ehrenfeucht, and D. Haussler. Average sizes of s& trees and
DAWGs. Discrete Applied Maihemetics, 24:3745, 1989.

171 A. Chan and R. Games. On the quadratic spans of periodic sequences. IEEE
Transactions on Information Theory, IT-36(4):822-829, 1990.

(81 N. G. de Bruijn. A combinatorid problem. Nederl. Akad. Wetensch. Proc, 49:754-
758, 1946.

[9] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley Publishing
Company, 1982.

[lo] L. Devroye. A probabilistic analysis of the height of tries and of the complexity if
triesort. Acta Informatica, 21:229-232, 1984.

[ll] S. Golumb. Shift Register Sequences. Aegean Park Press, 1982.

[12] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Strucfures.
Addison-Wesley, Second Edition, 1991.

151

113) E. J. Growth. Generation of binary sequences with controllable complexity. IEEE
Transactions on Infomation Theory, 17(3):288-296, 1971.

[14] H. Gustafson, E. Dawson, and W. Caellie. Comparison of block ciphers. Advances
in Cryptology, AUSTCRYPT 90, Lecture Notes in Computer Science, 1101. 453, J .
Seberry and J. Piepryrk eds., Springer- Verlag, pages 208-220, 1990.

[I51 J. Hopcroft and J. UUman. An introduction to automata, languages and computation.
Addison-Wesley Publishing Company, 1979.

[lG] P. Jacquet and, W. Szpankowski. Autocorrelation on words and its applications:
analysis of s u f i trees by string-rder approach. preprint, 1990.

[171 C. J. A. Jansen. Investigations on Nonlinear Streamcipher systems: Construction
and Evaluation methods. PhD thesis, Philips, USFA BV, 1989.

[18] c. J. A. Jansen and D. Boekee. The shortest feedbck shift register that can gener-
ate a sequence. Advances an Cyptology, CRYPT0 89, Lecture Notes in Computer

Science, vol. 218, G. Brassard ed., Springer- Verlag, pages 90-99, 1990.

[19] E. L. Key. An analysis of the structure and complextty of nonlinear binary sequence
generators. IEEE Transactions on Information Theory, 22(6):732-736, 1976.

[20] D. E. Knuth. The Art of Computer Programming : Volume 3, Soding and Searching.
Addsion Wcslcy, 1973.

[Zl] D. E. Knuth. The Art of Computer Programming : Volume 2, Seminumerical Alga-
nthms. Addsion Wesley, 1981.

[22] A . N. Kolmogorov. Three approaches to the quantitative definition of definition.
Problems zn Informohm Trammr~ston, 1(1):l-7, 1965.

1231 M . Li and P. M. B. Vitanyi. Two decades of applied Kolmogorov complexity. Tech-
nical Report CS-R8813, Centre for Mathematics and Computer Science, April, 1988.

[24] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Tramactions on
fnfumotion Theory, 15:122-127, 1969.

[25] U . M Maurer. Asymptotically tight bounds on the number of cycles in generalized
de Bruijn-Good graphs. to appear in Discrete Applied Mathematics.

152

[2S] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262-272, 1976.

[27] M. Regnier. On the average height of trees in digital search and dynamic hashing.
Information Processing Letters, 13(2):64-66, 1981.

[ZS] R. A. Rueppel. Design and Analysis of Stream Ciphers. Springer-Verlag, 1986.

[29] J. Swage. The Complexity of Computing. John Wiley, 1976.

[30] w. Szpankowski. On the analysis of the average height of a digital search tree:
another approach. Technical Report CSD-TR-646, Purdue University, 1986.

	Introduction
	Computing the span of a sequence
	Previous work
	Pattern-matching algorithms

	Properties of feedback polynomials
	Experimental results

	Conclusion
	ACKNOWLEDGEMENTS
	References

