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Abstract 

Let s = (sl, sl,. . . , J,,) be a sequence of characters where si E 2, for 1 5 i 5 n. 
One measure of the complexity of the sequence s is the length of the shortest 
feedback shift register that will generate s, which is known s the maximum order 
complexity of s [17,18]. We provide a proof that the expected length of the shortest 
feedback register to generate a sequence of length n is less than 2 log, n +- a ( l ) ,  and 
also give several other statistics of interest for distinguishing random strings. The 
proof is based on relating the maximum order complexity to a data structure known 
M a suf l ix  tree. 

1 Introduction 

A common form of stream cipher are the so-called running key ciphers [4, 91 which are 
deterministic approximations to the one time pad. A running key cipher generates an 
ultimately periodic sequence s = (sl, s2,.. . ,a,), 3, E Z,,, 1 5 a 5 n, for a given seed or 
key K. Encryption is performed i ~ s  with the one time pad, using s as the  key stream, 
but perfect security is no longer guaranteed. Considerable effort has been devoted to 
developing algorithms for generating sequences s that are pseudorandom [ll, 13, 19,281. 
The purpose of such work is to define sequences that are efficiently generated and satisfy 
one, or possibly scveral, mcasures of randomness for finite strings. Let be the set 
of all sequences s of length n where s, E 2, for 1 5 i 5 n. A stnibtic is a function 
a : -+ R which measures some property of a sequence, such as the length of the 
longest gap for binary sequences, or the distribution of the binary derivative [14]. If the 
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distribution of a can be computed, in particular its expectation E ( a ) ,  a may be used 
to distinguish between random and nonrandom sequences by discarding those sequences 
s for which a ( s )  deviates significantly from the mean. If there are several statistics 
al, a2, - . - , aj available for which the expectations are known, the more likely we are to 
detect nonrandom sequences. A collection of statistical tests for randomness is given in 
Knuth [21]. 

A notion attributed to Kolmogorov f22] characterizes the randomness of a sequence 
s as the encoded length of the smallest Turing machme program to produce S. Unfor- 
tunately, the Kolmogorov complexity of a sequence is not computable in general [23, 
$2.51, and consequently, the model of computation must be simplified in order to obtain 
a computable complexity measure. Finite state machines [4, 111 (FSM) are a class of 
automatons that consist of a finite set of states Q = { q l ,  q 2 , .  . . , q,,,}, and a transition 
function 6 : Q -+ Q. There is also an output function A : Q -+ A which outputs a char- 
acter from the alphabet A on each transition. The function 6 is the 'program' associated 
with a FSM, and in this case, when executed will cause an infinite sequence of characters 
to be printed. If the state sequence of a FSM M after t transitions is yi, q;, . . . , yi, then 
the output of M Will be A(6,), A(qi), . . . , A(q:). We will informally say that the size 
of an FSM MI or the length of its description, is defined s the size of the information 
required to identify state q,, plus the space required to store S, denoted 

A FSM is a special instance of a deterministic f inite automaton (DFA) [15] where 
6 only depends on the current state, rather than also depending on a current input 
symbol. It is clear that  DFAs with the abdity to write output symbols, known as Moore 
machines, can mimic M Y  FSM. Alternately, a FSM is a Moore machine whch  prints the 
same output string for every input string w .  

Feedback s h f t  registers (FSR) are a special class of FSMs which have much practical 
import as they can be directly implemented in hardware, and are fundamental to the de- 
sign of most digital circuitry. A FSR consists of rn stages, or memory cA, ~ 1 ,  ~ 2 , .  . . ,=, 
and a feedback polynomial f ( X )  E Z1(zl, tt,. . . , q,,]. A state transition in a FSR cor- 
responds to a shift of the register contents (t, = z , - ~ ,  2 5 i 5 m), and the assignment 
2 1  = f(21, 2 1 , .  . . , tm). The size or description of each state in an FSR is then m, the 
size of the shift register, and If(X)l  is the cost of storing f (X):  i t  follows that the size 
of the machine is m + I f ( X ) l .  With respect to FSRs, the complexity of a sequence s i s  
given as the smallest FSR that generates s. 

AS with the class of Turing machines, we are now left with the probiem of a c t u d y  
determining m and f ( X )  for a given sequence s, or t h e  shortest program which describes 
the sequence. A further attraction of FSRs is that when f (X)  is restricted to be a linear 
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polynomial (degree at  most l), the celebrated R/Iassey-Berlekamp algorithm [24] can be 
used to determine m and f ( X )  in time which is a polynomial function of the sequence 
length. such a machine is known as a linear feedback shift register (LFSR). The number 
of stages required to generate a given sequence s = (sl, S 2 , .  . . ,s,) with a linear feedback 
polynomial is known as the lineur compltzity or lineur span of a sequence, and will be 
denoted as L ( s ) .  For example, if s = 01010111~010 then L ( s )  = 5, and the corresponding 
feedback polynomial is f ( X )  = z3 + z,. The following theorem is due to Rucppel (281. 

Theorem 1.1 Let s = (31, szr.. . , 3,) where s, E Z2 for 1 5 i 5 n. Then assuming the 
uniform distribution on Q;, the expected linear span E(L(s)) of a binary sequence is 

(1) 
n 4+ [n is odd] + O( 1). 

18 
E( L( s)) = 5 -t 

0 

Our original notion was to find the smdes t  program to generate a given sequence, with 
respect to some machine class. The actual program size of a LFRS is m + If(X)ll but 
the linear span is typically measured as simply rn, since the number of terms in f(x) is 
bounded by rn. The size of a LFSR is then at most 2rn + 1, where we have included a 
constant term in f ( X ) .  

A natural extension of these idcas is to permit the feedback function f ( X )  of the FSR 
to be a polynomial of arbitrary degree. We reiterate that the linear case is attractive as 
the linear span can be directly computed, but there has been little work in computing 
spans of higher order with the exception of Chan and Games 171. Let Fj,(s) be the 
span of the sequence s = s l ,  s2,  . . . , s, where f ( X )  is a polynomial of degree at most I s ,  
0 5 k 5 n. For a fixed sequence length n it follows that 

where F~(s) = L ( s )  is the linear span of s. The inequalities in eq. (2) state that the size 
of the shift register may decrease as we allow the degree of f(X) to increase. We may 
illustrate this possible reduction in memory by considering de Bruijn sequences [S]. Chan 
and Games [7] have studied the quadratic span of these scqucnces, and their results show 
a large difference between the linear and quadratic spans. For example, the de BnJjn 
sequences of length 63 = 26 - 1 have an expected linear span of at least 62, while the 
expected quadratic span is at most 12. 

There will always exist a pair (no,nl) where 1 5 n0,nl 5 n such that F,(s) = no 
for ni 5 i 5 n, which states that at some point the size of the shift register cannot 
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be reduced any further by permitting higher order feedback polynomials. Let M'(s) be 
the span of S, defined as the length of the shortest FSR generates s. The span gives a 
lower bound on the amount of information that must be stored in the states of a FSR to 
generate a given sequence. We note that for a de Bruijn sequence of length 2" - 1 the 
span is exactly n. Chan and Games (71 have commented that in general, determining the 
span of an arbitrary sequence s appears to be difficult given the nonlinearities involved. 
Surprisingly, there are several efficient nonalgebraic algorithms for determining the s p a  
of a sequence s. Later in this paper we will prove the following theorem. 

Theorem 1.2 Let s = (sll s2,. . . ,sn) where J; E 2, for 1 5 i _< n. Then assuming the 
uniform distribution on a;, the expected span E( M's) )  of s is then 

E(M'(s)) = 2log,n + o(1). 

Similar results to this theorem have been proven by Arratia, Gordon and Waterman (31, 
Apostolic0 and Szpankowski [2], Jansen [17] and Maurer [25). In this paper we prove 
Theorem 1.2 by showing that Af' (s )  is equivalent to the height of a data structure known 
as a s& tree 1261. From this equivalence it will also follow that M'(s )  can be computed 
in O ( n )  time for sequences of length n. Also from this characterization there are several 
other statistics of interest that can be computed which can be used to distinguish random 
from nonrandom sequences. 

The results of theorem 1.1 and 1.2 indicate that the length of the shift register to 
generate a sequence is iduenced dramatically by the  degree of the feedback polynomid: 
the apected linear span of binaty sequence of length n is roughly ?, while the upectcd 
span for the same sequence is approximately 21og n. For example, if s is a binary sequence 
of length lo', then the expected linear span is approximately 500,OOO while the expected 
s p a  is less than 50. The striking difference between the linear span and the span of a 
sequence can bc accounted for by considering the space required to store the feedback 
polynomial f(X).  AS noted for the linear case, the size 01 the feedback polpornid is 
bounded by the linear span itself. But for the c s e  where j ( X )  is unrwtricted, the 
size of f(x) may be an exponential function of the span. Thus the dramatic saving in 
memory c& for the shift register with arbitrary feedback is explained by cncoding mom 
information about the sequence into the feedback polynomial. 

The paper is organized as follows. In 52.1 we review previous work on modtling 
sequence complexity with FSRs using nonlinear feedback. In 52.2 we introduce the 
SU& tree, give its rdation to maximum order complexity, and present some asymptotic 



properties of suffix trees. In $3 we examine the expected size of a feedback polynomial, 
both theoretically and experimentally, and prove that the expected size of a feedback 
polynomial is exponential in the length of the FSR. 

2 Computing the span of a sequence 

2.1 Previous work 

Chan and Games [7] have presented an algorithm for computing the quadratic span of 
a sequence. The algorithm determines the coefficients of the feedback polynomial by 
repeatedly solving systems of linear equations. A feedback polynomial f(X) over the m 
indeterminates zl, x 2 , .  . . ,z, is quadratic if it can be written in the form 

m m  

where a;d E 2 2  for 1 5 i ,  j 5 m, i # j .  For exunplc,  if s = q, sz, . . . , 3 8  is a sequence of 
length 8, then the coefficients of the feedback polynomial for a shift register of length 3 
are given as the solution to 

If there is no solution to the linear system in eq. (4), then the quadratic span of 6 

necessarily exceeds 3. The Chan and Games algorithm, aa w d l  M the Masscy-Berickamp 
algorithm, is an on-line algorithm, which means that the algorithm processes the sequence 
one character at  a time (left to right) and computes the span for the portion of the 
sequence that has been read. Let the span of the first k characters of s be nlr, such 
that f h ( x )  is the current feedback polynomial. If 5k+l # f(dk-,,,+l ,..., sk), then a 
discrepancy is said to occur. When a discrepancy occurs the length of the shift register 
may have to be incremented. For thc linear span, a change in the current span only 
occurs if nk < $, and if this is the case, then the new linear span is given as (k + 1) - n h  

[as]. Part of the efficiency of the Massey-Berlekamp algorithm is the knowledge of the 
correct increment to be made when a discrepancy occurs. For the quadratic case, the 
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appropriate increment to be made when a discrepancy occurs is not known, and must be 
found by searching an interval of possible increments. The Chan and Games algorithm 
is very general, and can in fact be used to computc Fk(s) for 0 5 k 5 n. Perhaps for 
this reason, Games and Chan commented that determining the span of a sequence is 
a difficdt problem, as their algorithm becomes less efficient for higher degree feedback 
polynomials. 

A result similar to Theorem 1.2 was also presented in the thesis of Jansen [17]. Jansen 
has shown that M'(s )  can be characterized as a property of the Directed Acydic Word 
Graph (DAWG) [5] for a sequence s. The DAWG for a sequence s is a finite automaton 
that recognizes all substrings or subwords of s, or accepts the Ianguage L. = {u I vuz = 
s}. For this reason, the DAWG is also c d e d  the subword automaton. It CM be shown 
that if the longest path in the DAWG for s from the start vertex to a vertex of outdegree 
at  least 2 is k, then M'(s )  = k + 1 [li']. While we may determine the span of s from the 
DAWG for S, there is no obvious way to determine any analytical information concerning 
the span from considering the DAWG since enumerating automatons is difficult in general. 
Jansen proved several of his results using statistical and combinatorial arguments which 
did not refer to the DAWG (see 93.4 of the thesis). Some properties of the DAWG are 
presented in [6, 121. 

2.2 Pattern-matching algorithms 

Pattern-matching algorithms are concerned with methods for finding and/or retrieving 
a pattern or substring w from a given piece of text Y [I]. If there are to be repeated 
searches on the text Y, then Y may be preprocessed and stored in a particular da ta  
structure to make searches of Y more efficient. Aho e l  al. [l] present a data structure 
which is useful to solve the following three pattern-matching problems: (a) given t a t  Y 
and pattern w ,  find ail occurrences of w in Y ; ( b )  given text Y ,  determine the longest 
repeated substring of Y ;  (c) given two texts and Y2,  determine the longest string that 
is a substring of both Yl and Y2. For this paper, it will be the solution of problem (6) 
that is of interest. 

The data structure they presented is called a posrtion free, or later, a 3u& tree [%I. 
Let w = ~ 1 ,  WZ,. . . , w,,, S be a string of length n + 1 such that 0 is a unique character 
that only appears in position n + 1. Then every position in w is uniquely identified by 
at  least one substring of w, namely w i ,  wi+,, . . . , w,,, S ,  which are known as the s u B e s  
of W. Let ~ ( i )  be the shortest substring of w that uniquely identifies position i of W. 

Consider inserting u ( l ) , u ( 2 ) ,  . . . , u ( n )  into a tree T(w) ,  which is called the sufi  tree for 
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W. The tree T ( w )  will have n leaves, corresponding to the first n positions of W, and 
the edges of the tree are labeled so that the path from the root to the leaf representing 
position i is u ( i )  for 1 5 i 5 n. The height of a suffix tree h ( T ( w ) )  is the length of the 
longest path from the root to some leaf in the tree. 

Example 2.1 The suffix tree for s = OlOlOlllOOlOS is given in Figure 1. 0 

Figure 1: SuffLx tree for OIO1O111OO1OS 

The span of a sequence s is greater than k when there exist two substrings = 

s , , J , + ~ ,  - I .,3,+k-1 and s' = s,,s,+~, . . . , SI+kA1 such that sf+,, = s;+,,, 0 5 < k, 
and s ,+k # SJ+k. we wil l  say that the substring J' = s , , J , + ~ ,  . . . , s , + ~ - ~  occurs in s with 
two drfiercnt successor characters. Thus no function f(z1,  t2,. . . , z h )  of k variables 
generate the sequence J since 

f ( s , , s l + l , . . . , S , + k - l )  = si+h # Jj+k = f ( 9 , , s l + l , - . . r s i + h - ~ ) .  ( 5 )  

For the string W, let LRS(w) be the longcst repeated substnng of w, and let ILRS(w)l 
be the length of the LRS of w. Then observe that ]LRS(w)l 5 h(T(w))  - 1. From Figure 
1, for s = 0101011100109, LRS(s) = 0101 and jLRS(s)/ = 4. In this case [LRs(w)( = 
h(T(w) )  - 1 which is not true in general. In fact, the difference between the span of a 

finite sequence and the length of its longest common substring can differ dramaticdy. 
Consider the (n + 1)-bit string 

s = 10,0, ..., 0s - 
n- 1 



for which ILRS(s)l = n - 2, while the span M ( s )  = 1 (where we assume that the shift 
register does not have to generate $ as it is only appended to terminate the suffixes). 
The span of a sequence is then the longest string s' that occurs in s with two different 
successor characters @1,& such that PI,& $ {$}. This relation is formally proved next. 

Theorem 2.1 The span of s is equal to the longest path from the root of T ( s )  to a leaf 
u, where the parent of u has at least two children whose edges are not labeled by $. 

Proof. Let the length of the path from the root to 71 be k, such that the path represents 
the substring s;, s;+l,.  . . , s;+k-1 from s. Since the parent of tl has two children whose 
edges are not labeled by the 3 character, then the substring s;, s;+l,.. . , si+k--l O C C U ~ S  

twice in s with different successor characters, both distinct from S. Further, for m y  
j ,  1 5 j I k - I ,  there is a substring of length j ,  namely si+j,si+j+i,. . . , ~ i + ~ - i ,  with 
different successor characters, distinct from $. Thus no FSR of length shorter than k can 
generate s, and it follows that M ( s )  2 k. 

It remains to prove that M ( s )  5 k. Let 1.2 be any Leaf in T ( s )  of maxim- depth 
k' > I s .  Since U' # U, then the parent of u' must be an internal node of degree 2, with 
one child whose edge is labeled as S. W.l.o.g, let u' be the child that has the edge labeled 
$. If u' occurs in position a of s then ~ ( i )  = si, s , + ~ ,  . . . , s,,, $. Thus if the character s 
is deleted fiom s, then the string d(; )  = J ~ , J , + ~ , .  . . ,s, occurs at least twice in S, and 
eithcr has a unique successor character, or no successor character. It follows that s can 
be generated with a FSR of length k' - 1. 

By repeating the above argument for dl leaves at depths k' - I, k' - 2,.  -. , k + 1, it 
follows that s can be generatcd by a FSR of length less than (k + 1) - 1 = k. Thus 

0 M'(5)  = k which completes the proof. 

In general we may assume that the height of the suffix tree is an upper bound on the 
maximum order complexity. The experiments of Jansen 1171 suggest that this bound is 
tight in the expected case. The possible discrepancy between (LRS(s)l and M'(s ) ,  a 
shown in eq. (6) and formalized in Theorem 2.1, is due to the fact that s is finite. A 
string s is said to be a semi-infinite string, or a ststring (121, if 8 = ~ 1 ,  31,  83,. - and 
thus extends infinitely to the right. The ith SU& ~ ( i )  of s is defined as the substring 
v ( i )  = 3%) S;+ir ai+2,. . ., for a 2 1, and a s& tree "(s") can be built from the first IL 2 1 
suffixes of s. The analysis of su& trees by Apostolico and S~pankowski [2] is done using 
sistrings but is directly adapted to the case of finite strings. 

Recall that for a sequence s, the s u f f i x  tree T ( s )  for s is a tree containing strings 
u ( l ) , 1 ~ ( 2 ] ,  . . . , u ( n ) ,  where u ( i )  is the smallest string that identifies position i in S. The 
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strings ~ ( l ) ,  ~ ( 2 ) ,  . . . , v (n)  are not independent as they may overlap. The (search) tree 
that results from inserting n independent strings a'( I), v ' ( 2 ) ,  . . . , ~ ' ( n )  is a digital search 
tree called a t r ie .  The properties of digitd search trees have been extensively studied 
[lo, 20, 27, 301, and in particular, the expected height of a random trie built with n 
strings drawn from an alphabet with p symbols is 2log,n + o(1og n). The properties of 
2"s") are similar (asymptoticdy equivalent) to the properties of a s u f f i x  tree built using 
a string of length n [16]. 

The structure of a suffix tree depends upon the overlaps that exist between the given 
suffixes of a string. For suffixes u ( i )  and u ( j ) ,  1 5 i # j 5 n, let xj be defined as the 
length of the longest prefix that is common to both ~ ( i )  and u ( j ) .  Then we may define 
the following statistics: 

Then B, is called the nth-height, which corresponds to the height of a su& tree built 
on R suffuies; h, is called the nth-shallowness, and D, is the average depth of the suifix 
tree. We note that each of these quantities can be computed directly bs the s d E x  tree 
for a sequence can be constructed in O(n) time using linear O(n) space [26]. Further 
usume that the characters of s are drawn randomly and independently from Z,, such 
that the j t h  character of s is p; with probability q, for 0 5 i 5 p - 1. If q; = p-' then 
the strings occur with uniform probabdity, which is known as the Bernoulli model [2]. 

Recall that j(n) - g(n) if and only if j ( n )  = g(n)  + o(1). 

Theorem 2.2 (Apostolico and Szpankowski [Z]) Assuming the Bernoulli model, for 
0 

For binary sequences Jansen [17] has computed the span of dl sequences up to  length 
22, and the empirical average was close to 210g2n, which agrees with E ( H , ) .  Other 
estimates of E(H,,) have also been obtained, for example (31, but the derivation from 
the su& tree seems thc most robust. In fact, Apostobco and Szpankowski [2] are still 
able t o  compute the expected values of &,A,  and D, when the Bernoulli model is not 
assumed. For example, when the q, are not equal, expected value of H,, becomes 

large n, E ( K )  - 2 log,, n, E(h,) - log, n, E(Dn) - logp n. 

'l 

where In is the natural logarithm, qmor the maximum of the qi ,  a d  c a constant. 
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3 Properties of feedback polynomials 

In this section we will restrict ourselves to considering binary sequences, because such 
sequences are of the most practical importance. Let the ieedback polynomial of a 
FSR be f(X). It then follows that f ( X )  E Zz[tl, z2, .  . . , t,], which is the set of all 

polynomial expressions involving the indeterminate zl, z2,. . . ,z,. The polynomials of 
&[zl, 2 2 , .  . . , z,] correspond to boolean functions f : {0,1}" + (0,l) .  Conversely, any 
m-bit boolean function f can be represented as a polynomial Q f ( X )  E Zz[t~, q, -. - ,G,,], 
which is known as the Ring Sum Expansion (ME) [29] or Algebraic Normal Form (ANF) 
[28] of f .  Let Z,"[zl, t2,. . . , z,] be the set of 2*'" A N F  polynomials, which axe exactly 
those polynomials that remain in Zz[zl, z2). . . ) z,] when the elements of the ring are are 
simplified according to zi = tf, 1 5 i 5 m. 

We are interested in two quantities associated with feedback polynomials: the size, 
or number of terms, and the degree. For f ( X )  E Z/[zl, z2,.  . . ,z,], let T ( f ( X ) )  be the 
number of terms in f ( X ) ,  and let deg(f(X)) be the degree of f ( X ) .  Then the space 
required to store f ( X )  is bounded by n .  T ( f ( X ) ) .  

Theorem 3.1 Assuming the uniform distribution on Z t [ t l ,  2 2 , .  . . , z,] 
1 
2 

E(deg(f, m ) )  = rn - - + 0 

Proof. Let B(m,k) = &j5k ( y )  be the s u m  of the first k -+ 1 binomial coeffidents, 
0 5 k 5 m. Then 
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Thus we expect dl taps of the FSR to be involved in the feedback polynomial. Fur- 
ther it follows from the binomial theorem that E(T(f(X))) = 2"-'. Thus a random 
polynomial in Z![;cl, 2 2 ,  . . . ,%,,,I has a number of terms exponential in m, and a degree 
approximately m. Again consider the example of computing the linear span and span of 
of sequence of length n = 10'. The total storage for the LFSR is approximately 750,000 
bits, assuming half the coefficients in f ( X )  are nonzero. Then fiom Theorem 1.2, the 
smallest shift register will have approximately 21og n stages, and from Theorem 3.1, as- 
suming that the feedback polynomial is drawn at random from 22A[~1,2z,...,Zzio(yn], 
f (X) will have 2'hn-1 > t ems, which is far larger than the length of the sequence! 

We note that the feedback polynomial to generate a given sequence is not unique in 
general. Let the span of a sequence s be m, and let j ( X )  be a feedback polynomial. 
There are 2" m-bit strings, and let k, 1 5 k 5 2", of these strings occur as substrings 
in s. It then foUows that there are in fact 22"-k polynomials g ( X )  that agree with f ( X )  
on the k input strings found in s. We may still speak of t h e  feedback polynomial f(x) 
associated with every sequence s by defining f ( X )  to be the polynomial which generates 
s, and for which f ( X )  + 1 has the smallest number of roots. 

3.1 Experimental results 

For this experiment we generated random bit sequences using the C library function 
srundom. The span for each sequence was calculated by comparing suffixes and a feedback 
function generated for the sequence. The feedback function was simplified to give a count 
of the number of terms using MAPLETM. This w a  applied to 100,000 32-bit sequences. 
The mean span was 8.65 with a standard deviation of 1.59. The following table shows 
the number of terms in the feedback function for different length spans. 

4 Conclusion 

We have shown that the sufEx tree provides an alternate characterization of the maximum 
order complexity of a sequence. With this characterization it is then possible to accurately 
determine distribution of the maximum order complexity of a sequence, and also several 
other statistics. Also we have given some evidence to indicate that the linear complexity 
of a sequence is expected to be less than the maximum order complexity when both the 
length of the shift register and the size of the feedback polynomial are taken into account. 
One open problem is then to determine that order k of a feedback polynomial for which 
F~(s) + f ( X )  is minimized for sequences s of length n. 
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Span
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

# of cases
11

2871
20917
29822
22228
12485
6328
2887
1339
638
256
109
60
30
11
5
0
2
1

Mean # of terms
15.82
30.30
53.86
92.47
154.25
251.68
415.13
666.99
1078.58
1713.08
2679.77
4335.17
14028.02
24725.47
10025.73
12698.00
0.00

560.00
874.00

Std. Dev.
3.24
4.84
11.80
11.80
66.08
140.59
292.70
599.33
1103.69
2199.19
4304.51
9380.74
32298.27
64266.20
14349.16
11095.74

0.00
464.00
0.00

Table 1: Number of terms for different spaas
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