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(Extended summary) 

1 About collisions 

Given a cryptographic algorithm f (depending upon a fixed message m and a key 

k), a pair of keys with collision Ici and k2 (in short, a collision) are keys such that 

f(m, h) = f(w kz)- 

The existence of collisions for a given cryptographic algorithm means that this 

algorithm is not faithful in a very precise technical sense (see [3]). It is important 

to know if it is easy to find collisions for a given cryptographic algorithm. Indeed, 

the existence of such easy-to-find collisions means that this algorithm (or, maybe, 

its mode of use) is not secure for many applications related to hashing functions 

used in the context of digital signatures. 

While there is a large probability that DES, in its basic mode, has collisions, 

nobody has found a collision for DES until now. It is thus a challenging problem 

to find only one. We found 21 collisions with the same plaintext (= identical m). 

The used algorithm is based on the so-called theory of distinguished points (see 

the abstract in the proceedings of CRYPT0 ‘87 by the same authors). The result 

was obtained thanks to efficient implementations of DES on VAXes and SUN’s 

and intensive use of the idle time from 35 workstations at our laboratory. 
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2 Algorithms 

2.1 A naive algorithm 

Here we will use DES(m,k) for denoting DES in its basic mode, with m as the 

input message (64 bits), k as the key (56 bits); the obtained result has 64 bits. 

If we suppose that  DES can be modelled as a random mapping, the following 

algorithm works. Given a fixed message m, compute about 232 values DES(m, k,), 
where the ki's are aLl Merent .  Sort the obtained values. With a high probability, 

we will obtain one collision. The problem with such a method is the need of a very 

large memory (disk and RAM) for storing the values. The associated problem of 

sorting a lot of data  is not so simple. This method is not feasible as an annex 

task in a network of workstations. 

2.2 Algorithm without memory 

There exist very efficient algorithms to  find cycles in periodic functions mapping 

some finite domain D into D (see [I]). If we take a random element x from the 

finite set D and generate the infinite sequence fo(z) = 2, f'(x) = f (x) ,  f2(z) = 

f(f(z)), ..., then we know that the sequence becomes cyclic. That is, there exists 

some value 1 that flTc(x) = f ' ( z )  (the point of contact common to the leader and 

the cycle) and fz+c-l(z) # f'-'(x) (one value on the leader and one on the cycle). 

That is, by definition, we found a collision for such a f .  

It is simple to modify such algorithms to find cycles when the domain D has 

less elements than the codomain. That is, the input Ic has less elements than the 

output. We need some projection function g for mapping the output onto the next 

input. However, we have a new problem. The common point is not necessary the 

result of a collision. In fact, for DES, the probability of hahng found a collision is 

one out of 256. We now call a pair of antecedent points of such a common point 

a pseudo-collision. 

SO the algorithm becomes the following one. Given m and an initial value 

20, find a first pseudo-collision. Verify if it is a true collision. If no, try again 

with a new initial value 21, aso. A new problem with such an algorithm is that 

we compute many times the same values due to the fact that we are computing 
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values on the same cycle with high probability (see the paper by Flajolet and 

Odlyzko, in these proceedings). An effective technique to overcome this problem 

is the use of distinguished points. 

2.3 Effective algorithm in use 

Figure 1 describes the algorithm we are using. The two variables pseudo-collision 

and pseudo-cycle are first set to false. The variable i is a counter used for the 

number of the current initial value. At each call of newinit, a new and different 

value for y is chosen. The counter k is used for computing the number of computed 

values since the last call of add, that is, since the last time we found a distinguished 

point. The procedure distinguished-point is true if the input y is a distinguished 

point, that is a value with some attribute fast to compute (for instance, we used 

the attribute that the value y had 20 bits set t o  0 at the left). The procedure add 

puts the value y into TABLE by checking if there is another entry already there 

with the same value y. It is a fast operation (comparisons with elements in a small 

table). If yes, then add puts the variable pseudo-collision to true. We have then 

detected a pseudo-collision but we do not know its exact value. We will find that 

in a next phase. The variable limit-lc is used for avoiding the problem of looping 

due to a cycle without any distinguished point. After some time, TABLE contains 

a large number of values indicating pseudo-collisions. We are now in position to 

find out if there are some collisions in this set. For that we compute the effective 

values of the pseudo-collisions. Sometimes it is a collision. 

3 Results 

The first collision has been found January 13, 1989. the birthday of the first author 

(another application of the birthday paradox!) after 3 weeks of computation. 

Here is this first one: 

PLAIN = 0404040404040404 (in hexadecimal) 

lcl = 4A5AA8DOBA30585A (idem) 

k2 = 46B2C8B62818F884 (idem) 

RESULT = FOZD67223CEAF91C (for the two keys) 
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pseudo-collision +- false; 

pseudo-cycle +-- false; 

i +- 0; 

repeat 

y t newini t ( i ) ;  

k + 0; 

repeat 

Y - f ( Y ) ;  k + k + 1 ;  
if (distinguished-point(y)) then 

begin 

add(y,  pseudo-collision); k +- 0 ; 

end 
if k > l imit-k then pseudo-collision t true ; 

until pseudo-collision or pseudo-cycle; 

until i > limit-i; 

Figure 1: The pseudo-collision detecting algorithm 
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The workstations worked in parallel on the same problem (= same rn) with 

distinct initial points and distinct projection functions g. In this context, the 

number of found collisions is proportional to the square of the used time if we 

consider that the studied cryptographic function acts as a random mapping. The 

projection functions were simply different sets of 36 bits out of the outputs of 64 

bits. 

We have found 2 1  collisions for DES (March 13, 1989). The table at the end 

of this paper gives the complete values. 

An algorithm was implemented to draw the mappings resulting from these 

DES computations (see an example in the paper by Flajolet and Odlyzko, in 

these proceedings). 
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PLAIN KEY 1 KEY 2 CIPHER 

0404040404040404 4a5aa8dOba30585a 

d296c2ca66be3c60 

6edaa03254d2a298 

cc3adc3616cclc32 

a2aa9adc56a60ad6 

5888c640ee3016d4 

le620c46682e325c 

780a76586c7cOca4 

46f422a832acOc18 

3eb8406c969c9c84 

28e8161878343eaO 

060cOe048614bc42 

dOe4aa90baba68 1 c 

36da7e6010d6a07e 

7aac9c602e9854b6 

ce806eee7cfcd2ec 

366cf4baa8cc6c80 

6ecel e20bef2bOf8 

5e301c2452d88476 

Oe5ebe562c961274 

624e36aa48926a2e 

46b2c8b62818f884 

1680b00clc22c6b4 

22a64edc20e07032 

620e08e886aa8clc 

b41ebe7a88c4a8c8 

8654a2b862a82486 

Oed86014328cf2da 

92f69c5aa2c84ee8 

1680f2049484b4b2 

e4f06aaea2022e02 

36aOfO3afe48c226 

5c4afa4aeOc62a84 

d8fc6cba3cOa946c 

2c2c5a243cd882fa 

ac78ca74c6aOea6e 

ae8838904874c606 

76f6527c54447ade 

be827240c8bc3e6a 

5406c60cb4d6fOc8 

b45e08326ea40e10 

a862d2aefOc06c54 

f02d67223ceaf91c 

e20332821871eb8f 

7237f9e44466059f 

345d8975676ffdeO 

301c9a64b903048d 

8f4a67da0852722d 

96fOfaf4fSOb6b29 

16901 196097a93f4 

85795a73b4afSd78 

46184d44b739a147 

c5ed963b29a48bf6 

c931dab489f515al 

a3c7d6d33eb1400d 

6a5d431ed4863421 

2edeaaa86e5 141 af 

150eOb6fT35b4fOe 

77964ble86be688e 

f29fdbc8dc6c174a 

c6120f53b62eedOd 

ef5293fl4f84fc4f 

7dd3c3d34ea30c2f 

Table of known collisions for DES. 
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