
How easy is collision search? Application to DES

Jean-Jacques Quisquater Jean-Paul Delescaille

Philips Research Laboratory Belgium

Avenue Albert Einstein, 4

B-1348 Louvain-la-Keuve, Belgium

jjq@prlb.philips.be - jpdesca@prlb.philips.be

(Extended summary)

1 About collisions

Given a cryptographic algorithm f (depending upon a fixed message m and a key

k), a pair of keys with collision Ici and k2 (in short, a collision) are keys such that

f(m, h) = f(w kz)-

The existence of collisions for a given cryptographic algorithm means that this

algorithm is not faithful in a very precise technical sense (see [3]). It is important

to know if it is easy to find collisions for a given cryptographic algorithm. Indeed,

the existence of such easy-to-find collisions means that this algorithm (or, maybe,

its mode of use) is not secure for many applications related to hashing functions

used in the context of digital signatures.

While there is a large probability that DES, in its basic mode, has collisions,

nobody has found a collision for DES until now. It is thus a challenging problem

to find only one. We found 21 collisions with the same plaintext (= identical m).

The used algorithm is based on the so-called theory of distinguished points (see

the abstract in the proceedings of CRYPT0 ‘87 by the same authors). The result

was obtained thanks to efficient implementations of DES on VAXes and SUN’s

and intensive use of the idle time from 35 workstations at our laboratory.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 429-434, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

430

2 Algorithms

2.1 A naive algorithm

Here we will use DES(m,k) for denoting DES in its basic mode, with m as the

input message (64 bits), k as the key (56 bits); the obtained result has 64 bits.

If we suppose that DES can be modelled as a random mapping, the following

algorithm works. Given a fixed message m, compute about 232 values DES(m, k,),
where the ki's are aLl Merent . Sort the obtained values. With a high probability,

we will obtain one collision. The problem with such a method is the need of a very

large memory (disk and RAM) for storing the values. The associated problem of

sorting a lot of data is not so simple. This method is not feasible as an annex

task in a network of workstations.

2.2 Algorithm without memory

There exist very efficient algorithms to find cycles in periodic functions mapping

some finite domain D into D (see [I]). If we take a random element x from the

finite set D and generate the infinite sequence fo(z) = 2, f'(x) = f (x) , f2(z) =

f(f(z)), ..., then we know that the sequence becomes cyclic. That is, there exists

some value 1 that flTc(x) = f ' (z) (the point of contact common to the leader and

the cycle) and fz+c-l(z) # f'-'(x) (one value on the leader and one on the cycle).

That is, by definition, we found a collision for such a f .

It is simple to modify such algorithms to find cycles when the domain D has

less elements than the codomain. That is, the input Ic has less elements than the

output. We need some projection function g for mapping the output onto the next

input. However, we have a new problem. The common point is not necessary the

result of a collision. In fact, for DES, the probability of hahng found a collision is

one out of 256. We now call a pair of antecedent points of such a common point

a pseudo-collision.

SO the algorithm becomes the following one. Given m and an initial value

20, find a first pseudo-collision. Verify if it is a true collision. If no, try again

with a new initial value 21, aso. A new problem with such an algorithm is that

we compute many times the same values due to the fact that we are computing

43 1

values on the same cycle with high probability (see the paper by Flajolet and

Odlyzko, in these proceedings). An effective technique to overcome this problem

is the use of distinguished points.

2.3 Effective algorithm in use

Figure 1 describes the algorithm we are using. The two variables pseudo-collision

and pseudo-cycle are first set to false. The variable i is a counter used for the

number of the current initial value. At each call of newinit, a new and different

value for y is chosen. The counter k is used for computing the number of computed

values since the last call of add, that is, since the last time we found a distinguished

point. The procedure distinguished-point is true if the input y is a distinguished

point, that is a value with some attribute fast to compute (for instance, we used

the attribute that the value y had 20 bits set t o 0 at the left). The procedure add

puts the value y into TABLE by checking if there is another entry already there

with the same value y. It is a fast operation (comparisons with elements in a small

table). If yes, then add puts the variable pseudo-collision to true. We have then

detected a pseudo-collision but we do not know its exact value. We will find that

in a next phase. The variable limit-lc is used for avoiding the problem of looping

due to a cycle without any distinguished point. After some time, TABLE contains

a large number of values indicating pseudo-collisions. We are now in position to

find out if there are some collisions in this set. For that we compute the effective

values of the pseudo-collisions. Sometimes it is a collision.

3 Results

The first collision has been found January 13, 1989. the birthday of the first author

(another application of the birthday paradox!) after 3 weeks of computation.

Here is this first one:

PLAIN = 0404040404040404 (in hexadecimal)

lcl = 4A5AA8DOBA30585A (idem)

k2 = 46B2C8B62818F884 (idem)

RESULT = FOZD67223CEAF91C (for the two keys)

432

pseudo-collision +- false;

pseudo-cycle +-- false;

i +- 0;

repeat

y t newini t (i) ;

k + 0;

repeat

Y - f (Y) ; k + k + 1 ;
if (distinguished-point(y)) then

begin

add(y, pseudo-collision); k +- 0 ;

end
if k > l imit-k then pseudo-collision t true ;

until pseudo-collision or pseudo-cycle;

until i > limit-i;

Figure 1: The pseudo-collision detecting algorithm

433

The workstations worked in parallel on the same problem (= same rn) with

distinct initial points and distinct projection functions g. In this context, the

number of found collisions is proportional to the square of the used time if we

consider that the studied cryptographic function acts as a random mapping. The

projection functions were simply different sets of 36 bits out of the outputs of 64

bits.

We have found 2 1 collisions for DES (March 13, 1989). The table at the end

of this paper gives the complete values.

An algorithm was implemented to draw the mappings resulting from these

DES computations (see an example in the paper by Flajolet and Odlyzko, in

these proceedings).

References

[I] Robert Sedgewick, Thomas G. Szymanski and .Andrew C. Yao, The complex-

ity of finding cycles in periodic functions, SIAM J. Cornput., vol. 11, 2, pp.

376-390, 1982.

121 Jean-Jacques Quisquater and Jean-Paul Delescaille, Other cycling tests for

DES, Springer Verlag, Lecture notes in computer science 293, Advances in

cryptology, Proceedings of CRYPT0 '87, pp. 255-256.

[3] Burton Kaliski, Ronald Rivest and Alan Sherman, Is the Data Encryption

Standard a group? (Results of cycling esperiments OR DES)?, J. Cryptology,

V O ~ . 1, 198, pp. 3-36.

434

PLAIN KEY 1 KEY 2 CIPHER

0404040404040404 4a5aa8dOba30585a

d296c2ca66be3c60

6edaa03254d2a298

cc3adc3616cclc32

a2aa9adc56a60ad6

5888c640ee3016d4

le620c46682e325c

780a76586c7cOca4

46f422a832acOc18

3eb8406c969c9c84

28e8161878343eaO

060cOe048614bc42

dOe4aa90baba68 1 c

36da7e6010d6a07e

7aac9c602e9854b6

ce806eee7cfcd2ec

366cf4baa8cc6c80

6ecel e20bef2bOf8

5e301c2452d88476

Oe5ebe562c961274

624e36aa48926a2e

46b2c8b62818f884

1680b00clc22c6b4

22a64edc20e07032

620e08e886aa8clc

b41ebe7a88c4a8c8

8654a2b862a82486

Oed86014328cf2da

92f69c5aa2c84ee8

1680f2049484b4b2

e4f06aaea2022e02

36aOfO3afe48c226

5c4afa4aeOc62a84

d8fc6cba3cOa946c

2c2c5a243cd882fa

ac78ca74c6aOea6e

ae8838904874c606

76f6527c54447ade

be827240c8bc3e6a

5406c60cb4d6fOc8

b45e08326ea40e10

a862d2aefOc06c54

f02d67223ceaf91c

e20332821871eb8f

7237f9e44466059f

345d8975676ffdeO

301c9a64b903048d

8f4a67da0852722d

96fOfaf4fSOb6b29

16901 196097a93f4

85795a73b4afSd78

46184d44b739a147

c5ed963b29a48bf6

c931dab489f515al

a3c7d6d33eb1400d

6a5d431ed4863421

2edeaaa86e5 141 af

150eOb6fT35b4fOe

77964ble86be688e

f29fdbc8dc6c174a

c6120f53b62eedOd

ef5293fl4f84fc4f

7dd3c3d34ea30c2f

Table of known collisions for DES.

	How easy is collision search? Application to DES
	1 About collisions
	2 Algorithms
	2.1 A naive algorithm
	2.2 Algorithm without memory
	2.3 Effective algorithm in use

	3 Results
	References

