
Practical Zero-Knowledge Proofs:
Giving Hints and Using Deficiencies

Joan Boyar, Katalin Fried1 and Carsten Lund*

Computer Science Department

University of Chicago

Abstract

New practical zero-knowledge proofs are given for some number-theoretic problems. AJJ of
the problems are in NP, but the proofs given here are much more efficient than the previously

known proofs. In addition, these proofs do not require the prover to be super-polynomial in

power. A BPP prover with the appropriate trap-door knowledge is sufficient. The proofs are

perfect or statistical zero-knowledge in all cases except one.

1 Introduction

Many researchers have studied zero-knowledge proofs and the classes of problems
which have such zero-knowledge proofs. Little attention, however, has been paid

to the practicality of these proofs. It is known, for example, that, under certain

cryptographic assumptions, all problems in NP have zero-knowledge proofs [14],
[7], [9]. But th ese proofs may involve a transformation to a circuit or to an NP-

complete problem, so they are often quite inefficient. The first zero-knowledge

proofs, those for quadratic residuosity and non-residuosity [17], were practical;

they were efficient and the prover could be BPP if she’ had the appropriate trap-

door knowledge. Other efficient zero-knowledge proofs are given in [8], [lo], [ll],

[131, [181, P51.
In this paper %-e present a practical zero-knowledge proof for a subproblem of

primitivity. This protocol: which shows that an element of the multiplicative group

modulo a prime is a generator, only requires that the prover know the complete

factorization of p - 1. >ote that the protocol given in [25] is not practical because

the prover must be able to compute discrete logarithms. In order to avoid that
problem in our protocol, we have the verifier give the prover “hints” which will

help her find the discrete logarithms in question.

‘This research was supported in part by NSh Grant Nd. MDA904-88-H-2006.
‘In this paper, it will at times be convenient to think of the verifier as being named Vie, and the prover being

named Peggy. This has the advantage that personal pronouns such as “he” and “she” can be used to unambiguously
identify one of the parties.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 155-172, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

156

Unfortunately, the portion of our protocol which shows that the element a is
a primitive element of 2; fails in some cases if p - 1 has large square factors. It
fails, though, in such a well-defined manner that we can use its failure in a zero-
knowledge proof that a number n is not square-free. This proof that a number is
not square-free is zero-knowledge only under a certain reasonable cryptographic
assumption and is thus only computational zero-knowledge rather than perfect
or statistical zero-knowledge. The protocol does not, however, involve any bit
encryption. All previous “natural” zero-knowledge proofs which are neither perfect
nor statistical zero-knowledge have used bit encryptions. Furthermore, this zero-
knowledge proof is efficient, assuming the Extended Riemann Hypothesis.

We also give practical zero-knowledge proofs for non-primitivity, and for mem-
bership and non-membership in {nI n and ~ (n) are relatively prime}.

When we refer to a practical zero-knoledge proofwe mean one in wich the prover
is BPP and the proof is direct, i.e. it doesn’t involve a transformation to a circuit
or an NP-complete problem. Usually such a transformation would involve a very
significant blowup in the size of the problem, greatly increasing the number of
bits which must be communicated. For example, the circuit for proving that the
element g is a primitive element of 2; would presumably involve checking that a
factorization of p - 1 is complete and checking for each prime factor q of p - 1,
that g raised to the power (p - l) / q is not the identity. This circuit is not a t all
trivial; the protocol we give involves much less communication.

For a fixed zero-knowledge proof let CCk(N) be the number of bits communi-
cated to achieve probability of error no more then (l / 2) k , where k is the security
parameter and N the size of the input. In a typical zero-knowledge proof, one
repeats a short protocol k times in order to obtain the required security-

2 The Zero-Knowledge Proofs

2.1 Primitivity

If we are allowing the prover to be all-powerful, it is easy to give a zero-knowledge
proof that g is a generator of the multiplicative group modulo a prime p . In one
such proof, the following would be repeated k = log,p times:

1. The verifier randomly and uniformly chooses T E Zi-]
2. The verifier computes h =- g‘ (mod p) and sends it to the prover.

3. The verifier gix-es a proof of knowledge [13] of r [lo].

4. The prover takes the discrete logarithm of h to get r.

5. The prover sends r hack to the verifier who checks that it is correct.

157

This is slightly more complicated than the zero-knowledge proof in [25], and it
still has the problem that the prover needs to be able to take discrete logarithms.
We can eliminate this problem, however, by letting the verifier give the prover a
hint which will help her to compute the discrete logarithm.

Let us assume that the prover initially has the complete factorization of p - 1 on
her private work tape. Fortunately, it is possible in expected polynomial time to
create a random prime p with a given length, along with the complete factorization
of P - 1 [3], 111. Kow, we will modify the above zero-knowledge proof to include
the following steps:

0. The verifier attempts to factor p - 1 by trial division up to clog'p. For
all nontrivial factors q found, the verifier checks that neither g p (modp) nor
g(p-')/q (modp) is the identity. Here c is an arbitrary constant.

1. The verifier randomly and uniformly chooses T E Z;:-'.

2. The verifier computes h f gp (modp) and sends it to the prover.

2;. The verifier computes I = r 2 (mod p - 1) and sends it to the prover.

3. The verifier gives a proof of knowledge [13] of the discrete logarithm of h [lo].

4'. The prover takes the discrete logarithm of h to get T and checks that z has
the correct form. If something fails, the prover terminates the protocol.

5 . The prover sends T back to the verifier who checks that it is correct.

If we assume that p - 1 is square-free, except possibly for powers of small
primes less than clog'p, the above is a perfect zero-knowledge interactive proof
system. Observe that in step 3 the verifier need not prove that z has the correct
form because the prover can test this herself from the discrete logarithm. We
do, however, have a protocol which proves directly that the form is correct (see
Appendix A). It is not immediately obvious, though, that the above protocol is an
interactive proof system (i.e. that the verifier should be convinced after the proof
is completed), or that the prover can now compute the discrete logarithm (if p - 1
has many factors).

Let US first shorn that it is, in fact. an interactive proof system. Suppose that
g is not a generator. We will show that in this case the prover will fail to send
back the correct r a t least 50% of the time. If g is not a generator, then g = f'
for some f E 2;. and k = tq for some prime factor q of p - 1. By assumption, q2
does not divide p - 1. Thus there is another square root T' of z modulo p - 1 with
T' E -T(modq), but T' E r(rnod&). This means that there exists an integers such

= 9'. Thus there are at least two distinct square roots of z which are discrete

P

tllat T' = T + ,(e=.') and r' $ T (mod p - 1). But g' = ffq('""(?" = f t q r f t s (p - ')
P

158

logarithms of h , so the prover has at best a 50-50 chance of guessing which one
the verifier knows.

Now, we will look at the prover’s algorithm for finding discrete logarithms
given the hint 5. The idea is to use the Chinese Remainder Theorem. For each
of the prime power factors q of p - 1, we find the two square roots T I and ~2 of
z using [2], [6], [21] or [22]. In order to determine which is correct, we compute
(grl - h - ’) y and (9 ‘ 2 - h-’)?. Without loss of generality, suppose T I = -T (mod q)
and T Z = -r (mod Q) . Then there exist kl and kz such that T~ = T + klq and
T Z = --T + kzq . Then,

($1 . h- ‘ I L L) ‘I = (g r + k l q . g-r)? = 1

and

since T was chosen from Z;-’. Thus, the prover can simply choose the square root
which produces the identity in this formula, and then put all the square roots
modulo the different prime power factors together, using the Chinese Remainder
Theorem.

The proof that this protocol is in fact a perfect zero-knowledge proof system
for primitivity when p - 1 is “essentially” square-free, follows the lines of [15]. We
will sketch some of the ideas for the construction of the simulator. The main idea
is to use the verifier (here he can be any BPP-machine) and his proof that he
knows T to find this r . In the verifier’s proof, the following is done in parallel2 for
1 5 i 5 k = log, p.

1. The verifier randomly and uniformly chooses T, E Zp*-l.

2. The verifier computes h, = gp* (modp) and sends it to the prover.

3. The prover chooses 3, E (0.1) randomly and sends ,O, to the verifier.

4. If Pz = 0 then the verifier sets f , = I’, otherwise he sets i, = T, + r . Then he
reveals i,

5. The prover checks that h, = gr*/hbl.

This subprotocol may no longer be zero-knowledge when run in parallel, but it
does not help a cheating prover. If g is not a generator and gm ZE 1 (modp), then
T and T’ = r + Im are both discrete logarithms of h. But the verifier could have
chosen either r, or r, - lm. Thus f , will never help the prover distinguish between
these possibilities.

2This may be done sequentially. \Ve are doing it in parallel to make it clearer that the entire primitivity protocol
can be done in parallel.

159

Now the simulator for the primitivity protocol works as follows. It asks a
question (PI, P 2 , . . . , *&), and if it does not get a correct aswer , it stops as the r e d
prover would. If it gets a correct answer, it has to find the real T since this is what
the real prover does. To do this, it resets the verifier to the point just before the
question was asked and asks another random question (pi, pi,. . . ,pi). If it also gets
a correct answer for this question it can find T , since if # pi we have T = &($ -
f ;) . If it does not get correct answer, then the simulator continues asking questions
until it gets a correct answer or it has asked 2k questions. In the second case it can
continue to find T , using brute force. It can be shown that this simulator runs in
expected polynomial time for all verifiers. See [15] for more details. Furthermore
we can make this a bounded round protocol because this simulator works even if
the protocol is run in parallel [l j] . Hence we get a bounded round perfect zero-
knowledge protocol. If the length of p is N , then the communication cost of the
protocol is O (k 2 N) because O(kiV) bits are communicated in step 3 t o achieve
error probability not greater then (1/2)k. This gives

Theorem 1 Let p be a pr ime and c be an arbitrary constant. Assume that if
q > clogip is a pr ime then q2 does not divide p - 1. Then there is a practical
perfect zero-knowledge. bounded round, interactive proof system for

(91 < 9 >= q.
The BPP prover's secret information is the complete factorization of p - 1. The
communication cost of this protocol is CCk(N) = O (k 2 N) .

The set of primes for which our proof works is of reasonable size since [24]
proved that

{pi p 5 x, p prime and p - 1 squarefree}
3 c > o : > c

{PI P 5 5 and P prime}
for z sufficiently large.

Throughout this section, ~e have been looking at the multiplicative group 2; of
the integers modulo a prime p. It is easy: however, to generalize the proof system
given above to many other cyclic group with known order. Consider, for example,
the multiplicative group 2; of the integers modulo q = p", where p is an odd prime
and n 2 l.3 Almost all that is necessary is to substitute p(q) = p"-'(p- 1) in place
of p - 1 throughout this exposition. (When q is prime, p(q), Euler's phi function,
has the value q - 1.) Of conrse, ~ (q) is never square-free if n > 2. This is not
a problem, however. because q is easy to factor, so the verifier and the simulator
can find p and c a ~ check that gP"-'(P-') $ 1 (modp). Thus, one c m assume that
g $ htP (modp) for any integer t , and one again only needs to worry about square
factors of p - 1.

3Notice that this is even easier in this particular case because the problem of determining primitivity in the group
Z;. is efficiently reducible to that of determining primitivity in Z;. This follows from the fact, that an element g E 2,-
is primitive if and only if gP'-'*-l) $ 1(modp") and g is primitive when viewed as an element of the group 2;.

160

2.2

In the zero-knowledge proof system presented in the previous section, we had
to assume that p - 1 n-as square-free except for powers of small primes. This is
unfortunate, particularly since there is no known efficient zero-knowledge proof for
square-freeness. It is possible, however, to give an efficient proof that a number
n and v(n), the number of elements in the multiplicative group modulo n, are
relatively prime. This property implies that n is square-free. Thus, if p - 1 = 2 k ~ ,
where T is odd, and if r and V (T) are relatively prime, the prover could prove that
this is the case and afterwards she could prove primitivity. Unfortunately, it is
possible to have T and P (T) not relatively prime even if p - 1 is square-free. so this
proof system will not n-ork for quite as large a class as we would like. Combined
with the proof system of the previous section, however, it gives a perfect zero-
knowledge proof for

Are n and ~ (n) relatively prime?

{(p,g)Ipisprime,p- 1 = 2". whererisodd,gcd(r,y(r)) = 1,and < g >= Zp}.

Suppose the prover knows p(n) for an odd integer n and wants to prove that
n and y(n) are relatively prime. The prover and verifier can repeat the following
log,n times.

1. The verifier randomly and uniformly chooses x E 2; and sends it to the
prover.

2. The prover chooses a random T E 2; and sends the verifier g = rnx (mod n).

3. The verifier chooses /3 E (0 , l) randomly with equal probabilities and sends
/? to the prover.

4. If P = 0, the prover reveals T showing that y was formed correctly. If ,B = 1,
the prover reveals an nth root of y, thus showing that 1 has an nth root modulo
n.

To see that this works, suppose that n and y (n) are not relatively prime. Then,
the gcd(n, cp(n)) = 4, where 1 < 4 < y(n) < n. Since there is some positive integer
t such that, for every g E Z;, g" = g'* (mod n) , every element which has nth roots
also has qth roots. But no more than half of the elements of 2; have qth roots
modulo n. If the verifier chooses an z which does not have an nth root, there is
no more than a 50-30 chance that the prover will be able to answer the challenge
chosen by the verifier. Thus, a t each step, there is at least one chance in four that
the prover will be caught, making the probability that the prover will succeed log, n
times exponentially small. When n and p(n) are relativelyprime x = (x")'(modn)
where k z (n (mod ~ (n))) - l (mod ~(n)). Hence the prover can compute nth roots
of x and y.

This is clearly perfect zero-knowledge since the simulator has a 50-50 chance
each time of guessing which 9 the verifier will choose. When the simulator guesses

161

that ,O = 0, he computes y exactly as the prover would, so he has no problem
revealing r . When the simulator guesses that p = 1, he sends y = r n (mod n) ,
so he can give an nth root of y. When he guesses incorrectly, he backs up the
transcript tape and tries again. Thus the simulation will be in expected polynomial
time. Since y is a random element of 2: whether it is produced by the prover
or the simulator, the transcripts produced by the simulator will have the same
distribution as those produced by the true prover. Thus this protocol is perfect
zero-knowledge. The protocol can furthermore be pardelized following the lines
of [a]. The above discussion gives

Theorem 2 There is a practical perfect zero-knowledge interactive proof system
f o r

(4 g c d h P (4) = 1)
with communication cost CCk(N) = O (k N) . The BPP prover's trapdoor informa-
t ion is the number ~ (n) .

Theorem 3 There is a practical perfect zero-knowledge interactive proof system
for

{(p,g)Ipprime,p- 1 = 2kr,whererisodd,gcd(r,y(r)) = 1,and < g >= 2;).

The BPP prover's secret information is the complete factorization of p - 1. The
communication cost i s CCk(N) = O (k 2 N) .

If n and p(n) are not relatively prime, a prover who knows p(n) can give a
practical zero-knowledge proof that they have a common factor, under certain
assumptions. One such proof involves repeating the following log, n times. First,
the prover sends the verifier a random 3: E 2; such that z does not have an nth
root. Then the verifier chooses a random r E 2: and a random bit ,O. The verifier
then sends y 3 r"xB (mod n) to the prover. Next, using the technique due to
Benaloh [5] of using cryptographic capsules, the verifier gives a zero-knowledge
proof that he knows R and p. Finally, the prover reveals the bit p. The reason
this is not perfect zero-knowledge is that the prover must originally produce an nth-
nonresidue z, and it's not clear that the simulator c m do this. If q = gcd(n, cp(n))
is large enough (superpolynomial) though, the simulator could pick z E 2; at
random and it's unlikely that 3: would be a qth-residue. In this case, the protocol
would be statistical zero-knowledge.

2.3 Nongenerators

Suppose p is a prime and g is not a generator of 2;. If the prover knows a t < p- 1
such that gt (modp) E 1, then she can give a practical statistical zero-knowledge
proof that g is not a generator. The proof is statistical zero-knowledge if s =
is large. The major advantage of the protocol given here over that in (251 is that

162

we do not need to assume that a generator for 2; is publicly available. The set
we are concerned with is

S={(p,g) lpisaprime,3t<p- l ,g f=l (modp)} .

The values p and g are available to both the prover &nd the verifier; the value t is
initially on the prover’s private work tape; and the prover is attempting to convince
the verifier that g is not a generator modulo p . Our proof is based on the fact that
for every integer T, gr gr+t’ (modp) if I is an integer, so the prover can find many
discrete logarithms for an element as long as she knows one discrete logarithm. If
g was a generator, however, each element would have only one discrete logarithm
in the range [l , p - 11. The protocol consists of log,p independent repetitions of
the following:

1. The prover chooses a random T uniformly from the range 11, t].

2. The prover sends the verifier h = g’ (modp).

3. The verifier chooses ,f3 E (0 , l) randomly with equal probabilities and sends

4. If ,O = 0, the prover chooses a random z uniformly from [0, [?I]. If ,f3 = 1,

5. The prover sends the verifier T’ = T + z t who checks that h 3 g‘ (modp) and

p to the prover.

the prover chooses a random z uniformly from [LqJ, s - 11.

that T‘ E [l, 91 if p = 0, or that T’ E [y + 1,p - 11 otherwise.

Notice that in step 5 the prover is revealing a discrete logarithm of h which is less
than 9 if the verifier’s challenge was /3 = 0, or greater than 9 if p = 1. If g were
a generator, only one discrete logarithm would exist, so for each of the verifier’s
challenges, the prover would have at most a 50-50 chance of being able to give the
correct response. The communication cost of this protocol is CCk(N) = O (k N) .

Let us look at a simulator for this protocol. The simulator would choose a
random T uniformly from [l ,p- 13. The simulator would then run the program for
the verifier with the value g‘(modp) being sent from the prover. The simulator has
a 50-50 chance of answering the verifier’s question each time simply by revealing T .

If it cannot answer? he will backtrack the verifier to the point of choosing T and try
another one. so the simulation is expected polynomial time. Both the prover and
the simulator choose h to be a random element of the subgroup generated by 9,
but the distributions of r”s in step 5 are somewhat different depending on whether
you have the true prover or the simulator. The true prover never gives r’ in the
interval [y-$+l: if s is odd, but the simulator might. But since s is large,
these distributions are statistically close. Let us look at one of the independent
repetitions of the above protocol. Let P (x) denote the probability that the true
prover reveals z in step 5 , and let S (x) denote the probability that the simulator

163

produces z in step 5. For any subset X of (1,. . . ,p-l}, I P(z)-CzEx S(z)1 5
3 . Hence for the whole protocol the distributions differ by at most +. Thus this
protocol is statistical zero-knowledge on subsets of S of the form

P - 1 Sf = { (p , 9) I p prime, 3t < p - 1, gt = 1 (mod p) and - 2 f(1og p) } t
where f is superpolynomial.

This restriction to subsets Sf of S is unfortunate. If the prover only proves
things from these smaller sets she gives away some information, i.e. that s is
large. This does not appear to be much information since if s is small the verifier
could himself have found s. But since there is a grey area between large and small,
we can't find a uniform simulator that works for all possible magnitudes for s. One
solution to this problem is to consider an alternative definition of zero-knowledge.
In the GMR-definition we have a simulator which can fool every BPP-distinguisher
with probability greater than 1 - -$ for every c for n sufEciently large. In our
definition, we give c to the simulator, which then runs in time polynomial in nc.
Hence the simulator is B P P for fixed c. Otherwise this definition is identical to
Oren's 1201, and we are using similar notation.

Definition 1 Let (P, V) be a interactive proof system for L. Then (P, V) is weak
zero-knowledge i f

V V * : 3Mv- : Q x E L : V y :QD E B P P : V C :
1 IPr[D((< P (x) , V * (x , y) >) = O] - Pr[D(Mv-(c,x, y)) = 011 5 -

1x1'.
It is weak statistical zero-knowledge if, for any subset T of transcripts:

VV* : 3 M p : VX E L : QY : QC :
1

I P r k P W , V * k Y) >E TI - Pr[J4+, w)) E Tll I -
lxIC-

We believe that this definition captures the intuition of zero-knowledge.
With this definition we can easily construdt a simulator for the nongenerator

protocol. It behaves exactly as the old one after testing that s 2 logCtln. If it
finds s and hence t , it proceeds as the real prover would; otherwise it proceeds as
the old simulator would.

With this new definition of zero-knowledge we can also remove the assumption,
in the protocol in [25] for the same problem, that one generator is publicly known.
We can let the prover give the verifier a random generator. This is practical
weak zero-knowledge because the simulator can find a generator with probability
1 - log-' n in time polynomial in logc n. See Appendix B.

The above discussion gives

164

Theorem 4 There i s a practical interactive proof system for

{ (p , g) 1 pisaprime,3t < p- l , g t 1 (modp)}

P - 1

and it is statistical zero-knowledge o n

{(p ,g) lp i sap r ime ,3 t<p- l , g '= l(modp)and-> f (log,p)} , t
where f is superpolynomial.
O (k N) . The BPP prover's secret knowledge is t .

Th i s protocol has commumication cost CCk(N) =

Using our new definition we get:

Theorem 5 There is a practical weak statistical zero-knowledge interactive proof
system f o r

{(p.g)Ip is a prime, 3t < p - 1, gt = 1 (modp)}

with communication cost CCk(N) = O(k1V). The BPP prover's secret information
is t .

The proof system presented above can be extended to work for many other cyclic
groups with known order. In particular, when working with the multiplicative
group modulo a power of an odd prime, all that is necessary is to substitute
q(q) = pn-'(p - 1) in place of p - 1 throughout this exposition.

Furthermore the protocol can be parallelized using techniques similar to those
of [4].

In the parallel protocol, Peggy will first choose randomly and uniformly z E
Zp-l, compute f E f (modp), and send f to Vic. Next, Vic chooses all his
challenges (PI, $ 2 So,,) and commits to them by choosing a random s, E Z;-l
for each P I . If PI = 0. he lets t , G gsl (modp): otherwise t , z fs* (modp). He sends
(t l , t 2 , . . . , tiogn) to Peggy, who now does steps 1 and 2 from the original protocol
and sends (h1, h2.. . . . Izlogn) to Vic. Vic now reveals his challenges by sending
(s1, ~ 2 , . . . , slog,,). Finally Peggy, after checking that Vic did not cheat will send z
and (r i , ra, . . . , Tiogn). Vic checks that f = gx, checks that 2 E Zp-l and performs
the checks corresponding to step 5.

To see that this is still a proof system, observe that the two different com-
mitments come horn the same distribution since z E .Z;-l. Thus receiving these
commitments earlier is no help to Peggy.

The simulator is constructed as follows. It does the same as Peggy until Vic
reveals all his challenges. Then it backtracks to the point where Vic had just
made his commitments. Now the simulator forms its hi's so that it can answer
Vic's questions. If 1% reveals the same old questions, the simulator can answer
them. If he reveals another set of questions, the simulator know s, s' such that
g" = f"'. This gives

gs = f S 1 j g-' = 1.

165

It is easy to see that, since Peggy chose z randomly, s - zs‘ (modp - 1) is a
random multiple of t , the order of g. If we run the above procedure twice, either
the simulator will be able to successfully perform the simulation or it 4 get
two independent, random multiples of t , at and a‘t. We know from [19] that
Pr[gcd(at, a‘t) = t] = 6/7r2. Thus the simulator will succed in expected polynomial
time.

If the modulus has more than one prime factor or is a large power of two, no
elements would be generators. .One could, however, still ask the question: Does
the subgroup generated by the element g have fewer than m elements (for a prime
modulus m can be p - l)‘? Then if the prover knows t such that gt = 1 (mod n) ,
and s = Lrn/tJ is suf3ciently large, one could give a zero-knowledge proof that g
only generates a small subgroup.

2.4

Recall that the protocol given above for proving that an element is a generator of
the multiplicative group modulo a prime p only works when p - 1 is “essentially”
square-free. The onlv problems that arise when p - 1 has large square factors is that
some nongenerators may look like generators. In fact, if g is a generator, the prover
can make a nongenerator g’ = gq look like a generator if p - 1 = 2’p;‘pgz . . . p‘;i and
q = pf1& . . p t where 0 5 fi < e; for all i (assuming that p - 1 and q are such
that the verifier cannot determine himself that 9‘ is not a generator). The prover
can do this because the prover’s algorithm for finding the discrete logarithms given
the hint z will still work. Let us call any g’ of this form a quasi-generator. Note
that if fi = ei for any i, then there will be two distinct square roots of 2 which
will work as discrete logarithms, so the protocol is in fact a perfect zero-knowledge
proof that g is a quasi-generator, regardless of whether or not p - 1 is square-free.
In the case that p - 1 is square-free, all quasi-generators are actually generators.

It is possible to use this deficiency in the proof system for primitivity to show
that an integer n is not square-free. The set we are concerned with is

Does n have a square factor?

2 S = {nI n = q rn,qprime}

The integer n is available to both the prover and the verifier; the complete
factorization of n is initially on the prover’s private work tape; and the prover is
attempting to convince the verifier that n has a nontrivial square factor. To do
this, the prover first finds a prime p = an + 1. Assuming the Extended Riemann
Hypothesis, one can try random a‘s which are less than n2 and expect to find such
a prime in time O(1og n) .

To see this, consider the following from [12](pp.129, 136). Assuming the EX-
tended Riemann HJ-pothesis,

166

where
z 1 X

dt > - + O(1).
2 1 X 2 lix = 1 -dt = - - -

2 logt logx log +L log2t logx

Hence the probability that a random m, chosen so that m G 1 mod n and
m 5 x, is prime is

We have from
greater than

y(n;logr + 2QJ v(n) + O(xf log x)

l (x - W l
[23] that q(n) >_ C(n/loglogn): hence if x = n3 the above is

c, log log n + O(n-4 log a) .
log n

Note that z = n2+' is sufficient if E > 0.
To find p , one can use Bach's method [3] to produce an appropriate a ran-

domly, along with the complete factorization of a. Since this protocol would be
unnecessary if the verifier could find g, we can assume that q does not divide a.

Another way to find an appropriate p is by trying n + 1,2n + 1,3n + 1,. . . until
we fmd a prime. WagstafT [26] has given an heuristic argument which says that
we would usually only have to try up to O(log2 n) numbers. Observe that we can
factor a since it is so small.

After finding such a prime, the prover will produce an element h E 2; which is
of the form g9 (modp) for some generator g. The prover can then use the above
protocols to show, first, that h is not a generator, and. second, that h is a quasi-
generator. Of course. since h is not a generator and it is a quasi-generator, p - 1 is
not square-free. But the verifier can check that h(p-l)/r $ 1 (modp) for any prime
factor T of a. Thus, the square factor in question must be a factor of n, proving
that n does, in fact, have a square factor.

This protocol is obviously not perfect zero-knowledge, or even statistical zero-
knowledge unless there is some way for the simulator to produce an h of the
required form. Since the simulator does not know q . it seems unlikely that it
could produce such an h. We will make the cryptographic assumption that finding
the factor g of n is random polynomial time equivalent to distinguishing between
random generators and random quasi-generators corresponding to q . This seems
reasonable because the knomm algorithms for testing for primitivity involve factor-
ing p - 1. In place of the quasi-generators the simulator will produce a random
element of 2; which it cannot tell is not a generator (i.e. if T is a factor of a or a
small factor of n where small means less than log;" p . then neither h" nor h(J'")/''
is the identity). With probability 1og;'p this element is a generator of 2; (see
Appendix B). Thus. under the above cryptographic assumption, this protocol is
computational zero-knon-ledge if the verifier can't find q. Now under the usual

167

assumption, that factoring is hard in general, there exists a infinite subset Ii‘ of S
on, which the protocol mill be computational weak zero-knowledge. A candidate
for a subset of this 11- is

M6 = { nI Qprimes p(n 3primes qI (p - 1, qalp + 1 ,q1 , q2 > n‘}
since no known factorization algorithm can factor numbers from Me in expected
polynomial time. The protocol does not, however, involve any bit encryption. All
previous “natural” zero-knowledge proofs which are neither perfect nor statistical
zero-knowledge have used bit encryptions.

The above discusion gives

Theorem 6 Assuming the Extended Riemann Hypothesis there i s a practical in-
teractive proof sys tem for

s = {nI n = q2m,q prime},

with CCk(N) = O(k2:V). The BPP prover secret information is the complete
factorization of n.

Let K be a subset of S . For each n E I(, we will define the distributions G,
and Qn as follows. We will choose p randomly and uniformly such that [p [5
p is a prime and n I p - 1. Then choose g at random and uniformly f r o m the set
of generators of 2;. Now look at the two distributions

Gn = {(g,Pj} and Qn = { (g ‘ , ~))

If

VD E BBP Vc 3- Vn E A- : n > N =$ IPr[D(Gn) = 11 - Pr[D(Qnj

then the protocol i s weak rero-knowledge on Ii-.

3 Open Problems

One would like to find practical zero-knowledge proofs for other problems. In
particular, we began working on these problems after David Chaum mentioned the
problem of finding a practical zero-knowledge proof that an element g generates
a large subgroup modulo a composite number n. That problem is still open. We
would also like to eliminate the assumption that p - 1 is “essentially” square-free
in the primitivity protocol.

The protocol given here to show that a number is not square-free is zero-
knowledge, but not statistical zero-knowledge. A statistical or perfect zero-know-
ledge protocol for This problem would be interesting.

We would also like to find a practical zero-knowledge proof that a number n is
square-fr ee.

168

4 Acknowledgements

We are very grateful to David Chaum for suggesting the problem mentioned in the
last section, to Renk Peralta for pointing out that proving knowledge of the discrete
logarithm is sufficient for step 3 of the primitivity protocol, and to Eric Bach and
Kevin McCurley for answering numerous questions on factoring algorithms and the
distributions of primes. We would also like to thank Ernie Brickell, Faith Fich,
Mark Krentel, Stuart Kurtz, Jeff Shallit, and Janos Simon for helpful discussions.

References

[l] Adleman, L., and 11.-D. Huang, Recognizing primes in random polynomial
t ime , Proc. 19th ACM Symp. on Theory of Computing, 1987, pp. 462-469.

[2] Adleman, L., I(. Manders, and G. Miller, O n taking roots in f ini te fields, Proc.
18th IEEE S>mp. on Foundations of Computer Science, 1977, pp. 173-178.

[3] Bach, E., How t o generate factored random .numbers, SIAM Journal on Com-
puting, vol. 17. KO. 2, April 1988, pp. 179-193.

[4] Bellare, M., S. Micali and R. Ostrovsky, personal communication.

[5] Benaloh, J., Cryptographic capsules: a disjunctive primitive f o r interactive
PTOtOCOlS, Advances in Cryptology - Crypto '86 Proceedings, 1987, pp. 213-
222.

[6] Berlekamp, E. Factoring polynomials over large finite fields, Mathematics of
Computations, 1-01. 24, 1970, pp. '713-735.

[7] Brassard, G.: and C. CrCpeau, Non-transitive transfer of confidence: a perfect
zero-knowledge interactive protocol f o r SAT and beyond, Proc. 27th IEEE
Symp. on Foundations of Computer Science. 1986, pp. 188-195.

[8] Brassard, G.. C. Crt5peau: and J.M. Robert? AII-or-nothing disclosure of se-
crets, Advances in Cryptology - Crypto '86 Proceedings, 1987, pp. 234-238.

[9] Chaum, D., Demons t ra t ing that a public predicate can be satisfied without
revealing a n y i n f o r m a t i o n abovt how, Advances in Cryptology - Crypt0 '86
Proceedings. 1987: pp. 19.5-199.

[lo] Chaum, D. J.-H. Evertse, J. van de Graaf, A n zmproved protocol ~ O T demon-
strating possession of discrete logarithms and some generalizations, Advances
in Cryptology - EUROCRYPT '87 Proceedings, 1988, pp. 127-141.

[ll] Chaum, D.. J.-H. Evertse, J. van de Graaf, and R. Peralta, Demonstrating
possession of a discrete logarithm without revealing it, Advances in Cwtology
- Crypto '86 Proceedings. 1987, pp. 200-212.

169

[12] Davenport, H.. Multiplicative Number Theory, Markham Publishing Com-
pany, 1967.

[13] Feige, U., A. Fiat, and A. Shamir, Zero-knowledge proofs of identity, Journal
of Cryptology, 1(2), 1988, pp. 77-94.

[14] Goldreich, 0.. S. Micali. and A,. Wigderson, Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design, Proc. 27th
IEEE Symp. on Foundations of Computer Science, 1986, pp. 174-187.

[15] Goldreich, O., S. Micah. and A,. Wigderson, Proofs that yield nothing but
their validity and a methodology of cryptographic protocol desagn, To appear.

[16] Goldwasser, S.. and S. Lficali, Probabzlistic encryption, Journal of Computer
and System Sciences, vol. 28, 1984, pp. 270-299.

[17] Goldwasser, S.. S. Micali. and C. Rackoff, The knowledge complesity of inter-
active proof systems, SLAM Journal on Computing. vol. 18, 1989, pp. 186-208.

[IS] Van de Graaf, 3. . and R. Peralta, A simple and secure way to show the validity
of your pvbZic key. Advances in Cryptology - Cr3;pto '87 Proceedings, 1988,
pp. 128-134.

[19] Knuth, D. E. The Ar t of Computer Programming 1-01 2 , Addison-Wesley, 1969.

1201 Oren, Y. On the Cunning Power of Cheating Verifiers: some Observations
About Zero Knowledge Proofs, Proc. 28th IEEE Symp. on Foundations of
Computer Science, 1987, pp. 462-471.

[21] Rabin, M.O., Digitalized signatures and public-key functions as intractable as
factorization. Technical Report RIIT/LCS/TR-212, M.I.T.. January 1979.

[22] Rabin, M.O., Probabilistic algorithms zn finite fields, SIAM Journal on Com-
puting, vol. 9, 1980, pp. 273-280.

[23] Rosser, J. B., and Schoenfeld, L.. Approximate Formulas for some Functions
of Prime Numbers, Illinois Journal of Math. vol. 6, 1962, pp. 64-94.

[24] Schwarz, W.. in .American Math. Monthly, vol. 73. 1966, pp. 426-427.

[25] Tompa, hl., and H. FVoll. Random self-reducabilzty and zero knowledge inter-
active proofs of possession of information, Proc. 28th IEEE Symp. on Foun-
dations of Computer Science, 1987, pp. 472-482.

[26] Wagstaff. S. S., Greatest of the Least Primes zn Arithmetic Progresstons Hav-
ing a Given ~~IoduZz1s, llathematics of Computation, vol. 33 no. 147, .July
1979, pp. 1073-1080.

170

Appendix A

In this appendix we show how the verifier in the primitivity protocol can prove
that for h E 2; and E E Z;-l he ‘‘knows” [13] an r such that g‘ E h (modp) and
r2 3 E (mod p - 1). Both the verifier and prover can compute a = gz (mod p) E
la‘ (modp). Hence if the verifier caa show that h and a were formed by raising
g and h, respectively, to the same power, it will have shown the correct form of
h and z. Rather than simply presenting a zero-knowledge proof of knowledge for
this problem, we will present a practical zero-knowledge proof of knowledge for
something more general. Suppose a prover and verifier (the original verifier will
temporarily be acting as a prover) are given the following elements of a commuta-
tive group u, z), a l , u2,. . . ,an, and bl , b, . . . , b,, and that the prover wants to show
that she knows integers e l , e2, . . . ,en such that

u = ails? . . . a:
and-

v = b”,bq2.. . b:,
In this zero-knowledge proof, the following will be repeated a number of times
equal to the length of the input.

1. The prover chooses random clr c2,. . . , c, in the range [I . . . t] , where t is the
order of the group.

2. The prover computes y = ails? . . . a: and z = bE’b7 . . . b:.

3. The prover computes u’ = uy and u‘ = uz and sends these values to the
verifier.

4. The verifier chooses ,f3 E (0 , l) randomly with equal probabilities and sends
p to the prover.

5. If p = 0, the prover reveals cl, c 2 , . . . , cn, so the verifier can check that u‘ and
v‘ were formed correctly. If p = 1, the prover reveals el+cl> e2+c2,.. . . e,+c,,
so the verifier can check that the prover lcnows the same information about
u’ and z)’ that she was supposed to know about u and u.

This is clearly a proof of knowledge because an observer seeing the prover
respond to both challenges for the same u‘ and z)’ could compute el, e2,. . . , en by
subtracting. It is also zero-knowledge if the order of the group is known as it would
be for the group 2; with which we are mainly concerned. To see this, consider the
following simulator which produces transcripts of the proof with exactly the same
distribution as would be produced with the legitimate prover. First, the simulator
flips a coin. If the result of this coin flip is “heads”, the simulator is guessing that
the verifier will send 5 = 0. Thus, the simulator goes through exactly those steps

171

the prover would in forming u’ and u’. Since we are assuming that the simulator
knows the. order of the group, this is easy. If, when the simulator runs the program
for the verifier with this u’ and u’, the verifier sends p = 0, the simulator has no
problem in revealing the required values. If, however, the verifier sends p = 1, the
simulator will back up the tape over these current ZL’ and d and will try again with
another coin flip. If the result of the coin flip is “tails”, the simulator is guessing
that the verifier will send p = 1, so it will produce the random cik, the y and the
z , but it will send the verifier y and z for u‘ and u’. When it receives ,d = 1 from
the verifier, it can simply reveal the ti's. Of course, if it receives ,L3 = 0, it will
have to back up the tape and try again. But it has a 50-50 chance of succeeding
each time so the simulation is expected polynomial time, and it is easy to check
that it produces transcripts with exactly the same distribution as those produced
with the true prover. Thus, this proof system is perfect zero-knowledge.

Appendix B

Let C, be a cyclic group of order n.

Consider the following procedure.
Construct the set S = { p 1 p prime, p 5
repeat

until V p E S : gn/p # 1
OUTPUT g

n and pln]

Choose g randomly and uniformly from Cn.

Theorem 7 Prob(g is not a generator) < &
proof :

Suppose n = plp2 . . . pkqlq:! . . . qr where each pi 5 logCf1 n and each qj > n.
Let n‘ = p1p2 . . . pk and T = {gl the procedure can output g}= {gl Vz : gn/pi # 1).

Now for d)n define -Ad = { X I order(z) = d } . udln Ad = C n and lAdl = cp(d),

T = u Ad.
dtn
n’ld

So we get that
IT1 = c cp(W = Pb‘> c 44.

45 d l 3

Furthermore we have that

/GI = I{sl < 9 >= C n I l = 44 = P(7+”’).

Hence we can assume that k = 0, i.e. that q)n implies that q > logC+’ n.

172

1

i= 1
T \ G = U { Z ~ Z ~ ’ ‘ ~ - - 11,

where the cardinality of each term is estimated by

I{rCIZn’q* = l}] = n/qz 5 n/logC+ln.

So we get
[T \ GI 5 Z(n/ logc+* n) 5 n/ log‘ n.

This proves the theorem. 0

	Practical Zero-Knowledge Proofs:Giving Hints and Using Deficiencies
	Abstract
	1 Introduction
	2 The Zero-Knowledge Proofs
	2.1 Primitivity
	2.2 Are n and ~ (nre)la tively prime?
	2.3 Nongenerators
	2.4 Does n have a square factor?

	3 Open Problems
	4 Acknowledgements
	References

