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Abst rac t  

In (RiveSO] the MD4 message digest algorithm was introduced taking an input 
message of arbitrary length and producing an output 128-bit message digest. It is 
conjectured that it is computationally infeasible to produce two messages having 
the same message digest, or to produce any message having a given prespecified 
target message. In this paper it is shown that if the three round MD4 algorithm is 
stripped of its first round, it is possible to find for a given (initial) input value two 
different messages hashing to the same output. A computer program implementing 
this attack takes about 1 millisecond on a 16 Mhe IBM PS/2 to find such a collision. 

1 Introduction 

T h e  MD4 Message Digest Algorithm, by Ronald L. Rivest and RSA Data Security, Inc., 
is intended for file hashing: it accepts arbitrarily large inputs and  produces a n  output  of 
128 bits. It is conjectured tha t  it is computationally infeasible t o  produce two messages 
having the same message digest, or t o  produce any  message having a given prespecified 
target message digest. T h e  MD4 algorithm is designed t o  be quite fast on 32-bit machines. 

An interesting topic ofinvestigation is how these claims relate t o  the number of rounds 
of MD4, and whether they hold for a weaker version of the algorithm, stripped of its first 
or last round. T h e  latter was considered by Ralph Merkle [MerkSO], who showed that 
skipping the last round jeopardizes the strength of the system: for 99.99% of all initial 
values it is possible to find two message differing in only 3 bits, which are  hashed to 
the same output  value. We derived a n  algorithm for it and wrote a computer program 
implementing the attack. The  program takes less than a millisecond on a 16 Mhz IBM 
PS/2 to find such a collision. Next, we investigated whether by skipping the first round 
one would also be able t o  produce a collision of messages. It will be shown tha t  it is 
indeed possible for MD4 stripped of its first round to  find for a given (initial) input value 
two different messages hashing to  the same output .  

In Section 2 a short description of MD4 is given. In Section 3 the attack on the last 
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two rounds is explained, and an example collision for MD4 skipping the first round is 
given. The possibility to extend this attack to the full three round algorithm is briefly 
discussed. 

2 Short description of MD4 

Below only a general description of the MD4 message digest algorithm is given. For 
a detailed description the reader is referred to  [Rivego]. In this description a b y t e  is 
defined as an 8-bit quantity and a word as a 32-bit quantity. A sequence of bits can be 
interpreted as a sequence of bytes, where each consecutive group of 8 bits is interpreted 
as a byte with the high-order bit of each byte listed first. Similarly, a sequence of bytes 
can be interpreted as a sequence of words, where each consecutive group of 4 bytes is 
interpreted a5 a word with the loworder byte given first. The input and output of MD4 
is considered to be a sequence of bytes, not words, but the internal operations of the 
algorithm are word oriented. 

The MD4 recipe for a b-bit message consists of the following steps: 

1. Append padding bits and the message length: a single “1” bit, I - 1 zero 
bits (I  5 1 < 512) and the 64-bit representation of b mod ZG4 are appended to  the 
message such that the length b+1+64 of the extended message is a multiple of 512. 
The 64 bits containing the message length are appended as two 32-bit words, l o w  
order word first in accordance with the previous conventions. The (new) message 
is now represented as a sequence M[O], M[l], . . . , M [ n  - 13 of n words, where n is 
a multiple of 16 (because 32. n = b + I + 64 0 mod 512). 

2. Initialize a 4-word buffer ( A ,  B ,  C, D): 

A = 67452301; B = EFCDAB89; C = 98BADCFE; D = 10325476. 

(32-bit constants in hexadecimal notation, high-order digits first) 

3. Process the message in 18-word blocks: 

f o r  i = 0 to (n/l6) - 1 do 

f o r  j = O  to 15 do 

( A A ,  B B ,  CC, DD) = ( A ,  B ,  C,  D); 
Round 1; 
Round 2 ;  

Round 3 ;  

begin 

X [ j ]  = M[162 + j ] ;  
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A = A + A A ;  
B = B + B B ;  
c=c+cc;  
D = D + D D ;  

end ; 

4. The output is the 4-word buffer ( A ,  B ,  C ,  D). 

Figure 2 shows the outline of step 3 of MD4, without the feedforward. 

3 Description of the attack on the last two rounds 

Each of the three rounds of MD4 consists of 16 elementary operations on the 4-WOrd 
buffer ( A ,  B, C, D).  Let ( A , ,  B , ,  C,,  0,) denote the value of (A, B, C ,  D )  after z elemen- 
tary operations. In this section only the last two rounds of MD4 are considered. The 
elementary operations are therefore numbered relative to the beginning of the second 
round. It will be shown that it is possible to find for a given input two different 16-word 
message blocks hashing to the same output. The underlying observation is that the 8 
message words X[1], X[5], X[9], X[13], X[2], X [ 6 ] ,  X[10] and X[14] used in the elemen- 
tary operations 5 till 12 are the same as those used in the elementary operations 21 till 28. 
In other words the same 8 message words are used in the middle 8 elementary operations 
of the second and third round. A similar observation applies for the 8 message words 
X[O], X[4], X[8], X[12], X [ 3 ] ,  X[7], X[11] and X[15] used in the first 4 (elementary 
operations 1 till 4 and 17 till 20) and last 4 (elementary operations 13 till 16 and 29 till 
32) elementary operations of the second and third round. The latter 8 message words 
X[O], X[4], X[8], X[12], X[3], X[7], X[11] and X[15] are given the same value in the 
two 16-word message blocks. Consequently (A4, Bd, C4, 0 4 )  has the same value for both 
messages. If ( A l z ,  BIZ,  C12, 0 1 2 )  is equal for both messages, then (Azo, BzO, Czo, Dzu) 
will be equal too, and if (Az8, B28, C28, 0 2 8 )  has the same value for both messages, both 
messages are hashed to the same output value. The two message blocks only differ in 
the remaining 8 words X[1], X[5], X[9], X[13], X[2], X[6], X[10] and X[14] used in the 
middle 8 elementary operations of the last two rounds. The two alternatives for these 
message words are precisely chosen in such a way that the 4-WOId buffer ( A ,  B ,  C, D )  
has two alternatives after 8 and 24 elementary operations (this is halfway the second 
and third round), but the same value for both messages after 12 and 28 elementary 
operations. Hence we have two different messages and a single input value, which are 
hashed to the same output value. This situation is illustrated in Figure 1 ,  where every 
dot represents a different value of the buffer ( A ,  B, C, D ) .  
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32 

Figure 1: Outline of the attack on the last two rounds 

T h e  problem we are  confronted with is the  following. We have t o  solve 32 equations 
(twice the  middle 8 elementary operations of each round, one for each alternative of the  
input) with unknowns: 

0 the  value of (A4,  B1, C,, Dd) 

0 two alternatives of (As, Bs, C,, Ds)  

0 the  value of ( A l z ,  BIZ, C L ~ ,  D12) 

0 the  value of (Azo, B z ~ , C ~ O ,  D ~ o )  

0 two alternatives of ( A z . ~ ,  B z ~ ,  C 2 4 , & 4 )  

the  value of (&s, &8, C . L ~ ,  &) 

0 two alternatives for the message words X [ 2 ] ,  X [ 6 ] ,  X[lO], X[14], X[1], X [ 5 ] ,  X[9] 
and X[13] 

Altogether there are 48 unknown words. Once we found a solution for this problem, we 
are  left with 16 equations (the first and  last 4 elementary operations of each round) with 
16 unknowns: 
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0 the  final value of (A, B, C, D) 

0 the  value of (-416, BIG,  C16, DIG) 

0 the  message words X[O],  X[4], X[8], X[12], X [ 3 ] ,  X ( 7 ] ,  X[11] and  X[15] 

An initial value of the word (A ,  B ,  C, D) can be met with precisely one choice of X[O], 
X[4], X [ 8 ]  and X[12], which on their turn determine the value of ( A l e ,  B16, CIS, D16). 

Precisely one choice of X [ 3 ] ,  X [ 7 ] ,  X[ll]  and X[15] couples the value of ( A l z ,  B I Z ,  C12, 

DLz) with the value of (A16, B16, Cl6, DIG). Finally this same choice determines the final 
value of (A,  B, C, D). 

In what  follows we will explain how t o  find one set of the above mentioned 48 unknown 
words. In this solution a crucial role is played by the hexadecimal word 55555555, which 
will be  called N. T h e  bits on the  odd positions of N are  equal to zero, and on the even 
positions equal t o  one (this defines what is meant by 'odd' and 'even' positions). The  
number N has the following interesting property: any rotation in any direction over a n  
odd number of bits yields 2N (or x). I t  is precisely this property of N which is used t o  
find a solution for the problem we are  left with. We will first introduce some notation: 

denotes the bit wise complement of A. 

denotes the bit wise AND of the  words A and  B. 

denotes the shifting of A t o  the left by s bit positions. 

denotes the circularly shifting (rotating) of A t o  the left by s bit posi- 
tions. 

same as above, bu t  t o  the right. 

denotes a word with following two alternatives: the bits of A: on the 
even positions are  all equal to  one for the first alternative (denoted by 
A N ) ,  and all equal t o  zero for the second alternative (denoted by At,), 
i.e. A t & N  equals either N or 0. T h e  bits on the odd positions of A t  
can be chosen freely, but  are  equal for both alternatives. 

are the two alternatives of the word A t .  
denotes similarly a word with following two alternatives: the bits of 
A; on the even positions are all equal to zero for the first alternative 
(denoted by A'), a n d  all equal t o  one for the second alternative (de- 
noted by A N ) ,  i.e. A;&N equals either 0 or N. T h e  bits on the odd 
positions of A; can be chosen freely, but are equal for both alterna- 
tives. 

are the two alternatives of the word A:.. 
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T h e  solution consists of the following 5 steps: 

step 1 Choose the value of (A, B, C, D )  equal to  

(A%,  B;,  C:, Dg) after 8 elementary operations, 

( A t ,  B:, Ct, D!) after 24 elementary operations. 

T h e  128 ( = 2 . 4 -  16) bits on the odd positions of one alternative of these words 
can be chosen freely. T h e  bits on the odd positions of the other alternative are 
of course the same. Note tha t  the even positions after 8 and 24 elementary 
operations are the complement of each other. This results in 32 equations: the 
middle 8 elementary equations of the last two rounds, each with 2 alternatives. 

-4% (A4 + q(BdIC4,Dj) + X'[I) + E2) g s l  (1) 
0; = (D4 + g(A;,&,C4) + X1[5] + E 2 )  < gs2 (2) 
Ck = (C-l + g ( D k ,  AO,, B4) + X1[9]  + E 2 )  gs3 (3) 
B; = (B* + g(Ck,Dg,AO,) + X'[13] + E2) < g34 (4) 

A t  = ( A m  + h(Bzo,Czo,Dzo) + X ' [ 2 ]  + E 3 )  < hsl  ( 9 )  
D,N = (Dzo + h(A,NBzo1C2o) (10) 
Ct = (Czo + h(0: , A t ,  Bzo) + X ' [ 6 ]  + E 3 )  hs3 ( 1 1 )  
B: = (Bzo + h(C,N, DON, A t )  + X' [14] + E 3 )  @C h34 (12) 

A28 = ( A t  + h(B,N,C,N,Dt)  + X'[11 + E 3 )  -C h s l  (13) 
D-28 = (DON + h(Azs,B,N,C:) + Xi[9]  + E 3 )  C h.92 (14) 
c 2 8  = (C,N + ~ ( D z ~ , A z ~ , B , N )  + X ' [ 5 ]  + E3)  < hs3 (15) 
Bzs = ( B r  + h(CzslD28,A2s) + X'[13] + E 3 )  @C h ~ 4  (16) 

+ X'[10] + E 3 )  cCC h32 

In  each block offour equations there is now one equation with only 2 unknowns: 
(4), (5) ,  (12) and (13). Going u p  or down within each block (up in the first and 
third, down in the other two) one encounters equations with more and  more 
unknowns. The  route t o  follow is quite obvious now: solve the equations with 
only 2 unknowns by making a free choice for one of them, a n d  work your way 
up  (or down) the other equations, solving them for the remaining unknowns. 

step 2 Choose X'[1], X1[2], X'[5],  X1[lO], X1[13]  and X ' [ 1 4 ] .  This  gives, in addition 
to  the 128 bits of s tep 1, another 192 bits of freedom. Equations (4),  (5 ) ,  (12) 
and  (13) yield B 4 ,  Al2, Bzo and A28 respectively, as well as the  alternative 
message words X2[13], X2[2], X2[14] and X2[1]. The  choices for X1[5] a n d  
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X'[lO] are  not used until s tep 5 .  T h e  two alternatives of X[6] and X[9] are 
fixed by the choices we already made, as will become clear in the following 
three steps. 

step 3 If a majority ( 9 )  or a n  exor (h) function has two fixed inputs and one input 
with a n  alternative then the bits on the even positions of the fixed inputs 
are taken equal. This  means that  the bits on the even positions of the pairs 

(B-I,  G),  ( A I z ,  D I ~ ) ,  (Bzo ,  CZO) and ( A z s ,  D Z S )  are per pair taken equal. 

The  two alternatives for the equations (7) and (10) contain the unknowns C12, 

D2O and two alternatives for X[lO], in addition to  the unknowns D12 and (720. 

By reversely rotating these four equations by the  right amount and subtracting 
them from each other, the first four unknowns drop out  leaving one equation 
in the  unknowns DIZ and CZO. We do the same with the first alternative of the 
equations (6) a n d  (11). T h e  unknown alternative X ' [6]  drops out ,  resulting 
in another equation in the unknowns D12 and CZO. If we denote the two 
alternatives of equation ( 2 )  by (ia) and (ib), we obtain the following set of 2 
equations: 

((7a) B 993) - ((7b) B 993) - (((loa) >B hs2) - ( ( lob)  % hs2)) 

((6a) >> 952) - ((l la) >> hs3) 

or 

where only the lefthand sides contain the unknowns DI2 a n d  CZO. T h e  choice 
mentioned in the beginning of this s tep gives a solution for this set of 2 equa- 
tions. For, the first equation holds if the bits on the even positions of CZO are 
taken equal to those of Bzo, and the even bits of D I 2  equal t o  those of A l z .  
The remaining 16 bits of D12 and C Z O  can then easily be solved from the sec- 
ond equation, as explained in the next step. An analogous set of 2 equations 
in the unknowns C, and D28 can be derived in the same way from equations 
(2) and (15), and (3) and (14). This set can be easily solved under the  same 
conditions. 

step 4 Since gs2 is odd, the left term of the second equation in the previous step can 
be written as the  sum of two variables DC and CD: 
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where 

DC = (D12 >> g s 2 ) & N + C z o & N  

C D  = (D12 B 992) & N + C20 & N 
DC contains on the odd bit positions the known bits of Dl2 and on the even 
bit positions the known bits of C20, and CD contains, respectively on the even 
and odd bit positions, the yet unknown bits of D12 and C20, which can now 
easily be found. An analogous method, based on the oddness of hs2, yields 
the remaining unknown bits of C, and Dzs. 

step 5 This step is no more than an exercise with blanks. 

0 (6) or (11) yields two alternatives of X [ 6 ]  

0 (7) and (8) yield C12 and Biz, respectively 

0 (10) and (9) yield D20 and A20, respectively 

0 (3) or (14) yields two alternatives of X[9] 

0 (15) and (16) yield Czs and B z S ,  respectively 

( 2 )  and (1) yield Dd and A1, respectively 

The only condition imposed by the attack on the constants of equations (1) to (16) 
is that all the values of the rotation constants must be odd. 

One can (easily) proof that the difference between two messages produced in this way 
is constant and equal to 

0 -2N 2 N  0 0 -2N 2N 0 0 - N  N 0 0 - N  N 0 

where every number stands for a 32-bit word. A program has been written implementing 
this attack. With this program it takes about 1 millisecond on a 16 Mhz IBM P S / 2  to 
find such a collision. As an example, the following pair of 512-bit messages (written as 
16 32-bit words, in hexadecimal notation) produces a collision for MD4, as described in 
Section 2 and using only the last two rounds in the third step of the recipe: 

Message 1: 
72A3B049 213AE143 D954E8C9 50BD4CB5 25A3AOB3 C79Bl2BE 029B6AE9 091A6156 
75B5516B DA420FD6 OA6854EB 758F514D 9EA01345 OF796EAC DB54B645 4089373B 

Message 2: 
72A3B049 CBE58BED 2EAA3ElF 50BD4CB5 25A3AOB3 7245BD68 57FOC03F 091A6156 
75B5516B 2F97652B B512FF96 758F514D 9EA01345 64CEC401 85FF60FO 4089373B 
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Common Message Digest: 
3259F484 488AE67F B01E240C 49730iA3 

To produce such a pair of messages one has altogether 320 bits of freedom. It is 
conceivable that this freedom can be used to produce identical intermediate values and 
different 512-bit message blocks, producing a collision for the entire algorithm. In ad- 
dition one could also use the extra freedom of X[O], X[4], X [ 8 ]  and X[12] (or of X [ 3 ] ,  
X[7], X[11] and X[lS]). However, this does not result in an attack on the complete three 
round algorithm, since in that case the initial value is not dealt with. 
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