
Using Sifting for k-Layer Straightline Crossing
Minimization

Christian Matuszewski, Robby Schönfeld, and Paul Molitor

Institute for Computer Science, University Halle-Wittenberg,
Kurt-Mothes-Strasse 1, D-06120 Halle(Saale), Germany

{matuszew,schoenfe,molitor}@informatik.uni-halle.de

Abstract. We present a new algorithm for k-layer straightline crossing
minimization which is based on sifting that is a heuristic for dynamic
reordering of decision diagrams used during logic synthesis and formal
verification of logic circuits. The experiments prove sifting to be very
efficient. In particular it outperforms the traditional layer by layer sweep
based heuristics known from literature by far when applied to k-layered
graphs with k ≥ 3.

1 Introduction

Directed graphs are commonly used to represent information in many fields
such as software engineering, project management, and social sciences. A good
visualization of this information is necessary to get general ideas of relations.

A common method for drawing directed graphs was introduced by [STT81].
This approach consists of four phases. In the first step, the directed graph is made
acyclic by temporarily reversing some edges. Let G = (V, E) be the resulting
graph. Then, set V of the nodes is partitioned into k layers V1, . . . , Vk (k ≥ 1)
such that for any edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj , the inequation i < j
holds. Subset Vi is called ith layer. G = (V1 ∪ . . . ∪ Vk, E) is called a k-layered
directed graph. In the third step, the vertices within each layer are permuted
targeting minimization of the number of crossings. In the last step, the vertices
and edges are placed according to the permutations computed in step 3. The
vertices of each layer are placed on a horizontally line, the layer i is placed above
the layer i + 1 for all i = 1, . . . , k− 1, and the edges are drawn as straight lines.

In this paper, we focus on step 3. We assume that graph G has been made
proper in step 2, i.e., that for any edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj the
equation j − i = 1 holds. This can be achieved by inserting dummy vertices
on edges connecting vertices on non-neighboring layers. The problem we have
to solve in step 3 is to find a permutation πi for every layer Vi such that the
number of edge crossings is minimized. Note that the number of edge crossings
only depends on the permutations of the vertices and not on the exact positions
of the vertices because edges are drawn as straight lines. Unfortunately, the
problem of finding a permutation πi for every layer Vi such that the number of
crossings is minimal is NP-hard even for 2-layered directed graphs [GJ83] which

J. Kratochv́ıl (Ed.): GD’99, LNCS 1731, pp. 217–224, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

218 C. Matuszewski, R. Schönfeld, and P. Molitor

we call two sided crossing minimization problem in the following. Furthermore,
the problem of 2-layer straightline crossing minimization remains NP-hard when
the permutation of one layer is fixed [EW94a]. We call this problem the one sided
crossing minimization problem.

In Section 2 we shortly review heuristics known from the literature. Section
3 presents the new approach which is a standard technique for minimization of
binary decision diagrams (BDDs) during logic synthesis and formal verification
of logic circuits. The experimental procedure of this section only concentrates
on the one sided crossing minimization problem. We generalize sifting to general
k-layer straightline crossing minimization in Section 4.

2 Algorithms Known from the Literature

Most methods to reduce the crossings in a k-layered directed graph use a techni-
que called the layer-by-layer sweep which works as follows. First, an initial vertex
ordering for every layer is computed. Then, for i = 2, . . . , k, the vertex ordering
of layer Vi−1 is held fixed while the vertices of layer Vi are reordered to reduce
crossings. After that, the method sweeps back holding fixed the permutation of
layer Vi and permute the vertices in layer Vi−1. This process is repeated until
no further refinement can be achieved. With this approach the k-layer crossing
minimization problem is reduced to a series of one sided crossing minimization
problems.

Let us consider the one sided crossing minimization problem in more detail.
Without loss of generality, let the permutation π1 of layer V1 be fixed. For every
pair of vertices u, v ∈ V2 we define the crossing number cuv as the number of edge
crossings that edges incident to u make with edges incident to v if π2(u) < π2(v)
holds. Thus, cross(G, π1, π2) =

∑
π2(u)<π2(v) cuv is the number of crossings in

the straightline drawing of the 2-layered graph G = (V1 ∪ V2, E) with respect
to the permutations π1 and π2. An obvious lower bound of cross(G, π1, π2) is
given by L =

∑
π2(u)<π2(v) min{cuv, cvu} . Experiments in [JM97] have proven

this lower bound to be very tight to the optimum.
The most popular heuristics for one sided crossing minimization are the

barycenter [STT81] and the median heuristic [EW94b]. The other heuristics
known from literature, e.g., split [EK86], greedy-insert [EK86], and greedy-switch
heuristic [EK86], are mostly outperformed by barycenter and median heuristic
as shown by [JM97]. It is worth remarking that Jünger and Mutzel presented
a very efficient branch and cut algorithm for one sided crossing minimization
practically applicable to graphs up to 60 vertices in their paper.

3 Sifting for One Sided Crossing Minimization

Sifting was first introduced by Rudell [Rud93] to reduce the number of vertices
in reduced ordered binary decision diagrams (ROBDDs). This algorithm can be
easily adapted to the one sided crossing minimization problem. Assume that

Using Sifting for k-Layer Straightline Crossing Minimization 219

permutation π1 of layer V1 is fixed. We choose a vertex v from layer V2 to put
it on a position which minimizes the number of crossings. The ordering of all
other vertices in layer V2 remains fixed. In order to do so, vertex v is moved
to the rightmost position by repeatedly swapping it with its right neighbor.
After reaching the rightmost position, v is moved to the left. When v reaches
the leftmost position, it is set to the (locally) optimal location. For illustration,
please see Figure 1 on the left.

1
2
3
4
5
6
7

1
2
3
4
6
5
7

2
3
4
6
7
5

1
2
3
4
6
5
7

1
2
3
4
5
6
7

1
2
3
5
4
6
7

1
2
5
3
4
6
7

1
5
2
3
4
6
7

5
1
2
3
4
6
7

1
5
2
3
4
6
7

1
2
5
3
4
6
7

1
2
3
5
4
6
7

1
2
3
4
5
6
7

1
2
3
4
6
5
7

1

sifting leftsifting right set opt. position

failcount← 0
repeat

foreach vi ∈ φ do sifting(vi)

if fail then
reverse(φ)
failcount← failcount + 1

foreach vi ∈ φ do sifting(vi)

if fail then
failcount← failcount + 1

reverse(φ)

until failcount ≥MAXFAILS

Fig. 1. Sifting of vertex 5 (left) and Global Sifting (right).

To find the best position for a given vertex, we have to compute the number
of crossings after each swapping. Assume we have to swap the two vertices u and
v with u being the left neighbor of v. Then, after the swapping step there are
crossafter swapping = crossbefore swapping − cuv + cvu crossings. With that, sifting
of one vertex takes O(n) resulting in an overall runtime of O(n2), where n is the
number of vertices.

We consider three different methods for choosing the next vertex to be sifted.
Method 1 uses a preassigned vertex order of the layer, e.g., from left to right.
A more accurate approach seems to be to sift the vertices according to their
degrees, i.e., sift the vertices with high indegree, first (method 2). The third
method investigated by us randomly chooses the vertices.

Experimental Results for one Sided Crossing Minimization

Our computational experiments include the barycenter heuristic, the median
heuristic, the greedy-insert heuristic, the greedy-switch heuristic, the split heu-
ristic, and the sifting heuristics (method 1 up to method 3). For our experiments
we used the algorithms implemented in the AGD library [MGB+98] which is
based on LEDA [MN99]. We have used the program random bigraph of the St-
anford GraphBase [Knu93] with the same parameters as chosen by Jünger and

220 C. Matuszewski, R. Schönfeld, and P. Molitor

Mutzel [JM97]. We could reproduce the results of Jünger and Mutzel exactly
except for the median heuristic and the barycenter heuristic. The differences
with the median heuristic are due to the fact that the implementation in AGD
uses the average median from [Mäk90] rather than the original median heuristic
from [EW94b]. Our results are always better than those given in [JM97]. The
slight deviation from the results with the barycenter heuristic are possibly due
to minor differences in sorting methods.

In the first experimental run for one sided crossing minimization, we have
considered sparse graphs with an increasing number of vertices, 10 samples for
each type of graphs. Such instances are among the most interesting in practical
applications. We have used sparse graphs with |E| = |V1| + |V2|, i.e., on the
average, two edges are incident to each vertex. Figure 2 gives the relative size
of the average number of crossings taken over all sampled instances of the given
graph type in percentage of the minimum number of crossings, which has been
computed by the branch and cut algorithm for one sided crossing minimization
of Jünger and Mutzel [JM97]. The curves prove that all three sifting methods are
close to the optimum for sparse graphs and that sifting dominates the heuristics
known from literature for that class of graphs. The running time of the sifting
algorithm is below 1 second 1 for 100+100-graphs, i.e., graphs G = (V1 ∪ V2, E)
with V1 = V2 = 100.

99.5

100

100.5

101

101.5

102

102.5

103

103.5

104

10 20 30 40 50 60 70 80 90 100

Minimum
Lower Bound

Barycenter
Median

Split
Sifting 1
Sifting 2
Sifting 3

Fig. 2. Results for one sided crossing minimization, sparse graphs, increasing number
of vertices, 10 samples.

1 296 MHz SUNW, UltraSPARC-II, 512 MB.

Using Sifting for k-Layer Straightline Crossing Minimization 221

99.8

100

100.2

100.4

100.6

100.8

101

101.2

101.4

101.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Minimum
Lower Bound

Barycenter
Median

Split
Sifting 1
Sifting 2
Sifting 3

Fig. 3. Results for one sided crossing minimization, 20+20-graphs, increasing edge
density, 100 samples.

The next experimental run we have made considers 20+20-graphs with in-
creasing edge densities from 10 up to 90 percent. Figure 3 gives the result for
100 samples for each type of graph. It shows that for one sided crossing mini-
mization sifting dominates the other heuristics for small densities. In the case of
high densities, the barycenter heuristic and the split heuristic are as efficient as
sifting is.

To sum it up it can be said that sifting applied to one sided crossing mi-
nimization is a very efficient heuristic and the vertex order used during sifting
does not influence the quality of the heuristic very much.

4 Extending Sifting to k-Layered Directed Graphs

As stated in [JM97], there is no real need for heuristics for one sided crossing
minimization up to 60 vertices in the permutable layer as the optimum solution
can be computed fast by the branch and cut algorithm. So, we should concentrate
on the general problem, namely on the k-layer straightline crossing minimization
problem for k ≥ 2.

Sifting can obviously be extended to k-layer straightline crossing minimiza-
tion by using layer by layer based sifting (see Section 2). Another method which
we call Global Sifting is to keep a list φ = (v1, . . . , vn) of the vertices of V in
descending order of the degree of the vertices and to sift each vertex in its asso-
ciated layer according to this order. Vertices with high degree are handled, first.

222 C. Matuszewski, R. Schönfeld, and P. Molitor

If no improvement is made, we reverse the vertex order of list φ and memorize
it as a fail , otherwise we use the same sequence for the next trial again. After
these two loops passed, the vertex order is inverted in any case and the cycle is
repeated if the number of fails is less than a defined maximum count. Despite the
possibility of better results, we have not taken care about this constant and set it
to zero in all experimental runs. Note that in this algorithm optimization is not
only realized layer by layer. Figure 1 on the right presents the algorithm in detail.

Experimental Results for k-Layered Graphs

In our experiments, we have considered directed graphs up to 12 layers with
different numbers of vertices and edge densities. All heuristics, except global
sifting, are iterated between the k layers until a local optimum is obtained.

For small sparse 2-layered graphs G = (V1∪V2, E) with |E| = |V1|+|V2| sifting
is slightly better than the barycenter method, whereas barycenter dominates
sifting for larger sparse 2-layered graphs. The insufficient quality of sifting for
increasing number of vertices seemed to be due to the fact that the density
decreases when the number of vertices increases. A sparse 10+10-graph, e.g.,
contains 20 edges resulting in a density of 20 percent, whereas a 100+100-graph
which contains 200 edges leads to a density of only 2 percent. We repeated our
experimental run for increasing number of vertices with a constant edge density
of 20 percent. The results gave evidence of our assumption. Sifting and global
sifting are slightly better than the barycenter method in this case. However, this
slight improvement does not justify the higher computation time of sifting.

For more than 2 layers, global sifting dominates all the other heuristics by
far. This fact is illustrated by Figure 4 and 5. Here, the horizontal curve at the
100 percentage level represents the results for global sifting. In the experiments,
we used k*b-graphs, i.e., k-layered directed graphs Gk = (V1 ∪ . . . ∪ Vk, E) with
|Vi| = b for all 1 ≤ i ≤ k.

In a first experimental run, we varied the number of vertices in sparse graphs
with 4 layers. For this, we extended the concept of sparse graphs from 2 layers
to k layers by only considering k*b-graphs G = (V1 ∪ . . . ∪ Vk, E) with |E| =
2 · (k − 1) · b. Then, on the average, a vertex must have 2 neighbors in each
adjacent layer. Figure 4 shows the results for sparse k*b-graphs with k = 4 and
10 ≤ b ≤ 100 taken over 10 samples. Surprisingly, layer by layer based sifting
is much worse than the barycenter, median, and split heuristic. However, global
sifting is very efficient and outperforms all the other methods.

The next experimental run, we have made, considers k*b-graphs with higher
densities. Although all the heuristics converge to the true optima when the edge
density is increased, global sifting dominates the other heuristics. In particular it
is much more efficient for dense graphs than all the other heuristics, too. Detailed
information on this experiment are included in the technical report appeared at
Martin-Luther-University.

Finally, we studied the influence of the number of layers on the quality of the
crossing minimization (see Figure 5). For this, we have used sparse graphs with
10 vertices per layer. The number of layers is rising from 2 up to 12 layers. It

Using Sifting for k-Layer Straightline Crossing Minimization 223

100

110

120

130

140

150

160

170

180

190

200

210

10 20 30 40 50 60 70 80 90 100

Sifting Global
Barycenter

Median
Split

Sifting 1
Greedy-insert

Greedy-switch

Fig. 4. Results for 4-layer crossing minimization, sparse graphs, increasing number of
vertices, 10 samples.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

2 3 4 5 6 7 8 9 10 11 12

Sifting Global
Barycenter

Median
Split

Sifting 1
Greedy-insert

Greedy-switch

Fig. 5. Results for k-layer crossing minimization, sparse graphs, 10 vertices per layer,
increasing number of layers, 100 samples.

224 C. Matuszewski, R. Schönfeld, and P. Molitor

can be observed that the layer by layer sweep based heuristics lose performance
against global sifting for increasing number of layers.

5 Conclusions

We have presented a new approach for k-layer straightline crossing minimization
which has been proven to be efficient. The experiments lead to the conclusion
that global sifting dominates the heuristics known from literature for one sided
and k-layered crossing straightline minimization with k ≥ 3.

Acknowledgments

We would like to thank Petra Mutzel, Thomas Ziegler, and Stefan Näher for
helpful discussions concerning the AGD library and LEDA.

References

EK86. P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered net-
works. Ars Combin., 21.A:89–98, 1986.

EW94a. P. Eades and S. Whitesides. Drawing graphs in two layers. Theoretical
Computer Science, 131:361–374, 1994.

EW94b. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994.

GJ83. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 4:312–316, 1983.

JM97. M. Jünger and P. Mutzel. 2-Layer straightline crossing minimization: Per-
formance of exact and heuristic algorithms. J. Graph Algorithms Appl.,
1(1):1–25, 1997.

Knu93. D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Com-
puting. Addison-Wesley, Reading, MA, 1993.

Mäk90. E. Mäkinen. Experiments on drawing 2-level hierarchical graphs. Internat.
J. Comput. Math., 36:175–181, 1990.

MGB+98. P. Mutzel, C. Gutwenger, R. Brockenauer, S. Fialko, G. W. Klau,
M. Krüger, T. Ziegler, S. Näher, D. Alberts, D. Ambras, G. Koch,
M. Jünger, C. Buchheim, and S. Leipert. A library of algorithms for graph
drawing. In S. H. Whitesides, editor, Proceedings of the 6th International
Symposium on Graph Drawing (GD ’98), volume 1547 of Lecture Notes in
Computer Science, pages 456–457. Springer, 1998. Project home page at
http://www.mpi-sb.mpg.de/AGD/.

MN99. K. Mehlhorn and S. Näher. The Leda Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999. Project home
page at http://www.mpi-sb.mpg.de/LEDA/.

Rud93. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proc. International Conf. on Computer-Aided Design (ICCAD), pages
42–47, November 1993.

STT81. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, February 1981.

	Introduction
	Algorithms Known from the Literature
	Sifting for One Sided Crossing Minimization
	Extending Sifting to k-Layered Directed Graphs
	Conclusions

