Improving and Extending the Lim/Lee
Exponentiation Algorithm

Biljana Cubaleska', Andreas Rieke?, and Thomas Hermann?

! FernUniversitit Hagen, Department of communication systems
Feithstr. 142, 58084 Hagen, Germany
biljana.cubaleska@fernuni-hagen.de
ATTD://Ks.Iernunl-hagen.de/mitarpbeiter/cubalesk,
2 ISL Internet Sicherheitslésungen GmbH
Feithstr. 142, 58097 Hagen, Germany
andreas.rieke@isl-online.de
1TTD://KS.Iernuni-nagen.de/ rieke;

3 MMK GmbH, Feithstr. 142
58097 Hagen, Germany
thomas.hermann@mmk-hagen.de
1ttD: //Wwww.mmk—-hagcen.de.

Abstract. In [@] Lim and Lee present an algorithm for fast exponentia-
tion in a given group which is optimized for a limited amount of storage.
The algorithm uses one precomputation for several computations in or-
der to minimize the average time needed for one exponentiation. This
paper generalizes the previous work proposing several improvements and
a method for fast precomputation. The basic Lim/Lee algorithm is im-
proved by determining the optimal segmentation of the exponent. Fi-
nally, it is shown that the improved Lim/Lee algorithm is faster than
the previous one in average case.

1 Introduction

Modular exponentiation is a basic operation widely used in cryptography. In
many cryptographic protocols users must perform one or more exponentiations
in a given group. Well known examples are encryption, decryption and signa-
tures with RSA [§], signature generation and identification as in Digital Signa-
ture Standard (DSS) [, Brickell/McCurley [B], Schnorr [E], and many other
schemes. The exponentiation can be decomposed into a large number of mul-
tiplications, so it is an operation which is heavily computational, consumes a
lot of time and constitutes a computational bottleneck in many protocols. The
efficiency of most public-key crypto systems mainly depends on the speed of the
exponentiation algorithm.

Classical algorithms for exponentiation are the binary algorithm (known as
the square-and-multiply method, [H]) and the signed binary algorithm [H. Other
algorithms use some amount of storage for intermediate values in order to im-
prove the performance. Examples are the windowing method [l] and algorithms
based on addition chains [l8]. In [@] Lim and Lee present a new exponentiation

Howard Heys and Carlisle Adams (Eds.): SAC’99, LNCS 1758, pp. 163-la8 2000.
© Springer-Verlag Berlin Heidelberg 2000

http://ks.fernuni-hagen.de/mitarbeiter/cubalesk/
http://ks.fernuni-hagen.de/~rieke/
http://www.mmk-hagen.de/

164 Biljana Cubaleska, Andreas Rieke, and Thomas Hermann

algorithm based on precomputations. The goal of this algorithm is to achieve a
minimal number of operations (squarings and multiplications) for an exponen-
tiation under the condition of limited amount of storage. The required number
of operations for the precomputation has thereby not been considered.

The Lim/Lee algorithm optimizes the evaluation of the exponentiation g¢¢
in a given group (usually Zy, N being a large prime or a product of two large
primes) in a case when the base g is fixed and the exponent e is randomly chosen.
The fixed base g allows the usage of a precomputation table in order to reduce
the number of computations required, but the algorithm has an additional cost
of storage for the precomputed values. Such an algorithm that is independent of
e, but depends on g is suitable for use in most discrete logarithm based protocols
for signature generation and identification (e.g. [HHM]).

In this paper we present a generalization and several improvements of the
exponentiation algorithm of Lim/Lee. We focus our observations on the speed
of the algorithm without concerning the storage costs for the precomputed el-
ements, and then compare it’s behaviour for limited storage. Furthermore, we
present an efficient algorithm for precomputation and therewith optimize the
total number of operations for a given exponentiation, i.e. the number of opera-
tions for the precomputation and for several computations based on it. Finally,
both algorithms are compared for variable length of the exponent.

The Lim/Lee algorithm is described in section Bl and our improvements are
presented in section [l A new precomputation algorithm is proposed in section [l
Some comparisons of the variants of the Lim/Lee algorithm in a case when
unlimited storage is available with the windowing method are given in section Wl
and the behaviour of the algorithm under the condition of limited storage is
presented in section B Finally, section Bl concludes the paper.

2 The Lim/Lee Algorithm

In this section the Lim/Lee exponentiation algorithm is briefly presented with
a slightly changed terminology. In the next section we present and discuss the
improved and extended algorithm.

In order to compute the exponentiation g¢ with the Lim/Lee algorithm, the
[-bit exponent e is divided into h blocks e;, each with length a = %] The
exponent e can be written as

h—1
a
€= €ep_1€h_29...1€0 = E e;2". (1)
i=0

Each of the blocks e; is further subdivided into v smaller blocks of size b = {%1
and each block e; can be represented as

v—1

i
€ = €y 16p-2---€1€;0 = g e, ;277 (2)
Jj=0

Improving and Extending the Lim/Lee Exponentiation Algorithm 165

Each block e; ; consists of b bits e; j ;. and can be represented as

b—1

k
€ij = €ijb—1€ij,b—2 - € j1€i 50 = E €ijk2" (3)
k=0

It is further assumed that the number of blocks h and v are chosen in a way that
en—1 and e€;,-1,0 <4 < h —1 are not equal to zero. The segmentation of the
exponent e is shown in figurell Based on the length [of the exponent and on the
parameters h and v, the precomputation leads to the array G[j][u] with 0 < j <wv
and 1 < u < 2", Employing the binary representation up_jup—2...ujug of u
and r; = g2, the array G[j][u] is defined by the following equations:

GlOJ[ul= "ttt (4)
b J .
Glil[ul = (Gl — u))* = GO)u*" ¥ 1<j<wv (5)
Using the definition
h—1
Iy = Z €ij k2", (6)
i=0

the exponentiation can be described with the following algorithm:

1. SETR=1.
2. FOR k = b — 1 DOWNTO 0
(a) SET R = R2.
(b) FOR j = v —1 DOWNTO 0
i. SET R = R-G[j|[L; 1.
3. RETURN R.

We denote the considered algorithm as 1. Lim/Lee algorithm. This algorithm
needs b — 1 squaring! and 22—;1a — 1 multiplications in average, but a — 1
multiplications in the worst case. Thus, the average number of operations needed
to perform a single exponentiation with this algorithm is

2 —1
OLim/Lee,l =« (b - 1) + —2h a—1. (7)
In [H] the exponent is represented either as in figure ll — in several rows each of
v blocks — or as shown in figure ll — with a shortened last row. The length of the
blocks by partitioning as in figure Bl (we denote it as 2. Lim/Lee algorithm) is

= ||)

(==l 0

166 Biljana Cubaleska, Andreas Rieke, and Thomas Hermann

€0 €0,v—1 €0,j5 €0,0
€; €lv—1 €45 €4,0
€h—1 Cht1,49-11 €h—1,j €h—1,0

Fig. 1. Partitioning an I-bit exponent e in h rows with the same length according
to the 1. Lim/Lee algorithm

€0 €0,v—1 €0,j5 €0,0
e; €lv—1 €45 €4,0
€h—1 PH—1,v146¢—1 €h—1,0
- b —>{ “~— by —>

Fig. 2. Partitioning of a [-bit-exponent e with shortened last row according to
the 2. Lim/Lee algorithm

The computational cost in this case consists of ba — 1 squarings, by (v —viast) +
bs - Vgt — 1 multiplications in the maximum and 22;}1 b1 (v — viast) + 22—;1172 .

Viest — 1 multiplications in the average. Thus, the average number of operation

! Many squaring algorithms are faster than an ordinary multiplication, by making
use of the fact that both multiplicands are equal. On the other hand, multiplication
is performed with a constant multiplicand and — after performing some precom-
putations — may also be faster than a squaring. Here a denotes the ratio of the
computational complexity of the algorithms for squaring and multiplying.

Improving and Extending the Lim/Lee Exponentiation Algorithm 167

needed for one exponentiation is

oh=1_1 2 —1
OLim/Lee,Z =« (bZ - 1) + 2%7.77161 (U - Ulast) + Z—th * Vigst — 1. (10)

3 The Improved Algorithm

When using the algorithms described in the last section, the following problems
arise:

— Two algorithms are presented by Lim and Lee without a statement which
algorithm should be preferred in a given case.

— It is not examined how to find the optimal choice of the parameters h and v
resp. h, v and vy,s; exhaustive search with three parameters is very expen-
sive.

In order to find appropriate solutions for this problem we examine the algo-
rithms described in the previous section in some detail. If we allow the parti-
tioning of the exponent with v;55; > 0 in a rectangular form as a special case of
the second algorithm, the result in case of same partitioning (h; = hy — 1 and
v = Ug) is bl =b= bg and thus CLim/Lee,l > OLim/Lee,Z- It is obvious that in
case of vj,5¢ = 0 the second algorithm can not be better than the first one.

It is also shown in section l that the second algorithm is not worse than the
first one in any point. This can also be seen from the results of the numerical
tests for all lengths of the exponent [in the range up to 512 bit.

Since the second algorithm has been identified to be the better one, we further
try to decrease the number of basic parameters in this algorithm. The existence
of three basic parameters (h, v and vj,s;) makes the exhaustive search expendable
and slow. A fundamental advantage can be achieved in the case if ¢ and b are
used as basic parameters instead of h and v. We derive the parameters h = {ﬂ
and v = {%1 from the basic parameters a and b, and the partitioning of the
exponent that results from this determination of the basic parametar is given
in figure B We denote the partitioning the exponent in this way as 3. Lim/Lee
algorithm. The number of bits in the last row is now only ajust =1 — a(h — 1),
and they are divided into vj,s: = {““#t] blocks. The number of bits in the last
block is biast = Giast — b(viast — 1). With this new way of partitioning of the
exponent we can achieve computational cost of

CLim/Lee,S = (b - 1) +——a—1 (11)

as the average number of operations for one exponentiation. Although this for-
mula is the same as (M), the parameters a, b, and h can have values different
from those in (@) due to the different segmentation. It is shown in section H that
the computational cost for this algorithm is never higher than the computational
cost for each of both basic algorithms.

168 Biljana Cubaleska, Andreas Rieke, and Thomas Hermann

a
-—) —
€0 €0,v—1 €0,j5 €0,0
€; €lv—1 €45 €4,0
€h—1 CR—1,0145¢—1 €h—1,0

-~ blast -

<+ (Qlgst ———

Fig. 3. Partitioning of a I-bit exponent e according to the extended, 3. Lim/Lee
algorithm

A further improvement results from the observation of the last row in figure B

The term szla —1 in equation Il results from the fact that the multiplication

in line 2.b.i in the algorithm description in section Bl is trivial with probability
27" Concerning the fact that the last row must not be filled completely we
can use the term %,1—?1 (a — ajast) + %;ialast — 1 instead (we denote it as 4.
Lim/Lee algorithm). This improvement does not concern the algorithm itself,

but only the specification of its average number of operation, and leads to

oh-1_1 2 —1

CLim/Leea = (b—1)+ —on 1 (a — aiast) + o Mast ~ 1 (12)

as the average number of operations for one exponentiaton.

4 Precomputation

In all variations of the Lim/Lee algorithm analyzed above only the number of
operations for the computation is concerned, assuming that the precomputation
has already been performed. The computational cost for the precomputation of
the array G[j][u] has not been considered at all and an algorithm for the precom-
putation of the array G[j][u] is not given in [H]. Proposals for the precomputation
algorithm can be found in other works (e.g. [B p. 626]), but they are not efficient.
Since the precomputation makes a considerable fraction of the total number of
operations, we present an efficient algorithm for the precomputation consisting
of two steps:

Improving and Extending the Lim/Lee Exponentiation Algorithm 169

1. Since we have the array G[j][u] for u =2/, 0 < i < hand 0 < j < v in
form 72", the appropriate values can be computed with repeated squarings
beginning with r. Always when the exponent matches to the exponent in (Il
and/or (), the corresponding value is assigned to the array element. The
number of squarings needed for this step is

alh —1) + b (viast —1). (13)

2. The remaining elements can be computed directly from the last step with
one multiplication for each case. From 2"~! — 1 rows in the upper half,
h — 1 rows have already been computed in the first step, whereas only one
from the 2"~! rows from the lower half is already finished. The number of
multiplications needed for this step is

v (2" = h) 4 v (2" 1) (14)
Thus, the total number of operations needed for the precomputation is
P=a(a(h—1)+b(vast — 1)) +v (2" = h) +vae (21 = 1). (15)

An example for precomputation with partitioning of the exponent with h = 3,
v =3, Uast = 2 is given in figure [l The values computed with squarings in the
first step are marked with S, and the multiplications in the second step are
marked with M. The results of the precomputations and computations with

exponent e precomputed array G[j][u]
i=0 { u=1 S S S
u=2 S S S
1=1
u=3 M M M
u=4 S S
u=2>5 M M
1=2
u =06 M M
u="7 M M
j=2 j=1 j=0 j=2 j=1 j=0

Fig. 4. Precomputation of the array G[j][u] in the Lim/Lee algorithm (h = 3,
v =3 and Vst = 2)

M: Multiplication

S: Squaring

170 Biljana Cubaleska, Andreas Rieke, and Thomas Hermann

various parameters and partitioning for one exponent with length [= 15 are
shown in table [ll Using exhaustive search, the parameters shown in the table
have been found out as optimal for this case. The computational cost is

OLim/Lee,m =P+2z- CLim/Lee,x (16)

where z denotes the number of computations based on a single precomputation,
and x = 1,2,3,4.

Table 1. Comparison of the Lim/Lee algorithms using the example ! = 15, = 1
and z =1

C: Number of operations needed for the computation

P: Number of operations needed for the precomputation

O: Total number of operations (precomputation and computation)

Algorithm 1| Algorithm 2 | Algorithm 3 | Algorithm 4
h 1 2 2 2
v 1 2 2 2
Vlast 1 1 1
a 15 8 8
b1 5
b resp. b2 15 5 7 7
C 20.5 9.25 11 10.75
P 0 11 9 9
0] 20.5 20.25 20 19.75

5 Optimization of Precomputation and Computation for
(Nearly) Unlimited Memory

The variations of the Lim/Lee algorithm described in the sections ll and Wl are
analyzed and compared in this section for exponents up to 512 bit length. A
comparison with the windowing exponentiation algorithm is also given. The
efficiency of the algorithms is measured by the average number of operations,
where the multiplications and the squarings are treated equally (« = 1).

The optimal parameters for each algorithm have been determined with ex-
haustive search. The results for the range | < 192 are shown in figure M. The
improvements compared to the first Lim/Lee algorithm are shown in per cents.

An exact comparison of the required number of operations in one exponen-
tiation (precomputation and computation) shows that for all exponent lengths
[and a single exponentiation (z = 1) the following inequality

OLim/Lee,l > OLim/Lee,2 > OLim/Lee,S > OLim/LeeA (17)

is satisfied. This means that the fourth Lim/Lee algorithm has the lowest com-
putational cost, and we set

OLim/Lee = OLim/Lee,4~ (18)

Improving and Extending the Lim/Lee Exponentiation Algorithm 171

5 x x x x x
= Algorithm 2 ©
O Algorithm 3 +
4+ Algorithm 4 O
L
40
3 od+o I
+ +D
Improv. o 1O
in % i T |

0 32 64 96 128 160 192
Length of the exponent I

Fig. 5. Comparison of the variants of the Lim/Lee algorithm

In the range of [> 192 that is not presented, the algorithms 1-3 behave in
the same way and only the fourth algorithm has small improvements.

We now compare the windowing exponentiation algorithm with the Lim/Lee
algorithm. In figure ll we can see the average number of operations, whereby
the average number of operations needed for one exponentiation consist of one
precomputation and z computations.

First, for a given length of the exponent [and given number of exponentia-
tions z, the optimal values of the parameters (k for the windowing algorithm, a
and b for the Lim/Lee algorithm) are determined with exhaustive search. Then
the total number of operations is determined as a sum of the number of opera-
tions for the precomputation and number of operations for z computations. We
get the average number of operations dividing the total number of operations
by z, in order to get comparable results.

If only a single exponentiation is performed, the windowing algorithm leads
to the lowest number of operations. In a case when several exponentiations which
base on the same precomputation need to be performed, and the exponents have
the same length [, the Lim/Lee algorithm has the best performance.

6 Optimization of the Computation for Limited Memory

The results presented in the last section concern the case when the amount of
storage needed for the intermediate results of the precomputation is practically
unlimited. This condition is satisfied when the exponentiation is performed on a
PC or workstation. But the case when only limited storage and processing power
are available must also be concerned, since many of the cryptographic protocols

172 Biljana Cubaleska, Andreas Rieke, and Thomas Hermann

640 I x x
1 Exp. Lim/Lee algorithm —
1 Exp. windowing algorithm - - - -
512 | 10 Exp. windowing algorithm — i
2 Exp. Lim/Lee algorithm - - - -
3 Exp. Lim/Lee algorithm ——
10 Exp. Lim/Lee algorithm -
384 -]
256 -
128 |- .
0 = \ \ !
0 128 256 384 512

Length of the exponent !

Fig. 6. Comparison of the exponentiation algorithms
O: Average number of operations needed for a single exponentiation

using exponentiation (signature generation and verification schemes) are per-
formed on smart cards. The precomputation table in the Lim/Lee algorithm can
reduce the number of multiplications required at the expense of storage for the
precomputed values.

The numerical results for the time-memory tradeoffs for exponent lengths
of 160 and 512 bit are summarized in the tables ll and B for various variants
of the Lim/Lee algorithm and optimal partitioning of the exponent in each
case. The same examples as in [l] are considered and it is assumed that the
squarings and the multiplications have the same computational cost (o = 1).
The improved Lim/Lee algorithm is usually faster and never slower than
the others in average case. We can see that if more storage is available, the
algorithm becomes faster by the decreasing number of multiplications required.
The compromise by limited storage is a slower algorithm due to the increasing
number of operations required. An exponentiation with 160 bit exponent can
be performed with only 19.96 multiplications in average if 2299 intermediate
values from the precomputation are stored. If only 10 values can be stored, the
same exponentiation requires 82 multiplications. So, by known storage capacity
of a smart card, we can estimate how fast the given exponentiation can be and
vice versa.

Improving and Extending the Lim/Lee Exponentiation Algorithm

173

Table 2. Exponentiations with 160 bit (AC: Average case, WC': Worst case)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Sto- | Conf. | AC |WC| Conf. | AC [WC|Conf.| AC |WC|Conf.| AC [WC
rage | h/v h/v/Viast a/b a/b
6 2/2 | 98 |[118| 3/2/0 98 | 118 |80/40| 98 |118|80/40| 98 |118
10| 2/3 | 8 |105| 3/2/1 82 | 94 |80/27| 85 |105|64/32| 82 | 94
14| 3/2 |72.25| 79 | 4/2/0 |72.25| 79 |54/27|72.25| 79 |54/27| 72 | 79
22| 3/3 |63.25| 70 | 4/2/1 |62.69| 67 |54/18|63.25| 70 |46/23|62.63| 67
30| 4/2 | 55.5 | 58 | 5/2/0 | 55.5 | 58 |40/20| 55.5 | 58 |40/20| 55.5 | 58
45| 4/3 | 49.5 | 52 | 5/3/0 |51.38| 54 |40/14| 49.5 | 52 |40/14| 49.5 | 52
62| 5/2 | 45 | 46 | 6/2/0 45 | 46 |32/16| 45 | 46 |32/16| 45 | 46
77| 4/5 | 43.5 | 46 | 5/3/2 |42.63| 44 |34/12|42.94| 44 |34/12|42.63| 44
93] 5/3 40 41 | 6/3/0 |40.97| 42 |32/11| 40 41 |32/11| 40 41
124| 5/4 | 37 | 38 | 6/4/0 37 | 38 | 32/8 | 37 | 38 |32/8| 37 | 38
157| 5/5 | 36 | 37 | 6/3/2 |35.44| 36 |28/10|35.56| 36 [28/10|35.44| 36
189| 6/3 |33.58| 34 | 7/3/0 |33.58| 34 | 27/9 |33.58| 34 | 27/9 |33.55| 34
252| 6/4 |31.58| 32 | 6/6/2 |32.22| 33 | 27/7 |31.58| 32 | 27/7 |31.55| 32
317| 6/5 [30.58| 31 | 7/3/2 |29.75| 30 | 24/8 [29.81| 30 | 24/8 [29.75| 30
381 | 7/3 [28.82| 29 | 6/7/5 |29.44| 30 | 23/8 [28.82| 29 | 23/8 |28.81| 29
508 | 7/4 [26.82| 27 | 7/5/2 |27.69| 28 | 23/6 [26.82| 27 | 23/6 |26.81| 27
T62| 7/6 |24.82| 25 | 7/6/4 |25.75| 26 | 23/4 |24.82| 25 | 23/4 |24.81| 25
1020 8/4 |22.92| 23 | 9/4/0 |22.92| 23 | 20/5 |22.92| 23 | 20/5 |22.92| 23
1785| 8/7 20.92| 21 | 8/11/3 [21.85| 22 | 20/3 |20.92| 21 | 20/3 [20.92| 21
2299 8/7 [20.92| 21 | 9/5/4 [19.96| 20 | 18/4 [19.96| 20 | 18/4 |19.96| 20

Table 3. Exponentiations with 512 bit (AC: Average case, WC': Worst case)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Sto- [Conf.] AC TWC Conf. AC [WC] Conlf AC [WC| Conf. AC [WC
rage | h/v h/v/viast a/b a/b
6| 2/2 | 318 | 382 3/2/0 318 [382 [256/128] 318 [382 [256/128| 318 | 382
10| 2/3 | 276 | 340 3/2/1 267.6 | 306 | 257/85 | 275.8 | 340 | 205/103|267.5 | 306
14| 3/2 |233.6]| 255 4/2/0 |234.5|256 | 171/86 |233.6| 255 | 171/86 |233.5| 255
22| 3/3 |204.6| 226 4/2/1 204.4 | 218 | 171/57 |204.6 | 226 | 146/74 |204.4 | 218
30| 4/2 182 | 190 5/2/0 182 | 190 | 128/64 182 | 190 | 128/64 182 | 190
45| 4/3 161 | 169 5/3/0 161.9| 170 | 128/43 161 | 169 | 128/43 161 | 169
62| 5/2 |149.8| 153 5/3/1 149.9| 156 | 103/52 | 149.8 | 153 | 103/52 |149.7| 153
93| 5/3 [132.8| 136 6/3/0 134.7| 138 | 103/35 | 132.8 | 136 | 103/35 |[132.7| 136
125| 5/4 |123.8| 127 6/3/1 123.5| 126 | 103/26 | 123.8| 127 | 96/32 [123.5| 126
157 | 5/5 |118.8| 122 6/3/2 117.2| 119 | 90/31 |117.6|119| 90/31 |117.2| 119
189 | 6/3 |111.7| 113 7/3/0 112.6| 114 | 86/29 |111.7|113| 86/29 [111.6| 113
252 | 6/4 |104.7| 106 6/5/3 106.1| 108 | 86/22 |104.7|106 | 86/22 |104.6| 106
317 | 6/5 |100.7| 102 7/3/2 100.2| 101 | 82/21 |100.4| 101 82/21 [99.88] 101
381 7/3 |96.42| 97 7/4/2 |97.06| 98 79/20 |96.38| 97 79/20 |96.06| 97
508 | 7/4 |90.42| 91 7/5/3 91.16 | 92 74/19 |90.42| 91 74/19 190.38| 91
635| 7/5 |86.42| 87 8/5/0 |87.41| 88 74/15 |86.42| 87 74/15 |86.38| 87
892 | 7/7 |82.42| 83 8/4/3 |80.68| 81 66/17 |80.74| 81 66/17 |80.68| 81
1020 8/4 |77.75| 78 9/4/0 77.75| 78 64/16 |77.75| 78 64/16 |77.75| 78
1275| 8/5 |74.75| 75 | 9/5/0 |75.75| 76 | 64/13 |74.75| 75 | 64/13 |74.75| 75
1530 | 8/6 |[72.75| 73 8/7/5 73.68| 74 | 64/11 |72.75| 73 | 64/11 |72.75| 73
2040 | 8/8 |69.75| 70 9/8/0 |69.75| 70 64/8 [69.75| 70 64/8 |69.75| 70
2555| 9/5 | 66.89| 67 9/6/4 |67.84| 68 59/10 |66.88| 67 59/10 |66.85| 67
3066 | 9/6 [64.89| 65 9/8/4 |65.83| 66 57/10 |64.89| 65 57/10 |64.89| 65
4089 | 9/8 |62.89| 63 10/7/1 [61.90| 62 56/8 |61.95| 62 56/8 [61.90| 62
5626 | 9/10 | 60.89 | 61 10/6/5 |58.94| 59 52/9 |58.95| 59 52/9 |[58.94| 59
7672 | 10/7 |57.95| 58 10/8/7 |56.95| 57 53/6 |56.95| 57 53/6 [56.93| 57
10234 | 10/9 |55.95| 56 11/6/4 |[53.97| 54 48/8 |[53.98| 54 48/8 |53.97| 54
13305 | 11/6 |52.98 | 53 11/7/6 |51.97| 52 47/7 |51.98| 52 47/7 |51.97| 52

174 Biljana Cubaleska, Andreas Rieke, and Thomas Hermann

7 Conclusions

We generalize the exponentiation algorithm [H] by making several improvements
in the computations and in the precomputation achieving a decrease of the com-
putational cost for a single exponentiation (precomputation and computation).
For the computations, the partitioning of the exponent is modified in a way
which reduces the number of multiplications. Furthermore, we propose a new
efficient method of precomputation for the Lim/Lee algorithm, minimizing the
total time needed for a single exponentiation. We compare the exponentiation
algorithms, showing that if several exponentiations based on the same precom-
putation are performed, the Lim/Lee algorithm has the best performance. The
fact that time consuming precomputations have to be done limits the applicabil-
ity of the algorithm to those cryptosystems where the same base is used often,
which holds for most discrete logarithm based systems. Although only slight im-
provements are made, these are quite remarkable because of the importance of
exponentiation. The exponentiation can be additionally speeded up by applying
parallel processing and is applicable to various computing environments due to
its wide range of time-storage trade-offs.

References

1. J. Bos and M. Coster. Addition Chain Heuristics. In G. Brassard, editor, Advances
in Cryptology - CRYPTO ’89. LNCS 435, pp. 400-407. Springer-Verlag, 1990.

2. E. F. Brickell and K. S. McCurley. An Interactive Identification Scheme Based on
Discrete Logarithms and Factoring. In Journal of Cryptology 5 (1992), no. 1, pp.
29-39.

3. J. Jedwab and C. J. Mitchell. Minimum Weight Modified Signed-Digit Representa-
tions and Fast Exponentiation. Elect. Let. 25 (17), pp. 1171-1172 (1989).

4. D. E. Knuth. The Art of Computer Programming, Vol.2: Seminumerical algorithms.
Third edition, Addison-Wesley, 1997.

5. C. H. Lim and P. J. Lee. More Flexible Exponentiation with Precomputation. In
Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO ’94. LNCS 839, pp.
95-107. Springer-Verlag, 1994.

6. A. J. Menezes, P. C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press series on discrete mathematics and its applications. CRC
Press, Boca Raton, 1997.

7. National Institute of Technology and Standards. Specifications for the Digital Sig-
nature Standard (DSS). Federal Information Processing Standards Publication XX,
US Department of Commerce, February 1 1993.

8. R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of ACM 21 (1978), pp 120-126.

9. P. de Rooij. Efficient Exponentiation Using Precomputation and Vector Addition
Chains. In de Santis, editor, Advances in Cryptology - EUROCRYPT ’94. LNCS
950, pp. 389-399. Springer-Verlag, 1994.

10. C. P. Schnorr. Efficient Signature Generation by Smart Cards. In Journal of
Cryptology 4 (1991), no. 8, pp. 161-17j4.

	Introduction
	The Lim/Lee Algorithm
	The Improved Algorithm
	Precomputation
	Optimization of Precomputation and Computation for (Nearly) Unlimited
Memory
	Optimization of the Computation for Limited Memory
	Conclusions

