
Secure Information Flow as Typed Process
Behaviour

Kohei Honda1, Vasco Vasconcelos2, and Nobuko Yoshida3

1 Queen Mary and Westfield College, London, U.K.
2 University of Lisbon, Lisbon, Portugal.
3 University of Leicester, Leicester, U.K.

Abstract. We propose a new type discipline for the π-calculus in which
secure information flow is guaranteed by static type checking. Secrecy
levels are assigned to channels and are controlled by subtyping. A be-
havioural notion of types capturing causality of actions plays an essen-
tial role for ensuring safe information flow in diverse interactive beha-
viours, making the calculus powerful enough to embed known calculi for
type-based security. The paper introduces the core part of the calculus,
presents its basic syntactic properties, and illustrates its use as a tool
for programming language analysis by a sound embedding of a secure
multi-threaded imperative calculus of Volpano and Smith. The embed-
ding leads to a practically meaningful extension of their original type
discipline.

1 Introduction

In present-day computing environments, a user often employs programs which
are sent or fetched from different sites to achieve her/his goals, either priva-
tely or in an organisation. Such programs may be run as a code to do a simple
calculation task or as interactive parallel programs doing IO operations or com-
munications, and sometimes deal with secret information, such as private data
of the user or classified data of the organisation. Similar situations may occur
in any computing environments where multiple users share common computing
resources. One of the basic concerns in such a context is to ensure programs do
not leak sensitive data to the third party, either maliciously or inadvertently.
This is one of the key aspects of the security concerns, which is often called
secrecy. Since it is difficult to dynamically check secrecy at run-time, it may as
well be verified statically, i.e. from a program text alone [7]. The information
flow analysis [7,11,25] addresses this concern by clarifying conditions when flow
of information in a program is safe (i.e. high-level information never flows into
low-level channels). Recent studies [2,35,33] have shown how we can integrate
the techniques of type inference in programming languages with the ideas of in-
formation flow analysis, accumulating the basic principles of compositional static
verification for secure information flow.

The study of type-based secrecy so far has been done in the context of fun-
ctional or imperative calculi that incorporate secrecy. Considering that concur-
rency and communication are a norm in modern programming environments,

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 180–199, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Secure Information Flow as Typed Process Behaviour 181

one may wonder whether a similar study is possible in the framework of process
calculi. There are two technical reasons why such an endeavour can be inte-
resting. First, process calculi have been accumulating mathematically rigorous
techniques to reason about computation based on communicating processes. In
particular, given that an equivalence on program phrases plays a basic role for
semantic justification of a type discipline for secrecy [35], the theories of be-
havioural equivalences [17,20,26,28], which are a cornerstone in the study of
process calculi, would offer a semantic basis for safe information flow in com-
municating processes. Second, type disciplines for communicating processes are
widely studied recently, especially in the context of name passing process cal-
culi such as the π-calculus, e.g. [6,15,20,28,32,36]. Further, recent studies have
shown that name passing calculi enjoy great descriptive power, uniformly repre-
senting diverse language constructs as name passing processes, including those
of sequential, concurrent, imperative, functional and object-oriented languages.
Since many real-life programming languages are equipped with diverse constructs
from different programming paradigms, it would be interesting to see whether we
can obtain a typed calculus based on name passing in which information flow in-
volving various language constructs are analysable on a uniform syntactic basis.

Against these backgrounds, the present work introduces a typed π-calculus
in which secure information flow is guaranteed by static typing. Secrecy levels
are attached to channels, and a simple subtyping ensures that interaction is
always secrecy-safe. Information flow in this context arises as transformation
of interactive behaviour to another interactive behaviour. Thus the essence of
secure information flow becomes that a low-level interaction never depends on
a high-level (or incompatible-level) interaction. Interestingly, this interaction-
based principle of secure information flow strongly depends on the given type
structures as prerequisites: that is, even semantically, certain behaviours can
become either secure or insecure according to the given types. This is because
types restrict a possible set of behaviours (which act as information in the present
context), thus affecting the notion of safe information flow itself. For this reason,
a strong type discipline for name passing processes for linear and deadlock-free
interaction [6,20,36] plays a fundamental role in the present typed calculus, by
which we can capture safety of information flow in a wide range of computational
behaviours, including those of diverse language constructs. This expressiveness
can be used to embed and analyse typed programming languages for secure
information flow. In this paper we explore the use of the calculus in this direction
through a sound embedding of a secure multi-threaded imperative calculus of
Volpano and Smith [33]. The embedding offers an analysis of the original system
in which the underlying observable scenario is made explicit and is elucidated
by typed process representation. As a result, we obtain a practically meaningful
extension of [33] with enlarged typability. We believe this example suggests a
general use of the proposed framework, given the fundamental importance of
the notion of observables in the analysis of secure computing systems [25,33,34].

Technically speaking, our work follows, on the one hand, Abadi’s work on
type-based secrecy in the π-calculus [1] and the studies on secure information

182 K. Honda, V. Vasconcelos, and N. Yoshida

flow in CCS and CSP [8,24,29,31], and, on the other, the preceding works on
type disciplines for name passing processes. In comparison with [1], the main
novelty of the present typing system is that it ensures safety of information flow
for general process behaviours rather than that for ground values, which is often
essential for the embedding of securely typed programming languages. Compared
to [8,24,31], a key difference lies in the fundamental role type information plays
in the present system for defining and guaranteeing secrecy. Further, these works
are not aimed at ensuring secrecy via static typing. Other notable works on the
study of security using name passing processes include [3,5]. These works are
not about information flow analysis, though they do address other aspects of
secrecy.

In the context of type disciplines for name passing processes, the full use of
dualised and directed types (cf. §3), as well as their combination with causality-
based dynamic types, is new, though the ideas are implicit in [4,10,14,20,36]. Our
construction is based on graph-based types in [36], incorporating the partial alge-
bra of types from [15] (the basic idea of modalities used here and in [15] originally
comes from linear logic [10]). The syntax of the present calculus is based on [32],
among others branching and recursion. We use the synchronous version since it
gives a much simpler typing system. The branching and recursion play an es-
sential role in type discipline, as we shall discuss in § 3. The calculus is soundly
embeddable into the asynchronous π-calculus (also called the ν-calculus [17])
by concise encoding [32]. The operational feasibility of branching and recursion
is further studied in [9,23]. For non-deterministic secrecy in general, security
literature offers many studies based on probabilistic non-interference, cf. [13].
The present calculus and its theory are introduced as a basic stratum for the
study of secure information flow in typed name passing processes, focussing on
a simpler realm of possibilistic settings. Incorporation of the probability distri-
bution in behavioural equivalences [22] is an important subject of future study.
Further discussions on related works, including comparisons with functional and
imperative secure calculi, are given in the full version [16].

This paper offers a summary of key technical ideas and results, leaving the de-
tailed theoretical development to the full version [16]. In the remainder, Section 2
informally illustrates the basic ideas using examples. Section 3 introduces types,
subtyping and the typing rules. Section 4 discusses key syntactic properties of
typed terms. Finally Section 5 presents the embedding result and discusses how
it suggests an extension of the original type discipline by Volpano and Smith.

Acknowledgement. We deeply thank anonymous referees for their significant
comments on an early version. Our thanks also go to Martin Berger, Gavin Lowe,
Peter O’Hearn, Edmund Robinson and Pasquale Malacaria for their comments
and discussions.

Secure Information Flow as Typed Process Behaviour 183

2 Basic Ideas

2.1 A Simple Principle

Let us consider how the notion of information flow arises in interacting processes,
taking a simplest example. A CCS term a.b.0 represents a behaviour which
synchronises at a as input, then synchronises at b as output, and does nothing.
Suppose we attach a secrecy level to each port, for example “High” to a and
“Low” to b. Intuitively this means that we wish interaction at a to be secret, while
interaction at b may be known by a wider public: any high-level security process
may interact at a and b, while a low-level security process can interact only at b.
Then this process represents insecure interactions: any process observing b, which
can be done by a low-level process, has the possibility to know an interaction
at a, so information is indeed transmitted to a lower level from a higher level.
Note that this does not depend on a being used for input and b used for output:
a.b.0 with the same assignment of secrecy levels is similarly unsafe. In both
cases, we are saying that if there is a causal dependency from an action at a
high-level channel to the one at a low-level channel, the behaviour is not safe
from the viewpoint of information flow. Further, if we have value passing in
addition, we would naturally take dependency in terms of communicated values
into consideration.

The above informal principle based on causal dependency1 is simple, but
may look basic as a way of stipulating information flow for processes. Since
many language constructs are known to be representable as interacting processes
[18,19], one may wonder whether the above idea can be used for understanding
safety in information flow in various programming languages. In the following, we
consider this question by taking basic examples of information flow in imperative
programs.

2.2 Syntax

Let a, b, c, . . . x, y, z, . . . range over names (which are both points of interaction
and values to be communicated), and X, Y, . . . over agent variables. We write
~y for a vector of names y0 · · · yn−1 with n ≥ 0. Then the syntax for processes,
written P, Q, R, . . . , is given by the following grammar. We note that this syntax
extends the standard polyadic π-calculus with branching and recursion. These
extensions play a fundamental role in the type discipline, in that intended types
are hard to deduce if we use their encoding into, say, the polyadic π-calculus
(see [16] for further discussions).

P ::= x(~y).P input | P |Q parallel
| x〈(ν ~z)~y〉.P output | (ν x)P hiding
| x[(~y).P & (~z).Q] branching input | 0 inaction
| x inl〈(ν ~z)~y〉.P left selection | X〈~x〉 recursive variable
| x inr〈(ν ~z)~y〉.P right selection | (µX(~x).P)〈~y〉 recursion

1 Related ideas are studied in the context of CCS [8] and CSP [31].

184 K. Honda, V. Vasconcelos, and N. Yoshida

There are two kinds of inputs, one unary and another binary: the former is the
standard input in the π-calculus, while the latter, the branching input, has two
branches, waiting for one of them to be selected with associated communication
[32]. Accordingly there are outputs with left and right selections, as well as the
standard one. We require all vectors of names in round parenthesis are pairwise
distinct, which act as binders. In the value part of an output (including selec-
tions), say 〈(ν ~z)~y〉, names in ~z should be such that {~z} ⊂ {~y} ({~x} is the set of
names in ~x), and the order of occurrences of names in ~z should be the same as
the corresponding names in ~y. Here (ν ~z) indicate names ~z are new names and
are exported by output. 〈(ν ~z)~y〉 is written 〈~y〉 if ~z = ∅, and (ν ~z) if ~y = ~z. We
often omit vectors of the length zero (for example, we write inr for inr〈 〉) as
well as the trailing 0. The binding and α-convertibility ≡α are defined in the
standard way. In a recursion (µX(~x).P)〈~y〉, we require that P is input guarded,
that is P is either a unary input or a branching input, and free names in P are
a subset of {~x}. The reduction relation −→ is defined in the standard manner,
which we illustrate below (the formal definition is given in [16]).

We illustrate the syntax by examples. First, the following agents represent
boolean constants denoting the truth and the conditional selection (let c and y
be fresh).

T〈b〉 = b(c).(c inl |T〈b〉) and If〈x, P, Q〉 def= x(ν y).y[().P&().Q]

The recursive definition of T〈b〉 is a notational convention and actually stands
for T〈b〉 def= (µX(b).b(c).(cinl |X〈b〉))〈b〉. The truth agent first inputs a name
c via b, then, via c, does the left selection with no value passing as well as
recreating the original agent. By replacing inl by inr, we can define the falsity.
The conditional process invokes a boolean agent, then waits with two branches.
If the other party is truth it generates P : if else it generates Q. We can now
show how these two processes interact:

If〈x, P, Q〉 |T〈x〉 −→ (ν y)(y [().P & ().Q] | y inl |T〈x〉) −→ P |T〈x〉
Next we consider a representation of imperative variable as a process.

Var〈xv〉 = x[(z).(z〈v〉 |Var〈xv〉) & (v′).Var〈xv′〉]
In this representation, we label the main interaction point of the process (called
principal port in Interaction Net [21]) by the name of the variable x. It has two
branches, of which the left one corresponds to the “read” option, while the right
one corresponds to the “write” option. If the “read” is selected and z is received,
the process sends the current value v to z, while regenerating the original self.
On the other hand, if the “write” branch is selected and v′ is received, then
the process regenerates itself with a new value v′. We can then consider the
representation of the assignment “x := y,” which first “reads” the value from
the variable y, then “writes” that value to the variable x.

Assign〈xy〉 def= y inl(ν z).z(v).x inr〈v〉

Secure Information Flow as Typed Process Behaviour 185

2.3 Imperative Information Flow in Process Representation

(1) Causal Dependency. We can now turn to the information flow. We first
consider the process representation of the following obviously insecure code [25].

xL := yH

Here the superscripts “L” and “H” indicate the secrecy levels of variables: thus y
is a high (or secret) variable and x is a low (or public) variable. This command is
insecure intuitively because the content of a secret variable becomes visible to the
public through x. Following the previous discussion, its process representation
becomes:

Assign〈xLyH〉 def= yH inl(ν c).cH(v). xL inr〈v〉. nteractional

Note we are labeling channels by secrecy levels. We can easily see that this pro-
cess violates the informal principle stipulated in §2.1, because its low-level beha-
viour (at x) depends on its preceding high-level behaviour (at y, c). Thus this ex-
ample does seem explainable from our general principle. Similarly, we can check
the well-known example of implicit insecure flow “if zH then xL := yL end”
(where the information stored in z can be indirectly revealed by reading x), is
translated into insecure process interaction “ zH(ν c).cH[().Assign〈xLyL〉 & ().0]”.
Here again the low-level interactions (in Assign〈xLyL〉) depend on the high-level
interactions at z and c.

(2) Deadlock-Freedom. So far there has been no difficulty in applying our
general principle to process presentation of imperative information flow. Howe-
ver there are subtleties to be understood, one of which arises in the following
sequential composition.

xH := yH ; zL := wL

The whole command is considered to be safe since whatever the content of x
and y would be, they do not influence the content of z and w. However the
following process representation of this command seems not safe in the light of
our principle:

yH inl(ν c1).cH
1 (v1). xH inr〈v1〉. wL inl(ν c2).cL

2 (v2). zL inr〈v2〉 (?)

Here the behaviours at low-level ports (w and z) depend on, via prefixing, those
at high-level ports (x and y). Does this mean our principle and the standard idea
in information flow are incompatible with each other? However, a closer look at
the above representation reveals that this problematic dependency does not exist
in effect, provided that the above process interacts with the processes for impe-
rative variables given in §2.2. If we assume so, the actions at y and x (together
with those at z and w) by the above process are always enabled: whenever a
program wishes to access a variable, it always succeeds (in the i parlance, we
are saying that interactions at these names are guaranteed to be deadlock-free).
Thus we can guarantee that, under the assumption, the action at say w above

186 K. Honda, V. Vasconcelos, and N. Yoshida

will surely take place, which means the dependency as expressed in syntax does
not exist. Observing there is no dependency at the level of communicated values
between the two halves of (?), we can now conclude that the actions at w and z
do not causally depend on the preceding actions at y and x.

(3) Innocuous Interaction. We now move to another subtle example, using
the following command.

if zH then xH := yL end

While this phrase is considered to be secrecy-wise safe [25], its representation in
the π-calculus becomes:

zH(ν cH).c[().yLinl(ν e).eL(v).xH inr〈v〉 & ().0] (??)

which again shows apparently unsafe dependency between the second action at
c and the third action at y. In this example, the process does get information
at c in the form of binary selection, even though c is deadlock-free. Moreover
the output at y does not occur in the right branch, so the output depends on
the action at c even observationally. But the preceding study [33,35] shows the
original imperative behaviour is indeed safe. How can it be so? Simple, because
this command only reads from y, without writing anything: so it is as if it did
nothing to y. Returning to (??), we find the idea we made resort to in (2), is
again effective: we consider this output action as not affecting the environment
(hence not transmitting any information) provided that the behaviour of the
environment is such that invoking its left branch has no real effect – in other
words, if it behaves just as the imperative variable given in §2.2 does. We call
such an output innocuous: thus, if we decide to ignore the effect of innocuous
actions, there is no unsafe dependency from the high-level to the low-level (note
the left branch as a whole now becomes high-level). We further observe that
the insecure examples in (1) are still insecure even after incorporating deadlock-
freedom and innocuousness.

The preceding discussions suggest two things: first, we may be able to for-
mally stipulate the interactional framework of safe information flow which may
have wide applicability along the line of the informal notion given in §2.1. Se-
condly, however, just for that purpose, we need a non-trivial notion of types for
behaviours which in particular concerns not only the behaviour of the process
but also that of the assumed environment. The formal development in the fol-
lowing sections shows how these ideas can be materialised as a typed process
calculus for safe information flow.

3 A Typed π-Calculus for Secure Information Flow

3.1 Overview

In addition to names and agent variables (cf. §2.1), the typed calculus we in-
troduce below uses a set of multiple secrecy levels, which are assumed to form

Secure Information Flow as Typed Process Behaviour 187

a lattice. s, s′, . . . range over secrecy levels, and s ≤ s′ etc. denotes the partial
order (where the lesser means the lower, i.e. more public). Using these data as
base sets, our objective in this section is to introduce a typing system whose
provable sequent has the following form:

Γ `s P . A a process P has an action type A under a base Γ with a secrecy level s

We offer an overview of the four elements in the above sequent.
(1) The base Γ is a finite function from names and agent variables to types and
vectors of types, respectively. Intuitively a type assigned to a channel denotes the
basic structure of possible interaction at that channel, for example input/output
and branching/selection. We also include refined modalities for recursive inputs
and their dual outputs, which indicate whether they involve state change or not.
(2) The process P is an untyped term in §2.2 which is annotated with types
in its bound names, e.g. a unary input becomes x(~y : ~α).P (here and elsewhere
we assume len(~α) = len(~y) where len(~y) denotes the length of a vector, so that
each yi is assigned a type αi). As one notable aspect, we only use those processes
whose outputs (in any of three forms) are bound, e.g. each unary output has a
form x(ν ~y :~α).P (this restricted output is an important mode of communication
which arises in the context of both π-calculus [30] and games semantics [19,18]).
Accordingly we set names in each vector instantiating agent variables to be pair-
wise distinct. These restrictions make typing rules simpler, while giving enough
descriptive power to serve our present purpose.
(3) The secrecy index s guarantees that P under Γ only affects the environment
at levels at s or higher: that is, it is only transmitting information (or tampering
the environment) at levels no less than s.
(4) The action type A gives abstraction of the causal dependency among (actions
on) free channels in P , ensuring, among others, certain deadlock-free properties
on its linear and recursive channels. The activation ordering is represented by a
partial order on nodes whose typical form is px where p denotes a type of action
to be done at x. There is a partial algebra over action types [15], by which we can
control the composability of two action types (hence of typed processes which
own them), thus enabling us to stipulate assumptions on the possible forms of
the environments, cf. §2.

3.2 Types and Subtyping

We start with the set of action modes, denoted m, m′, ..., whose underlying ope-
rational ideas are illustrated by the following table.

⇓ non-linear (non-deterministic) input ⇑ non-linear (non-deterministic) output
↓ truly linear input (truly once) ↑ truly linear output (truly once)
! recursive input (always available) ? zero or more output (always enabled)

The notations ! and ? come from Linear Logic [10], which first introduced these
modalities. We also let κ, κ′, . . . , called mutability indices, range over {ι,µ}.

188 K. Honda, V. Vasconcelos, and N. Yoshida

(Well-formedness and Compatibility)

−
` τ

` τ � τ ′

` 〈τ, τ ′〉
` τ � τ ′

` τ ′ � τ

` τi � τ ′
i

` (~τ)⇓s � (~τ ′)⇑s

` τi � τ ′
i s ≥ s′

` (~τ)↓s � (~τ ′)↑s′

` τi � τ ′
i s ≥ s′

` (~τ)!s,κ � (~τ ′)?s′,κ

` τij � τ ′
ij

` [~τ1&~τ2]⇓s � [~τ ′
1⊕~τ ′

2]
⇑
s

` τij � τ ′
ij s ≥ s′

` [~τ1&~τ2]↓s � [~τ ′
1⊕~τ ′

2]
↑
s′

` τij � τ ′
ij s ≥ s′

` [~τ1&~τ2]!s,κ1&κ2
� [~τ ′

1⊕~τ ′
2]?s′,κ1⊕κ2

(Subtyping)

` τi ≤ τ ′
i

` (~τ)⇓s ≤ (~τ ′)⇓s

` τi ≤ τ ′
i s ≥ s′

` (~τ)↓s ≤ (~τ ′)↓s′

` τi ≤ τ ′
i s ≥ s′

` (~τ)!s,κ ≤ (~τ ′)!s′,κ

` τi ≤ τ ′
i

` (~τ)⇑s ≤ (~τ ′)⇑s

` τi ≤ τ ′
i s ≤ s′

` (~τ)↑s ≤ (~τ ′)↑s′

` τi ≤ τ ′
i s ≤ s′

` (~τ)?s,κ ≤ (~τ ′)?s′,κ

` τij ≤ τ ′
ij

` [~τ1&~τ2]⇓s ≤ [~τ ′
1&~τ ′

2]
⇓
s

` τij ≤ τ ′
ij s ≥ s′

` [~τ1&~τ2]↓s ≤ [~τ ′
1&~τ ′

2]
↓
s′

` τij ≤ τ ′
ij s ≥ s′

` [~τ1&~τ2]!s,κ1&κ2
≤ [~τ ′

1&~τ ′
2]!s′,κ1&κ2

` τij ≤ τ ′
ij

` [~τ1⊕~τ2]⇑s ≤ [~τ ′
1⊕~τ ′

2]
⇑
s

` τij ≤ τ ′
ij s ≤ s′

` [~τ1⊕~τ2]↑s≤ [~τ ′
1⊕~τ ′

2]
↑
s′

` τij ≤ τ ′
ij s ≤ s′

` [~τ1⊕~τ2]?s,κ1⊕κ2
≤ [~τ ′

1⊕~τ ′
2]?s′,κ1⊕κ2

` 〈τ1, τ2〉 ` τ ≤ τ1 or ` τ ≤ τ2

` τ ≤ 〈τ1, τ2〉
` 〈τ ′

1, τ ′
2〉 ` τi ≤ τ ′

i

` 〈τ1, τ2〉 ≤ 〈τ ′
1, τ ′

2〉

Fig. 1. Subtyping

Mutability indices indicate whether a recursive behaviour is stateful or not: for
input, ι denotes the lack of state, which we call innocence, cf. [19], while µ means
it may be stateful, that is it may change behaviour after invocation; for output,
ι denotes innocuousness, that is the inputting party is innocent, while µ deno-
tes possible lack of innocuousness. Given these base sets, the grammar of types,
denoted α, β, . . . , are given by:

α ::= τ | 〈τ, τ ′〉 τ ::= αI | αO

αI ::= (~τ)⇓
s | (~τ)↓

s | (~τ)!s,κ | [~τ1&~τ2]⇓s | [~τ1&~τ2]↓s | [~τ1&~τ2]!s,κ1&κ2

αO ::= (~τ)⇑
s | (~τ)↑

s | (~τ)?s,κ | [~τ1⊕~τ2]⇑s | [~τ1⊕~τ2]↑s | [~τ1⊕~τ2]?s,κ1⊕κ2

Types of form 〈τ, τ ′〉 are pair types, indicating structures of interaction for both
input and output, while others are single types, which are only for either input or
output. We write md(α) for the set of action modes of the outermost type(s) in
α, e.g. md((~τ)m

s) = {m} and md(〈(~τ1)m1
s1

, (~τ2)m2
s2
〉) = {m1, m2}. We often write

md(α) = m for md(α) = {m}. Similarly, we write sec(τ) for the security level of
the outermost type in τ , e.g. sec((~τ)m

s) = s. We define the dual of m, written

Secure Information Flow as Typed Process Behaviour 189

m, as: ⇓ = ⇑, ⇑ = ⇓, ↑ =↓, ↓ =↑, ! = ? and ? = !. Then the dual of a type α,
denoted by α, is given by inductively dualising each action mode in α, as well
as exchanging & and ⊗. Among types, those with body (~τ) correspond to unary
input/output, those with body [~τ1&~τ2] correspond to branching input, and those
with body [~τ1⊕~τ2] correspond to output with selections.

We say α is well-formed, written ` α, if it is derivable from the rules in
Figure 1, where we also define the compatibility relation � over single types. A
pair type is well-formed iff its constituting single types are compatible. We also
say α is a subtype of β, denoted ` α ≤ β, if this sequent is derivable by the rules
in Figure 1. Some comments on types, subtyping and compatibility follow.

Remark 1. (nested types) Nested types denote what the process would do
after exporting or importing new channels (hence covariance of subtyping on
nested types): as an example, neglecting the secrecy and mutability, x : (()↓)↑

denotes the behaviour of doing a truly linear output at x exporting one single
new name, and at that name doing a truly linear input without importing any
name.
(secrecy levels, compatibility and subtyping) Since safe information flow
should never go from a higher level to a lower level, a rule of thumb is that
two types are compatible if such a flow is impossible. Thus, because a flow can
occur in both ways at non-deterministic channels (cf. §2.1), two non-linear types
can be related only when they have the same secrecy level. On the other hand,
for compatibility of linear types, we require that the inputting side is higher
than the outputting side in secrecy levels, since the flow never comes from the
inputting party (further, in truly linear unary types, even the outputting party
does not induce flow). Accordingly, the subtyping is covariant for output and
contravariant for input with respect to secrecy levels.
(mutability index) As we explained already, the index ι represents the re-
cursive input behaviour without state change (innocence) or, dually, the output
which does not tamper the corresponding recursive processes (innocuousness).
Note an index is only meaningful for recursive behaviours and their dual output.
Naturally we stipulate that an innocent input can only be compatible with an
innocuous output; and an innocent input can only be a subtype of an innocent
input, and an innocuous output can only be a subtype of an innocuous output.

3.3 Action Types

An action type A is a finite poset whose elements, called action nodes, are given
by the following grammar.

n ::= ↓x | ↑x | lx | !x | ?x | ?ιx | mx | X〈~x〉.
l x indicates x is already used exactly once for both input and output. ?ιx
indicates that all actions occurring at x so far are innocuous. X〈~x〉 (with len(~x) ≥
1 always) indicates the point to which the behaviour recurs. m indicates possibility
of nonlinear (nondeterministic) input and output. Other symbols are already

190 K. Honda, V. Vasconcelos, and N. Yoshida

explained in the table in §3.2. As an illustration of causality, write n→ n′ when
n′ is strictly bigger than n without any intermediate element. Then ↓ x →↑ y
says that a truly linear output at y becomes active just after a truly linear input
at x.

We only use those action types which conform to a well-formedness condition
that in particular includes linearity (for details see [16]). In the typing rules, we
use the following abbreviations for action types (let {xi} be free names in A).

↓↑A A only contains ↓xi or ↑xi A-x x does not occur in A
?A A only contains ?xi, ?ιxi or mxi A⊗B disjoint union, with A ∩B = ∅
?ιA A only contains ?ιxi ~px p0x0 ⊗ p1x1 · · · pn−1xn−1 (n ≥ 0)

We also say x is active in A if px (for some p) is minimal in A.

3.4 Typing System

We now introduce the main typing rules with illustration. We use the following
notation: given a base Γ , (1) x : α (resp. X : ~α) denotes Γ (x) = α (resp.
Γ (X) = ~α); and (2) Γ · ∆ denotes the disjoint union of two bases, assuming
their domains do not intersect. Henceforth we assume all types and bases are
well-formed. We start from the typing rules for basic process operators: the
inaction, parallel composition and hiding.

(Zero)

Γ `s 0 . ∅

(Par) A1 � A2

Γ `s Pi . Ai (i =1, 2)

Γ `s P1 | P2 . A1 �A2

(Res)
Γ · x : α `s P . A⊗ px p ∈ {l, !, m}
Γ `s (ν x :α)P . A

In (Par), we use coherence A1 � A2 and composition A1 � A2, both following
[36]. Essentially speaking, A1 � A2 says A1 and A2 are composable without
violating linearity or causing vicious circles; then A1 � A2 is the result of the
composition. See [16] for details. In (Res), we do not allow a name with a mode
in {↓,↑, ?, ?ι} to be restricted since these actions expect their complementary
actions to get composed — in other words, actions with these types assume
the existence of actions with their dual types in the environment. With the
complementary actions left uncomposed, the hiding leads to an insecure system.
In addition, we have the weakening rules for ?x, ?ιx, l x and mx, and the
degradation rule in which Γ `s P . A is degraded into Γ `s′ P . A when s′ ≤ s
(cf. § 3.1 (3)).

We next turn to non-liner prefix rules. The rules for prefix actually control
the secrecy levels of each action.

(In) ` (~τ)⇓
s ≤ Γ (x)

Γ · ~y :~τ `s P .−→py ⊗ ?A⊗ mx

Γ `s x(~y :~τ).P . A⊗ mx

(Out) ` (~τ)⇑
s ≤ Γ (x)

Γ · ~y :~τ `s P .−→py ⊗ ?A⊗ mx

Γ `s x(ν ~y :~α).P . A⊗ mx

Since the subtyping on non-linear types is trivial with respect to their secrecy
levels, `(~τ)⇑,s ≤ Γ (x) means Γ (x) has precisely the level s. Thus, in both rules,

Secure Information Flow as Typed Process Behaviour 191

the initial action at level s is followed by actions affecting the same or higher
levels (because P is typed with s). Note also all abstracted actions (−→py above)
should be active, which is essential for the subject reduction. Non-linear prefix
rules for branching and selections are essentially the same.

Among linear prefix rules, the following shows a stark contrast with the non-
linear (In) and (Out) rules.

(In↓) (where C/~y =↓↑B)

` (~τ)↓
s′ ≤ Γ (x)

Γ · ~y :~τ `s P . ?A⊗ C-x

Γ `s x(~y :~τ).P . A⊗ ↓x→B

(Out↑) (where C/~y =↓↑B)

` (~τ)↑
s′ ≤ Γ (x)

Γ · ~y :~τ `s P . ?A⊗ C-x

Γ `s x(ν ~y :~τ).P . A⊗ ↑x→B

The notation C/~y denotes the result of taking off nodes with names among ~y, as
well as stipulating the condition that each yi should be active in C. We observe
that the “true linearity” in these and later rules is stronger than those studied in
[15,20], which only requires “no more than once”. In the rule, since s′ is not given
any condition in the antecedent, both rules completely neglect the secrecy level
of x in Γ , saying we may not regard these actions as either receiving or giving
information from/to the environment. The operation n→B, which is given in
[16] following [36], records the causality.

The next rules show that branching/selection need a different treatment from
the unary cases when types are truly linear. Intuitively, the act of selection gives
rise to a non-trivial flow of information.

(Bra↓) (where Ci/~yi =↓↑B)

` [~τ1&~τ2]↓s ≤ Γ (x)
Γ · ~yi :~τi `s Pi . ?A⊗ C-x

i (i =1, 2)

Γ `s x[(~y1 :~τ1).P1 & (~y2 :~τ2).P2] . A⊗ ↓x→B

(Sel↑l) (where C/~y1 =↓↑B)

` [~τ1⊕~τ2]↑s ≤ Γ (x)
Γ · ~y1 :~τ1 `s P . ?A⊗ C-x

Γ `s xinl(ν ~y1 :~τ1).P . A⊗ ↑x→B

Here the subtyping is used non-trivially: in (Bra↓), the real level of x in Γ is
the same or lower than s, so the level elevates. In (Sel↑), the real level of x is the
same or higher, so the level may go down, but it is recorded in the conclusion. It
is notable that this inference crucially depends on the employment of branching
as a syntactic construct: without it, these rules should have the same strict
conditions as non-linear prefixes.

The final class of rules show the treatment of !-? modalities and mutability
indices, dealing with recursive inputs and their dual outputs, and are most in-
volved. We first have the variable introduction rule (Var!), in which we derive
Γ · X : ~α `s X〈~x〉 . X〈~x〉 when we have both ` αi ≤ Γ (xi) and md(α0) = !,
as well as (for consistency with repetitive invocation) md(αi) ∈ {?, ⇓, ⇑} (i 6= 0).
Here we give no restriction on s since when the introduced variable is later bo-
und, all potential tampering at free names would have been recorded except the
subject of this recursion, the latter not being tampering. Below we introduce
linear recursion rules, for which there are two pairs, one for unary prefix and
another for binary prefix. We show the rules for unary input/output.

192 K. Honda, V. Vasconcelos, and N. Yoshida

(In!)

` (~τ)!s,κ ≤ Γ (z0) ` αi ≤ Γ (zi){
Γ{~x/~z}·~y :~τ ·X :~α s̀ P .−→py⊗?ιA{~x/~z}⊗X〈~x〉 (κ=ι)

Γ{~x/~z}·~y :~τ ·X :~α s̀ P .−→py⊗?A{~x/~z}⊗X〈x~w〉(κ=µ)

Γ `s (µX(~x :~α).x0(~y :~τ).P)〈~z〉 . !z0 ⊗A

(Out?) (where C/~y =↓↑B)

` (~τ)?s′,κ≤Γ (x) p ∈ {?, ?ι}
Γ · ~y:~τ s̀ P . ?A⊗C⊗px
κ=µ ⇒ (s=s′ ∧ p=?)

Γ ` s . x(ν ~y :~τ).PA⊗B⊗px

In (In!), we check that the process is immediately recurring to precisely the same
behaviour (X〈~x〉) if it is innocent, or, if it is not innocent, it recurs to the same
subject (X〈x0 ~wj〉). The process can only do free actions with ?ι-modes in the
innocent case in addition to the recurrence (except at ~y, which are immediately
abstracted), so that the process is stateless in its entire visible actions. In the
conclusion, the new subject z0 is introduced with the mode !. In the dual (Out?),
if the prefix is an innocuous output (κ = ι), there is no condition on the level of x
(s′), so that the level is not counted either in the antecedent or in the conclusion
(e.g. even if s′ = ⊥ we can have s 6= ⊥): we are regarding the action as not
affecting, and not being affected by, the environment. However if the action is
not innocuous (κ = µ), it is considered as affecting the environment, so that we
record its secrecy level by requiring s′ = s. Note that, even if it is unary, a ?-mode
output action may indeed affect the environment simply because such an action
may or may not exist: just as a unary non-deterministic input/output induces
information flow. The corresponding rules for the branching and selection are
defined in the same way, see [16].

3.5 Examples of Typing

(Non-linear) Let sync⇓
s

def= ()⇓
s . Then a :sync⇓

s′ · b :sync⇓
s `s′ a.b . ma⊗mb, for

s′ ≤ s.

(Truly linear) Let sync↓
s

def= ()↓
s , and its dual sync↑

s
def= ()↑

s. Then, for ar-
bitrary s and s′, we have a :sync↑

s · b :sync↓
s′ `> a.b . ↑a→↓b.

(Branching) Let bool!
s

def= ([⊕]↑s)!s be the type of a boolean constant. Then
we have b :bool!

s `s T〈b〉 . !b. For the conditional If〈b, P1, P2〉 introduced in §2,
suppose that the two branches P1 and P2 can be typed at a security level above
that of the boolean constant b; that is, Pi is such that Γ ·b :bool?

s′ `s Pi.?A⊗?ιb,
for s′ ≤ s. Then Γ · b :bool?

s′ `s If〈b, P1, P2〉 . A⊗?ιb. The innocuousness at b is
crucial to show that (bool!

s′)?> ≤ (bool!
s′)?s′ in rule Out?.

(Copy-cat) The following agent concisely represents the idea of safe informa-
tion flow in the present calculus. It also serves as a substitute for free name
passing for various purposes, including the imperative variable below.

[bs ← b′s′
] = b(c : bool↑

s).(If〈b′, c inl, c inr〉 | [b← b′])

This agent transforms a boolean behaviour from b′ to b. If s′ ≤ s, then we have:
b :bool!

s, b
′ :bool?

s′ s̀ [b← b′] . !b⊗?ιb′.

Secure Information Flow as Typed Process Behaviour 193

(Imperative variable) We give a representation of an imperative variable,
alternative to that presented in §2.

Var〈xsbs′〉s = x[(z : (bool!s)
↑
s).(z(ν b′ :bool?s).[b′ ← b]|Var〈xb〉) & (b′ :bool?s).Var〈xb′〉]

By the copy-cat, sending a new b′ has the same effect as sending b. To type
this process, let var!

s
def= [(bool!

s)
↑
s&bool

?
s]!s,ι&µ. Then x : var!

s, b : bool!
s′ `s

Var〈xsb〉 . !x⊗?ιb for s′ ≤ s. Note b has the level s′ but the secrecy index is
still s, since at b the output is innocuous.
(Assignment) The following offers the typing of the behaviour representing
xH := yL. Let var?

s
def= var!

s and Γ = x :var?
H · y :bool!

L. Then

Γ `H yinl(z : (bool?
L)↓

L).z(b :bool?
H).xinr(b′ :bool!

H).[b′ ← b] . ?x⊗ ?ιy.

4 Elementary Properties of Typed Processes

This section presents the most basic syntactic properties of typed terms. We
also briefly discuss one key behavioural property typed terms enjoy. First, the
typing system satisfies the standard properties as weakening, strengthening and
substitution closure. We only list two important properties. Below (1) says that
every typable term has a canonical typing, i.e. whenever P is typable, P has the
minimum action type and the highest secrecy index, and (2) means that channel
types in Γ represent the constraints on the behaviour of P , rather than that of the
outside environment (below A ≤G A′ iff A = A′

0⊗
−→
?ιx and A′ = A′

0⊗−→?x⊗−→ly⊗−→mw
for some A′

0).

Proposition 1. (1) (canonical typing) If Γ `s P . A, then there exists s0 and
A0 such that Γ `s0 P . A0, and whenever Γ `s1 P . A1 we have s1 ≤ s0 and
A0 ≤G A1.

(2) (subsumption-narrowing) If Γ · x :α `s P . A and α ≤ α′, then Γ · x :α′ `s

P . A.
Also if Γ ·X :~α `s P . A and αi ≥ βi for each i, then Γ ·X : ~β `s P . A.

A fundamental property of the typing system follows. Below→→ is the multi-step
reduction over preterms, defined just as that over untyped terms.

Theorem 1. (subject reduction) If Γ `s P . A and P →→ Q with bn(Q) ∩
fn(Γ) = ∅, then Γ `s Q . A.

The theorem says that whatever internal reduction takes place, its composability
with the outside, which is controlled by both Γ and A, does not change; and
that, moreover, the process is still secure with a no less secrecy index. For the
proof, see [16].

The subject reduction is the basis of various significant behavioural properties
for typed processes. Here we discuss only one of them, a non-interference pro-
perty in typed terms (cf. [1,11,25]). A 〈Γ ·s·A〉-context is a typed context whose

194 K. Honda, V. Vasconcelos, and N. Yoshida

hole is typed under the triple 〈Γ, s, A〉. Then, with respect to security level s,
we can define the s-sensitive maximum sound typed congruence (cf. [17,28,36]),
denoted ∼=s, following the standard construction (see [16] for the full definition).
We then obtain:

(behavioural non-interference) Let C[·] be a 〈Γ0 ·s0 ·A0〉-context.
If s � s0 and Γ0 s̀0 Pi . A0 (i = 1, 2), then C[P1] ∼=s C[P2].

The statement says that the behaviour of the whole at lower levels are never
affected by its constituting behaviours which only act at higher levels. The proof
uses a secrecy-sensitive version of typed bisimilarity, which is a fundamental
element of the present theory and which turns out to be a subcongruence of the
above maximum sound equality at each secrecy level. By noting ground constants
are representable as constant behaviours, one may say the result extends Abadi’s
non-interference result for ground values [1] to typed process behaviours.

5 Imperative Information Flow as Typed Process
Behaviour

5.1 A Multi-Threaded Imperative Calculus

Smith and Volpano [33] presented a type discipline for a basic multi-threaded
imperative calculus in which well-typedness ensures secure information flow. In
this section we show how the original system can be embedded in the typed
calculus introduced in this paper, with a suggestion for a practically interesting
extension of the original type discipline through the analysis of the notion of
observables. We start with the syntax of untyped phrases of the original calculus,
using x, y, z, . . . for imperative variables.

e ::= x | b | e1 and e2 b ::= tt | ff

c ::= x := e | c1; c2 | c1 | c2 | if e then c1 else c2 | while e do c | skip
For simplicity we restrict data types to booleans. We also added the skip com-
mand, and use the parallel composition rather than a system of threads.

The typing system is given in Figure 2. It uses command types of form

ρ ::= s cmd⇓ | s cmd⇑.

Here s cmd⇓ (resp. s cmd⇑) indicates convergent (resp. divergent) phrases and
s, s′, . . . are secrecy levels as before. Note we take secrecy levels from an arbitrary
lattice rather than from the two point one. We also use a base E, which is a
finite map from variables to secrecy levels. Subsumption in expressions is merged
into their typing rules for simplicity. Notice the contravariance in the first two
subtyping rules [33,35] and the invariance in the last rule. The types in the
original system are embedded into the command types above by setting:

(H)◦ def= > (L)◦ def= ⊥ (H cmd)◦ def= > cmd⇓ (L cmd)◦ def= ⊥ cmd⇑,

Secure Information Flow as Typed Process Behaviour 195

(Subtyping) s′ ≤ s
s cmd⇓ ≤ s′ cmd⇓

s′ ≤ s
s cmd⇓ ≤ s′ cmd⇑ s cmd⇑ ≤ s cmd⇑

(Typing)

(var)
E(x) ≤ s

E ` x : s
(bool) E ` b : s (and)

E ` ei : s (i = 1,2)

` e1 and e2 : s

(skip)
E ` skip : s cmd⇓

(subs)

E ` c : ρ ρ ≤ ρ′

E ` c : ρ′

(compose)

E ` ci : ρ

E ` c1; c2 : ρ

(parallel)

E ` ci : ρ

E ` c1 | c2 : ρ

(assign)

E ` e : s E(x) = s

E ` x := e : s cmd⇓

(if)

E ` e : sec(ρ) E ` ci : ρ

E ` if e then c1 else c2 : ρ

(while)

E ` e : ⊥ E ` c : ⊥ cmd⇑

E ` while e do c : ⊥ cmd⇑

Fig. 2. Typing System of Smith-Volpano calculus

which makes explicit the notion of termination in the original types. With this
mapping, the present system is a conservative extension of the original one in
both subtyping judgement and typability.

5.2 Embedding

We start with the embedding of types and bases, given in Figure 3. Both com-
mand types and bases are translated into two forms, one using channel types and
the other using action types. In [[ρ]], a terminating type becomes a truly linear
synchronisation type, and a non-terminating type becomes a non-linear synchro-
nisation type, both described in §3.5. 〈〈ρ〉〉f gives an action type accordingly. We
note: given command types ρ, ρ′, ρ ≤ ρ′ iff either (1) sec([[ρ]]) ≥ sec([[ρ′]]) and
both are truly linear unary, (2) sec([[ρ]])≥sec([[ρ′]]), [[ρ]] is truly linear unary and
[[ρ′]] is nonlinear, or (3) [[ρ]] = [[ρ′]] and both are nonlinear. This dissects com-
mand types into (a) the secrecy level of the whole behaviour (which guarantees
the lowest tampering level and which can be degraded by the degradation rule)
and (b) the nature of the termination behaviour (noting “non-linear” means a
termination action is not guaranteed).

We next turn to the embedding of terms into processes in Figure 3. The
framework assumes two boolean constant agents whose behaviours are given
in §2.2 and which are shared by all processes, with principal channels tt and ff .
These free channels are given the ⊥-level, which is in accordance with Smith and
Volpano’s idea that constants have no secrecy. Following the translation of types,
each command becomes a process that upon termination emits an output signal
at a channel given as a parameter, typically f (cf. [26]). We are using copy-cat
in §3.5 to represent the functionality of value passing. The encoding of terms
should be easily understandable, following the known treatment as in [26]: the

196 K. Honda, V. Vasconcelos, and N. Yoshida

(Type and Base)

[[s cmd⇓]] def= sync↑
s 〈〈s cmd⇓〉〉f def= ↑f [[∅]] def= tt, ff :var⊥ 〈〈∅〉〉 def= ?ιtt⊗ ?ιff

[[s cmd⇑]] def= sync⇑
s 〈〈s cmd⇑〉〉f def= mf [[E · x :s]] def= [[E]] · x :vars 〈〈E · x :s〉〉 def= [[E]] · !x

(Command) (s = sec(e)E in all cases, vars
def= 〈var!s, var?s 〉)

[[E ` skip : ρ]]f
def= f

[[E ` c1; c2 : ρ]]f
def= (ν g :〈[[ρ]], [[ρ]]〉)([[E ` c1 : ρ]]g | g.[[E ` c2 : ρ]]f)

[[E ` c1 | c2 : ρ]]f
def= (ν f1, f2 :〈[[ρ]], [[ρ]]〉)([[E ` c1 : ρ]]f1 | [[E ` c2 : ρ]]f2 | f1.f2.f)

[[E ` x := e : ρ]]f
def= eval[[e]]E(bs′

).xinr(b′ :bool!s′).([b′ ← b] | P) (s′ = E(x))

[[E ` if e then c1 else c2 : ρ]]f
def= eval[[e]]E(bs).If〈b, [[E` c1 :ρ]]f , [[E` c2 :ρ]]f 〉

[[E ` while e do c : ρ]]f
def= (νg :〈[[ρ]], [[ρ]]〉)(g | E〈fg~x〉) (E = {~x :~s}, αi = varsi)

where E def= µX(f, g :〈[[ρ]], [[ρ]]〉, ~x :~α). g.eval[[e]]E(bs).If〈b, ([[E`c :ρ]]g|X〈fg~x〉), f〉
(Expression)

eval[[x]]E(bs).P def= xinl(z : (bool?s′)↓s′).z(b :bool?s).P (s′ = E(x))

eval[[tt]]E(bs).P def= Link〈bs, [[b]]⊥, P 〉 ([[tt]] def= tt, [[ff]] def= ff)

eval[[e1 and e2]]E(bs).P def= eval[[e1]]E(bs1
1).eval[[e2]]E(bs2

2).

If〈bs1
1 ,Link〈bs, bs2

2 , P 〉,Link〈bs, bs1
1 , P 〉〉 (si = sec(ei)E , s ≥ s1 t s2)

Link〈bs, b′s′
, P 〉 def= (ν b :vars)(P | [b← b′]) (s′ ≤ s)

(Security of an expression)

sec(x)E
def= E(x) sec(b)E

def= ⊥ sec(e1 and e2)E
def= sec(e1)E t sec(e2)E

Fig. 3. Translation of the Smith-Volpano calculus

interest however lies in how typability is transformed via the embedding, and how
this transformation sheds light on safe information-flow in the original system.
The following theorem underpins this point. Below A dualises each mode in A
which is assigned to a name, taking ? as the dual of !.

Theorem 2 (Soundness). If E ` c : ρ, then [[E]] · f : [[ρ]] `s [[E ` c : ρ]]f .

〈〈E〉〉⊗〈〈ρ〉〉f with s = sec(ρ).

A significant consequence of Theorem 2 is that we obtain, via the non-interference
of typed processes mentioned in Section 4, the original non-interference result
by Volpano and Smith [33]. The result holds for all terms typable in rules with
Figure 2, including typed terms not coming from [33]. As another significant
point, the encoding illustrates the reason why the divergent command types
cannot be elevated as the convergent ones. Let E ` while e do c : s cmd⇑. In the

Secure Information Flow as Typed Process Behaviour 197

encoding, the body of the loop, which is at level s, depends on the branching
at level sec(e)E ≤ s: lowering s can make this dependency dangerous, hence we
cannot degrade s cmd⇑ as in the convergent types. Also note this argument does
not use the restriction s = ⊥ in the original type discipline.

5.3 Termination as Observable

After the preceding development, a natural question is whether we obtain any
new information by doing such an endeavour or not. In this section we outline
a technical development which may answer affirmatively to the question.

We first return to the restriction of the original system that allows only the
level ⊥ for divergent commands. This does seem a strong constraint, especially
with multiple security levels. How does this constraint appear in process repre-
sentation? It means we only assign sync⇑

⊥ to a channel for the termination, which
makes explicit the notion of termination as an observable, both as types and as
behaviours. Once we have this notion, we ask what is the real content of having
the observable only at ⊥. Clearly the answer is: “we allow everybody to observe
the termination.” We may then ask what would be the outcome of not allowing
everybody to observe the termination. Can this make sense? It seems it does:
since the time of Multics and as was recently introduced in a widely known
programming language [12], a mechanism by which we can prevent processes
from even realising the presence of other processes, depending on assigned secu-
rity levels, is a well-established idea in security, both from integrity and secrecy
concerns.

Further, there is a technically important observation that the encoding in
Figure 3 does not apparently impose restriction on levels of divergent types:
indeed the argument for Theorem 2 hardly depends on it. Thus we generalise
the while rule as follows.

(while)
E ` e : s E ` c : s cmd⇑
E ` while e do c : s cmd⇑

The new rule is significant in its loosened condition on the guard of the loop,
allowing us to type, say, (with M being a level between H and L), while eM do c :
H cmd⇑. With exactly the same encoding, we obtain the soundness result for the
extended system with a statement identical to Theorem 2.

Further, this new soundness result leads to a non-interference for the ex-
tended imperative calculus just as in the original calculus. The formulation is
however different since termination behaviours can change between two initial
configurations if we set different values at levels lower than the termination ob-
servable. Fixing a base E, let s′ be a stipulated level of observability of the
termination, and assume there are two environments (assignments of truth va-
lues to variables) which are equivalent with respect to s′, i.e. they only differ in
variables at levels higher than s′. Suppose also s is the level of the command
type of a well-typed c under E and s ≤ s′ (thus if c includes a while command,
its guard is not affected by the content of variables at levels above s′). Then
if c terminates under one of these environments, it will also terminate under

198 K. Honda, V. Vasconcelos, and N. Yoshida

the other environment, and the two resulting environments are equivalent with
respect to s′ (hence with respect to s). If we are without the condition s ≤ s′, we
cannot guarantee the same consequence, though observables except the termina-
tion at each state are equivalent with respect to s′, related in a coinductive way.
See [16] for details. Thus we are again guaranteed secure information flow with
added typability, by starting from a typed process representation of imperative
program behaviour.

References

1. Abadi, M., Secrecy by typing in security protocols. TACS’97, LNCS, 611-637,
Springer, 1997.

2. Abadi, M., Banerjee, A., Heintze, N. and Riecke, J., A core calculus of dependency,
POPL’99, ACM, 1999.

3. Abadi, M., Fournet, C. and Gonthier, G., Secure Communications Processing for
Distributed Languages. LICS’98, 868–883, IEEE, 1998.

4. Abramsky, S., Computational Interpretation of Linear Logic. TCS, vol 111, 1993.
5. Bodei, C, Degano, P., Nielson, F., and Nielson, H. Control Flow Analysis of π-

Calculus. CONCUR’98, LNCS 1466, 84–98, Springer, 1998.
6. Boudol, G., The pi-calculus in direct style, POPL’97, 228–241, ACM, 1997.
7. Denning, D. and Denning, P., Certification of programs for secure information flow.

Communication of ACM, ACM, 20:504–513, 1997.
8. Focardi, R. and Gorrieri, R., The compositional security checker: A tool for the

verification of information flow security properties. IEEE Transactions on Software
Engineering, 23(9), 1997.

9. Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions, ESOP’99,
LNCS 1576, 74–90, Springer, 1999.

10. Girard, J.-Y., Linear Logic, TCS, Vol. 50, 1–102, 1987.
11. Goguen, J. and Meseguer, J., Security policies and security models. IEEE Sympo-

sium on Security and Privacy, 11–20, IEEE, 1982.
12. Gong, L., Prafullchandra, H. and Shcemers, R., Going beyond sandbox: an over-

view of the new security architecture in the Java development kit 1.2. USENIX
Symposium on Internet Technologies and Systems, 1997.

13. Gray, J., Probabilistic interference. Symposium on Security and Privacy, 170–179,
IEEE, 1990.

14. Honda, K., Types for Dyadic Interaction. CONCUR’93, LNCS 715, 509-523, 1993.
15. Honda, K., Composing Processes, POPL’96, 344-357, ACM, 1996.
16. A full version of the present paper, QMW CS technical report 767, 1999. Available

at http://www.dcs.qmw.ac.uk/˜kohei.
17. Honda, K. and Yoshida, N. On Reduction-Based Process Semantics. TCS. 151,

437-486, 1995.
18. Honda, K. and Yoshida, N. Game-theoretic analysis of call-by-value computation.

TCS, 221 (1999), 393–456, 1999.
19. Hyland, M. and Ong, L., Pi-calculus, dialogue games and PCF, FPCA’93, ACM,

1995.
20. Kobayashi, N., Pierce, B., and Turner, D., Linear types and π-calculus, POPL’96,

358–371, 1996.
21. Lafont, Y., Interaction Nets, POPL’90, 95–108, ACM, 1990.

Secure Information Flow as Typed Process Behaviour 199

22. Larsen, K. and Skou, A. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

23. Lopes, L, Silva, F. and Vasconcelos, F. A Virtual Machine for the TyCO Process
Calculus. PPDP’99, 244–260, LNCS 1702, Springer, 1999.

24. Lowe, G. Defining Information Flow. MCS technical report, University of Leicester,
1999/3, 1999.

25. McLean, J. Security models and information flow. IEEE Symposium on Security
and Privacy, 1990.

26. Milner, R., Communication and Concurrency, Prentice-Hall, 1989.
27. Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes,

Info. & Comp. 100(1), pp.1–77, 1992.
28. Pierce, B and Sangiorgi.D, Typing and subtyping for mobile processes, MSCS

6(5):409–453, 1996.
29. Roscoe, A. W. Intensional Specifications of Security Protocols, CSFW’96, IEEE,

1996.
30. Sangiorgi, D. π-calculus, internal mobility, and agent-passing calculi. TCS,

167(2):235–271, 1996.
31. Schneider, S. Security properties and CSP. Symposium on Security and Privacy,

174–187, 1996.
32. Vasconcelos, V., Typed concurrent objects. ECOOP’94, LNCS 821, pp.100–117.

Springer, 1994.
33. Volpano, D. and Smith, G., Secure information flow in a multi-threaded imperative

language, pp.355–364, POPL’98, ACM, 1998.
34. Volpano, D. and Smith, G., Language Issues in Mobile Program Security. to appear

in LNCS, Springer, 1999.
35. Volpano, D., Smith, G. and Irvine, C., A Sound type system for secure flow analysis.

J. Computer Security, 4(2,3):167–187, 1996.
36. Yoshida, N. Graph Types for Mobile Processes. FST/TCS’16, LNCS 1180, pp.371–

386, Springer, 1996. The full version as LFCS Technical Report, ECS-LFCS-96-350,
1996.

	Introduction
	Basic Ideas
	A Simple Principle
	Syntax
	Imperative Information Flow in Process Representation

	A Typed $pi $-Calculus for Secure Information Flow
	Overview
	Types and Subtyping
	Action Types
	Typing System
	Examples of Typing

	Elementary Properties of Typed Processes
	Imperative Information Flow as Typed Process Behaviour
	A Multi-Threaded Imperative Calculus
	Embedding
	Termination as Observable

