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Abstract. A new data-structure called RED (Region-Encoding Dia-
gram) for the fully symbolic model-checking of real-time software sys-
tems is proposed. RED is a BDD-like data-structure for the encoding of
regions [2]. Unlike DBM which records differences between pairs of clock
readings, RED only uses one auxiliary binary variable for each clock.
Thus the number of variables used in RED is always linear to the num-
ber of clocks declared in the input system description. Experiment has
been carried out to compare RED with previous technologies.

1 Introduction

Fully symbolic verification of real-time systems is desirable with the promise of
space and time efficiency through intense data-sharing in the manipulation of
state space representations. We propose Region-Encoding Diagram (RED) as the
new data-structure for such a purpose. RED is a BDD-like data-structure [5,8] for
the encoding of regions [2]. The ordering among fractional parts of clock readings
is explicitly encoded in the variable ordering of RED. To record sets of clock
readings with the same fractional parts, we add one auxiliary binary variable
per clock. Thus in RED, the number of variables used is linear to the number
of clocks. Like BDD[8], RED is also a minimum canonical form with respect
to a given variable ordering. It is also efficient for representing unions of zones.
Experiments have shown better space efficiency against previous technologies
like DBM (Difference-Bounded Matrix)[10].

We assume that system behavior is described as a set of m symmetric pro-
cesses, identified with integers 1 to m, running different copies of the same pro-
gram. Each process can use global and local variables of type clock, discrete, and
pointer. Pointer variables either contain value NULL (0 in fact) or the identifiers
of processes. Thus in our representation, we allow complicate dynamic networks
to be constructed with pointers. We restrict that each process can declare at most
one local clock and there is no global clock. The ordering of fractional parts of
clock readings is encoded in RED with the following normality condition.
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“For any two local clocks x[i], x[j], with 1 ≤ i < j ≤ m, of processes i
and j respectively, either x[i] does not have a greater fractional part than
x[j] does or x[j] is greater than the biggest timing constant used in the
input system description and specification.”

A state satisfying the normality condition is called a normalized state. With RED
technology, we only work with the normalized images of states in runs. After a
clock reading advancement or a clock reset operation, we may have to permute
the process identifiers to maintain state normality. Thus our data-structure is
perfect for symmetric systems with symmetric specifications.

Our innovation is that we use one bit for each clock to encode the order-
ing among the fractional parts of clock readings in the region construction [2].
Compared to the classic DBM [10], RED provides data-sharing capability of fully
symbolic manipulation. In a DBM-based model-checker, since matrices and BDD
are two different types of data-structure, we are forced to use a pair of BDD and
matrix to represent a region. As a result, the set of regions are forced to be
represented as an explicit directed graph which does not succinctly abstract out
the interaction pattern in the pairs and whose size inevitably grows exponen-
tially with timing constant magnitude and concurrency size. Moreover, to get
region canonical representations, DBM-technology usually resorts to the pro-
cessing of convex hulls which are equivalent to conjunctions of clock inequalities.
Thus it may be necessary to break a big disjunction down to exponentially many
conjunctions. Such breaking-down can be a source of inefficiency. But since the
present RED algorithms derive time step next-state RED’s at very tiny steps,
DBM may have better verification performance with systems with big timing
constants.

Newer technology of NDD[1] and CDD[7] use binary inequalities of the form
x[i]−x[j] ≤ c. NDD uses binary encoding for the possible values of c while CDD
uses multiple value-ranges to record them. However, the number of variables in
their data-structure is likely to be quadratic to the number of clocks used in
the systems. The number of variables used in our RED technology, on the other
hand, is always linear to the number of local clocks.

Here is our presentation plan. Section 2 defines the language for system be-
havior description. Section 3 formally presents our data-structure scheme. Sec-
tion 4 shows how to maintain RED’s after clock reading advancements and clock
reset operations. Section 5 compares RED technology with previous ones by per-
forming experiments on several benchmarks.

2 Real-Time Software Systems

We assume a real-time software system to be composed of a set of concurrent
processes running different copies of the same program. Given a system of m
processes, the processes are indexed with integers 1 through m which are called
process identifiers. NULL is actually integer 0 and is used as the special null
process identifier in data-structure construction. The program is presented as a
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Fig. 1. Fischer’s timed mutual exclusion algorithm

timed automaton[2] equiped with global and local variables of type clock, dis-
crete variable, and pointer. A global variable can be accessed by all processes
while a local variable can only be accessed by its declaring process. Clocks can
hold reals, can be tested against integers, and can be reset to zero during transi-
tions. Only one local clock per process is allowed and no global clock is allowed.
Discrete variables can hold integer constants. Operations on discrete variables
are comparisons and assignments with integer constants. A special local discrete
variable mode is used to record the operation mode of the executing process.
Pointer variables can hold NULL or process identifiers. Operations on pointers
are comparisons and assignments with NULL or local process identifiers (the one
of the executing process).

2.1 Syntax

Given a system of m processes with variable set X , we can define global state
predicates and local state predicates. Global state predicates are used to specify
initial conditions and safety properties and are presented with a process identifier
attached to each local variable to distinguish which local references are for which
processes. The syntax of a global state-predicate η is:

η ::= false | x ∼ c | y = NULL | y = c
| x[i] ∼ c | y[i] = NULL | y[i] = c | ¬η1 | η1 ∨ η2

Variables appended with square brackets are local variables while those not are
global variables. x is either a clock variable or a discrete variable. y is a pointer
variable. c is a natural constant. ∼ is an inequality operator in {≤, <,=, >,≥}.
i is a process identifier constant in [1,m]. ¬ and ∨ are Boolean negation and
disjunction respectively. Parentheses can be used to disambiguate the syntax.
Standard shorthands are true ≡ ¬false, η1 ∧ η2 ≡ ¬((¬η1) ∨ (¬η2)), and η1 →
η2 ≡ (¬η1) ∨ η2.

Local state-predicates are used to describe invariance and triggering con-
ditions in the automata. Their syntax is very much like that of global state-
predicates except that all occurrences of process identifier constants are replaced
by the symbolic process identifier p which is to be interpreted as the process
identifier of the executing process.

In figure 1, we have an example automaton for Fischer’s timed mutual ex-
clusion algorithm.
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Here, we have a global pointer lock and a local clock x[p] for process p with p
as the symbol for the identifier of the executing process. On each transition
(arc), we label the triggering condition and assignment sequence. Testing on and
assignments to local discrete mode are omitted from the transitions for simplicity.
σ and δ are two integer parameters to be substituted in implementation. Mutual
exclusion to mode 3 is maintained when σ < δ.

The formal syntax of a real-time software system S is given as a triple
〈A,m, I〉 where A is a timed automaton equiped with various variables as men-
tioned in the above, m is the number of processes in the system, and I is a
global state-prediate for the initial condition. A is formally presented as a timed
automaton A = 〈X,λ,Q, µ,E, τ, π〉 with the following restrictions. X is the set
of variables. λ maps each variable in X into one of the following five types: local
clock, global discrete, local discrete, global pointer, and local pointer. Q is the
set of operation modes (or control locations). We assume that the elements in Q
are indexed from 0 to |Q| − 1. µ is a function from [0, |Q| − 1] such that for all
q ∈ [0, |Q| − 1], µ(q) is a local state-predicate describing the invariance condi-
tion at the q’th operation mode. Also we require that there is a special local
discrete variable mode which always record the current operation mode index of
a process.

E ⊆ Q×Q is the set of transitions. τ is a function from E such that for all
e ∈ E, τ(e) is a local state-predicate describing the triggering condition of e. π
is a function from E such that for all e ∈ E, π(e) is a sequence of assignments
α of the syntax form:

α ::= L := R;
L ::= x | x[p] | y | y[p]
R ::= c | NULL | p | x | x[p] | y | y[p]

Such an assignment means that the value of R is assigned to variable L. The
restriction is that constants or variables cannot be assigned to variables of dif-
ferent types. For example, if L is not of type pointer, then R cannot be NULL,
p, or any pointer variables.

2.2 Semantics

Definition 1. states Suppose we are given a real-time software system S =
〈A,m, I〉 with A = 〈X,λ,Q, µ,E, τ, π〉. A state ν is a mapping from X ×
{0, . . . ,m} such that
• for every global pointer x ∈ X , ν(x, 0) ∈ {NULL} ∪ {1, . . . ,m};
• for every global discrete x ∈ X , ν(x, 0) ∈ N ;
• for every local clock x ∈ X and i ∈ {1, . . . ,m}, ν(x, i) ∈ R;
• for every local pointer x ∈ X and i ∈ {1, . . . ,m}, ν(x, i) ∈ {NULL} ∪
{1, . . . ,m};

• for every local discrete x ∈ X and i ∈ {1, . . . ,m}, ν(x, i) ∈ N . ‖

For any t ∈ R, ν+t is the state identical to ν except that for every local clock
x[i], ν(x, i) + t = (ν + t)(x, i). For an atomic assignment L := R; and a process
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identifier i, ν[L := R; , i] is the new state obtained by letting process i executing
L := R; in ν. It is identical to ν except that (ν[L := R; , i])(L, i) = ν(R, i). Given
a sequence β of assignments and a process identifier i, ν[β, i] is defined in the
following inductive way.

• If β is empty, then ν[β, i] = ν.
• If β = αβ′, then ν[β, i] = (ν[α, i])[β′, i].

Given a global state predicate η and a state ν, we say that ν satisfies η, in
symbols ν |= η, if and only if the following inductive restrictions hold.

• ν �|= false.
• ν |= x ∼ c iff ν(x, 0) ∼ c.
• ν |= y = NULL iff ν(y, 0) = NULL.
• ν |= y = c iff ν(y, 0) = c.
• ν |= x[i] ∼ c iff ν(x, i) ∼ c.
• ν |= y[i] = NULL iff ν(y, i) = NULL.
• ν |= y[i] = c iff ν(y, i) = c.
• ν |= ¬η1 iff it is not the case that ν |= η1.
• ν |= η1 ∨ η2 iff either ν |= η1 or ν |= η2.

The satisfaction relation between a local state predicate η and a state ν by
process i, in symbols ν, i |= η, can be similarly defined.

• ν, i �|= false.
• ν, i |= x ∼ c iff ν(x, 0) ∼ c.
• ν, i |= y = NULL iff ν(y, 0) = NULL.
• ν, i |= y = c iff ν(y, 0) = c.
• ν, i |= x[p] ∼ c iff ν(x, i) ∼ c.
• ν, i |= y[p] = NULL iff ν(y, i) = NULL.
• ν, i |= y[p] = c iff ν(y, i) = c.
• ν, i |= ¬η1 iff it is not the case that ν, i |= η1.
• ν, i |= η1 ∨ η2 iff either ν, i |= η1 or ν, i |= η2.

Definition 2. runs Given a real-time software system S = 〈A,m, I〉 with A =
〈X,λ,Q, µ,E, τ, π〉, a ν-run is an infinite sequence of state-time pair
(ν0, t0)(ν1, t1) . . . (νk, tk) . . . . . . such that ν = ν0, t0t1 . . . tk . . . . . . is a monotoni-
cally increasing real-number (time) divergent sequence, and for all k ≥ 0,

• for all t ∈ [0, tk+1 − tk] and 1 ≤ i ≤ m, νk + t, i |= ∨
0≤q<|Q|(mode[p] =

q ∧ µ(q)); and
• either νk + (tk+1 − tk) = νk+1; or there are i ∈ {1, . . . ,m} and e ∈ E such
that νk + (tk+1 − tk), i |= τ(e) and (νk + (tk+1 − tk))[π(e), i] = νk+1. ‖

A run ρ = (ν0, t0)(ν1, t1) . . . (νk, tk) . . . . . . of S satisfies safety global state
predicate η, in symbols ρ |= η, iff for all k ≥ 0 and tk ≤ t ≤ tk+1, νk + t |= η. We
say S satisfies η, in symbols S |= η, iff for all ν-runs ρ such that ν |= I, ρ |= η.
In case that S �|= η, we say S violates η.
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2.3 Normalized Runs and a Permutation Scheme

Given a constant r ∈ R, int(r) is the integer part of r while frac(r) is the
fractional part of r. Let CS be the biggest integer constant used to compare with
a local clock in the system description S. The normality condition is restated
here:

“Suppose the local clock is x in a system S = 〈A,m, I〉. A state ν
of S is normalized iff for any 1 ≤ i < j ≤ m, either ν(x, j) > CS

or frac(ν(x, i)) ≤ frac(ν(x, j)).”

Thus, in a normalized state, we can conceptually divide the process identifiers
into several segments in the following pattern.

1,
...
i1,




ν(x, 1) ≤ CS ∧ . . . ∧ ν(x, i1) ≤ CS

∧ frac(ν(x, 1)) = . . . = frac(ν(x, i1)) �= frac(ν(x, i1 + 1))

i1 + 1,
...
i2,




ν(x, i1 + 1) ≤ CS ∧ . . . ∧ ν(x, i2) ≤ CS

∧ frac(ν(x, i1 + 1)) = . . . = frac(ν(x, i2)) �= frac(ν(x, i2 + 1))

...
...

ik + 1,
...
ik+1,




ν(x, ik + 1) ≤ CS ∧ . . . ∧ ν(x, ik+1) ≤ CS

∧ frac(ν(x, ik + 1)) = . . . = frac(ν(x, ik+1))

ik+1 + 1,
...
m




ν(x, ik+1 + 1) > CS ∧ . . . ∧ ν(x,m) > CS

The last segment contains identifiers of those processes whose local clock readings
are greater than CS . The processes with identifiers in a segment other than the
last one all have the same fractional part in their clock readings which are no
greater than CS .

Definition 3. normalized runs Given a run ρ = (ν0, t0)(ν1, t1) . . . (νk, tk) . . .
of a real-time software system S = 〈A,m, I〉, a normalized run ρ̄ of ρ is a mapping
from N ×R such that for every k ∈ N and 0 ≤ t ≤ tk, ρ̄(k, t) is a normalized
state of νk + t. ‖

After each transition or clock readings advancement, a normalized state can
be changed to an unnormalized one and there can be more than one identifier
permutation whose application can maintain the normality of states. We propose
the following permutation rules which can simplify our tool implementation.
1. When process i resets its local clock with a transition, we have to

− change the identifier of process i to 1 (with global and local variables
updated according to the transitions.); and
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− for every 1 ≤ j < i, change the identifier of process j to j + 1; and
− for every i < k ≤ m, keep the identifier of process k unchanged
in the destination state to make it normalized. The permutation can be
viewed as an identifier movement from i to 1 with displacement 1− i.

2. When there is no integer clock readings ≤ CS in the source state and some
clocks will advance from noninteger readings < CS to integer readings, we
first have to identify the segment of identifiers of those processes with such
clocks. This is the segment right preceding the last segment which contains
identifiers of processes with local clock readings > CS . Suppose, we find out
x[j], . . . , x[k] are such clocks. Then in the destination state,
− for all j ≤ i ≤ k, the identifier of process i is changed to i− j + 1; and
− for all 1 ≤ i < j, the identifier of process i is changed to i + k − j + 1;

and
− for all k < i ≤ m, the identifier of process i is unchanged
to make it normalized. The permutation can be viewed as an identifier seg-
ment movement from [j, k] to [1, k − j + 1] with displacement 1− j.

3. When some clocks advance from integer to noninteger readings. we first
have to detect if some of those clocks advance their readings from CS to
beyond CS . Suppose, we find out that x[j], . . . , x[k] are such clocks. Then in
the destination state,
− for all j ≤ i ≤ k, the identifier of process i is changed to i+m− k; and
− for all 1 ≤ i < j, the identifier of process i is unchanged; and
− for all k < i ≤ m, the identifier of process i is changed to i+ j − k − 1
to make it normalized. The permutation can be viewed as an identifier seg-
ment movement from [j, k] to [j +m− k,m] with displacement m− k.

4. In all other cases, the identifiers of all processes stay unchanged to satisfy
normality.

However, there is one thing unclear in the above-mention permutation scheme.
That is, in the third item, how do we know that those processes with clock
readings = CS will appear with consecutive process identifiers ? That is the good
thing about this permutation scheme and can be established by the following
lemma.

Lemma 1. In the permutation scheme presented in the above, inside all seg-
ments of identifiers of processes whose clock readings are ≤ CS and share the
same fractional parts, the process identifiers are arranged according to monoton-
ically increasing order of the local clock readings.
Proof : True because every time when we reset a local clock, we change the
identifier of the transiting process to 1. Thus the later a process resets its clock,
the earlier its identifier appears in a segment. ‖

Definition 4. Symmetric global state predicate Given a global state pred-
icate η and a permutation θ of process identifier 1 through m, ηθ is a new global
state predicate obtained from η by renaming process identifiers according to θ.
A global state predicate η for m processes is symmetric iff for any permutation
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Fig. 2. Data structure implementation of a node in RED

θ of 1 through m, η equals to ηθ according to commutation laws of Boolean
algebra. ‖

We want to establish the soundness of our RED technology with the following
lemma.

Lemma 2. : Given a state ν of a real-time software system S = 〈A,m, I〉 and
a symmetric global state predicate η, for any normalized image ν′ of ν, ν |= η iff
ν′ |= η.
Proof : Suppose the process identifier permutation that changes ν to ν′ is θ.
Then ν |= η has the same truth value as ν′ |= (ηθ). But ηθ is equal to η according
to commutation laws of Boolean algebra. Thus the lemma is proven. ‖

3 Region-Encoding Diagram

RED is a data-structure for representing set of normalized states. In the imple-
mentation aspect, it resembles CDD[7] and each node in RED has the structure
shown in figure 2. Such a node is used to evaluate the truth value of a formulus
from variable v. The outgoing arcs are labeled with lower and upper bounds of
integer parts (note, only integer parts) of values of variable v and direct to
the RED’s for the subformulae true in the corresponding ranges of v’s values.
For example, if the second arc from left in figure 2, is labeled with [7, 9], then
subformulus represented by the RED rooted at v1 must be true when the integer
part of v’s value is in [7, 9]. The ranges labeled on arcs from a RED node are
required to be disjoint.

The lower and upper bounds of outgoing arcs are chosen according to the
following rules. For clock variables, we define constant OS = CS + 1 which
symbolically denotes a clock reading greater than CS . Thus the lower and upper
bounds of outgoing arcs from RED nodes of clock variables are chosen from
elements in {0, . . . , CS}∪{OS,∞} which is sufficient for the regions construction
in [2]. For discrete variables, the lower and upper bounds of outgoing arcs are
chosen from those constants assigned to and compared with the variable in both
the automaton and the specification. For pointer variables, the lower and upper
bounds of outgoing arcs are chosen from NULL and integers 1 through m.
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Given an automaton A with variable name set X , the variable set in the
RED for an m process system is

{x | x ∈ X ;x is global}∪{x[i] | x ∈ X ;x is local; 1 ≤ i ≤ m}∪{κ[i] | 1 ≤ i ≤ m}
Here κ is the name for an auxiliary local binary discrete variable name used to
encode the fractional part orderings among clock readings. According to Alur
et al’s region graph construction [2], the state-equivalence relation for model-
checking is determined by the following three factors:
• the discrete information of each state,
• the integer parts of clock readings ≤ CS .
• the ordering among the fractional parts of clock readings ≤ CS .

Our innovation is that we use one bit (κ) for each clock to encode the ordering
among the fractional parts of clock readings in normalized states. For each clock,
say x[i] of process i, κ[i] is true in a normalized state s if and only if s(x[i]) ≤ CS

and either
• i = 1 and frac(s(x[i])) = 0, i.e., s(x[i]) is an integer; or
• i > 1 and frac(s(x[i−1])) = frac(s(x[i])), i.e., the fractional parts of s(x[i−1])
and s(x[i]) are the same.

With such definition of data-structure and appropriate permutations of process
identifiers after clock reading advancements and clock reset operations, we are
able to represent the regions of timed automata [2]. As for the other input
variables, local or global, we simply copy them as the variables in our RED. Thus
given a real-time software system S = 〈A,m, I〉 with A = 〈X,λ,Q, µ,E, τ, π〉,
the number of variables used in our RED is O(m|X |+m).

For example, we may have 8 processes in a normalized state with x[1] =
0, x[2] = 3, x[3] = 1.3, x[4] = 1.456, x[5] = 9.456, x[6] = 20.7, x[7] = 38, x[8] =
10π while CS = 13. The readings of clocks and values of κ[i]’s are shown in the
following.

i 1 2 3 4 5 6 7 8
x[i] 0 3 1.3 1.456 9.456 20.7 38 10π
κ[i] true true false false true false false false

4 Manipulations on RED

4.1 Boolean Operations

The Boolean operations on RED’s follow the same style in Bryant’s BDD ma-
nipulations [5,7,8]. We present procedure REDop(op, Dx, Dy) in table 4.1 to
illustrate the idea in the implementation of such an operation. For convenience,
we use [l, u]D to denote an outgoing arc whose lower bound is l, upper bound
is u, and the subformulus RED is D. Also, D.v denotes the index, ofD’s variable,
used in the variable-ordering of the RED.

We should point out that the algorithm shown in table 4.1 is for simplicity
and clarity of algorithm presentation and is not for efficiency. Our implemen-
tation is more efficient in that it records which pairs of Dx, Dy have already
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Table 1. Algorithm for computing Dxop Dy

REDop(op, Dx, Dy){
(1) if op= AND,
(1) if Dx is true, return Dy ;
(2) else if Dy is true, return Dx;
(3) else if either Dx or Dy is false, return false;

(2) else if op= OR,
(1) if either Dx or Dy is true, return true;
(2) else if Dx is false, return Dy ;
(3) else if Dy is false, return Dx;

(3) else {
(1) Construct a new RED node D with D.v = min(Dx.v, Dy.v);
(2) if Dx.v < Dy .v, then for each outgoing arc [l, u]Dc of Dx,
add an outgoing arc [l, u]REDop(op, Dc, Dy) to D.

(3) else if Dx.v > Dy .v, then for each outgoing arc [l, u]Dc of Dy ,
add an outgoing arc [l, u]REDop(op, Dx, Dc) to D.

(4) else for each outgoing arc [lx, ux]D
′
x of Dx and outgoing arc [ly, uy ]D

′
y of Dy ,

if [max(lx, ly),min(ux, uy)] is nonempty,
add an outgoing arc [max(lx, ly),min(ux, uy)]REDop(op, D′

x, D′
y) to D.

(5) Merge any two outgoing arcs [l, u]Dc, [u+ 1, u
′]Dc of D into one [l, u′]Dc

until no more merge can be done.
(6) if D has more than one outgoing arcs, return D,
else return the sole subformulus of D;

}
}

been processed. If a pair of Dx, Dy has already been processed with procedure
REDop() before, then we simply return the result recorded in the first time when
such a pair was processed.

4.2 Preserving Normality after Transitions and Clock Reading
Advancement

RED is a data-structure for normalized states of real-time software systems.
Transitions and clock reading advancements may change normalized states into
unnormalized states. This section tells us how to symbolically do necessary pro-
cess identifier permutation to preserve the normality of states.

Given a local variable v[i] of process i, we assume that VarIndex(i, v) is the
variable index of v[i] in RED. For convenience, we use process identifier 0 (NULL)
for those global variables. That is VarIndex(0, v) returns a valid variable index in
RED only when v is a global variable. As can be seen from the process identifier
permutation scheme in subsection 2.3, segment movements are performed. We
can thus define the following function which computes the new identifier of
process i after such a segment movement.
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NewProcId(i, j, k, disp) /* process identifiers j through k are to be
moved with displacement disp. */ {

(1) if i = 0, return 0; /* Global is always global. */
(2) else if j ≤ i ≤ k, return(i+ disp);
(3) else if i < j + disp, return(i);
(4) else if j + disp ≤ i < j, return(i+ k − j + 1);
(5) else if k < i ≤ k + disp, return(i− (k − j + 1));
(6) else /* k + disp < i */ return(i);

}
Due to page-limit, we shall only describe the algorithm for symbolic manipulation
of a procedure ToInt(R), in table 2 in page 168, which generates a new RED
describing the set of states obtained from those in R by advancing those clocks
with biggest fractional parts to integers. In the algorithm presentation, for simple
clarity, we use Boolean operation symbols like ∨,∧ to represent our procedure
REDop(). Also for an atom like l ≤ χ ≤ u, it is implemented by constructing
the following RED.

Of course, when [0, l − 1] (or [u + 1,∞]) is empty, the corresponding arc
disappears. Symbolic manipulation procedures for next state set after transitions
and clock reading advancement from integers to fractionals can all be defined
similarly.

5 Experiments

We have experimented to compare RED technology with previously published
performance data in two reports[4,6] that compared performances of various
model-checkers respectively on two versions of Fischer’s timed mutual exclusion
algorithm as shown in Figure 3. The property to be verified is the safe property:
at any moment, no more than one process are allowed in mode 3.

UPPAAL’s version has bigger timing constants while Balarin’s version allows
repetitions.

UPPAAL is based on DBM technology and has been well accepted as one
of the most efficient model-checkers for real-time systems. It has been used to
successfully verify many communication protocols. Recently, CDD technology
was proposed to enhance the performance of UPPAAL[7]. However, further
reports are yet to be seen. In [6], UPPAAL was compared with many other
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ToInt(R) /* R describes the state set before advancing those clock readings with
biggest fractional parts to integers. */ {
(1) D := false;
(2) For 1 ≤ i ≤ m and i ≤ j ≤ m, do {
(1) Construct the condition K that

• there is no clock whose reading is an integer ≤ CS ; and
• processes i to j are those with biggest fractional parts
in their clock readings.

(2) D := D ∨ RecToInt(K ∧ R, i, j);
}
(3) Return(D);

}
RecToInt(K, i, j) {
(1) If K is either true or false, return K;
(2) Get the process identifier k of K.v; /* k = 0 when v is global. */
(3) Generate the name χ of variable K.v of process NewProcId(k, i, j, 1− i));
(4) K′ := false;
(5) switch on type of K.v {
(6) case LOCAL CLOCK:
(1) if i ≤ k ≤ j, then for each outgoing arc [l, u]D′ of K,

K′ := K′ ∨ (l + 1 ≤ χ ≤ u+ 1 ∧ RecToInt(D′, i, j));
else for each outgoing arc [l, u]D′ of K,

K′ := K′ ∨ (l ≤ χ ≤ u ∧ RecToInt(D′, i, j));
(2) return(K′);

(7) case κ[k]:
(1) if NewProcId(k, i, j, 1− i) = 1,
(1) then with outgoing arcs [l1, u1]D1, . . . , [ln, un]Dn of K,
return(κ[1] = true ∧ ∨

1≤h≤n
RecToInt(Dh, i, j));

(2) else for each outgoing arc [l, u]D′ of K,
K′ := K′ ∨ (l ≤ κ[NewProcId(k, i, j, 1− i)] ≤ u ∧ RecToInt(D′, i, j));

(2) return(K′);
(8) case LOCAL Discrete:
(9) case GLOBAL Discrete:
(1) for each outgoing arc [l, u]D′ of K,

K′ := K′ ∨ (l ≤ χ ≤ u ∧ RecToInt(D′, i, j));
(2) return(K′);

(10) case LOCAL POINTER:
(11) case GLOBAL POINTER:
(1) for each outgoing arc [l, u]D′ of K and each l ≤ h ≤ u, {
(1) g := NewProcId(h, i, j, 1− i);
(2) K′ := K′ ∨ (χ = g ∧ RecToInt(D′, i, j));

}
(2) return(K′);

}
}

Table 2. Symbolic manipulation procedure for time-steps from regions with no
integer clock readings ≤ CS to those with ones
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Fig. 3. Two versions of Fischer’s algorithm for experiments

model-checkers like HyTech’s[3], Epsilon, and Kronos[13] on the automaton in
figure 3(a). The experiments was reported to be performed on a Sparc-10 with
128 MB memory (real plus swap). All other tools fail when the number of pro-
cesses reaches beyond 5 while UPPAAL can verify the algorithm on 8 processes.

We have implemented two version of RED on an Pentium II 366 MHz IBM
notebook with 256 MB memory (real plus swap) running Linux. The tools are
avaiable at:

http://www.iis.sinica.edu.tw/̃ farn/red

The first version is plain while the second version employs the clock-shielding
reduction technique reported in [12,14]. Reduction clock-shielding replaces clock
readings with ∞ in a state when along any runs from the state, it is deter-
mined that such a reading will no longer be read unless the clock is reset. The
performance is listed in the following table.

version resources 2 3 4 5 6 7 8 9 10 11 12 13
no CS time 0.19 1.22 6.5 27 105 320 888 2323 5556 N/A N/A N/A

space 50 212 697 1959 4885 10966 22444 42858 77503 N/A N/A N/A
CS time 0.17 0.98 4.4 16.5 50.3 134 325 724 1493 3002 5743 10152

space 47 161 463 1134 2456 4810 8871 15726 26194 41930 64323 95389

“CS” means the version with clock-shielding reduction while “no CS” means the
one without. The CPU time is measured in seconds. The space is measured in
kilobytes and only includes those for the management of RED’s and 2-3 trees.
“N/A” means “not available” which indicates that the corresponding experiment
has not been performed.

The time consumption is considerable bigger than that of UPPAAL[6] con-
sidering the CPU clock rate difference. This is due to our implementation phi-
losophy. We believe time is an unbounded resource while space is not. As can
be seen from procedure ToInt(), no RED for the relation between current state
and next state is computed. In practice, such a relation in RED can occupy a
great many bytes. The next-state set RED is computed by analysis on different
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situations of i and j. The sacrifice in CPU time pays off in the memory space
efficiency. With twice the memory size used in [6], we are now able to verify the
simplified Fischer’s algorithm with 13 processes.

UPPAAL is a mature tool with a great arsenal of reduction technologies
implemented. Our software at this moment only relies on minimal canonicality
of RED to gain performance. Please note that the exponent base in our data
seems to decrease with respect to concurrency size. This may imply that fully
symbolic manipulation is more suitable for large system verification. In the fu-
ture, with more reduction technique implemented for RED, we hope even more
performance improvements will be observed. For example, the clock-shielding
reduction indeed slowers down the state-space explosion problem exponentially.
Still several simple reduction, like getting rid of FALSE terminal nodes in RED,
can be implemented in the future version of RED to get constant factor of im-
provement.

In [4,15], weak and strong approximation technologies of symbolic verification
are proposed and experiments are performed on algorithm in figure (b). We
extend the performance data table in [4] to compare our tool with previous
technologies.

#proc strong weak KRONOS Wong-Toi RED(no CS)
6 155sec 18sec 1174sec 74sec 26sec/1374k
7 398sec 48sec M/O 164sec 67sec/2488k
8 986sec 116sec M/O 375sec 142sec/4242k
9 2220sec 247sec M/O 891sec 303sec/6858k
10 M/O 576sec N/A N/A 558sec/10659k
11 N/A N/A N/A N/A 1034sec/15673k
12 N/A N/A N/A N/A 1724sec/22251k
13 N/A N/A N/A N/A 2889sec/30593k
14 N/A N/A N/A N/A 4492sec/41019k
15 N/A N/A N/A N/A 7047sec/53737k
16 N/A N/A N/A N/A 10782sec/69126k
17 N/A N/A N/A N/A 15330sec/87431k

The original table consists of the firt five columns and only reports the CPU time
in seconds used by various tools. “M/O” means “out of memory.” KRONOS is
also based on DBM technology while Wong-Toi’s tool is based on approximation.
In our extension, each entry is composed of both CPU time (in seconds) and
space (in kilobytes) used. The column extension is for time/space consumed
without clock-shielding reduction. Balarin’s experiment is performed on Sparc 2
with 128 MB memory while ours is performed on IBM Thinkpads with PII 366
MHz and 256 MB memory. Be reminded that verification problems are of high
space complexities in nature. The fact that RED-technology can handle much
higher concurrency implies that it indeed control state-space explosion better.
We believe that such performance is gained not only from utilization of system
symmetry, but more importantly, from the data-sharing capability of RED.
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6 Conclusion

We propose to use one auxiliary binary variable for each clock in our new data-
structure for fully symbolic model-checking of real-time software systems. Since
we now have fewer variables in the fully symbolic manipulation, theoretically
we can expect better verification performance. With better implementation of
reduction techniques borrowed from BDD technology, we are hoping for further
performance improvement.
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