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Abstract 
This paper proposes a new construction of the minimum knowledge un- 

deniable signature scheme which solves a problem inherent in Chaum’s 
scheme. We formulate a new proof system, the minimum knowledge in- 
teractive bi-proof system, and a pair of languages, the common witness 
problem, based on the random self-reducible problem. And we show that 
any common witness problem has the minimum knowledge interactive bi- 
proof system. A practical construction for undeniable signature schemes is 
proposed based on such a proof system. These schemes assure signature 
confirmation and disavowal with the same protocol (or at the same time). 

1 Introduction 

Digital signatures [DH] are one of the most important concepts of modern cryptography, 
and have many applications in information security systems. 

A new paradigm of signature schemes, undeniable signatures, was recently proposed 
by Chaum et al. [CA, Ch], and its properties are different from those of digikal signa- 
tures. Although an undeniable signature is similar to a digital signature in that it is a 
number issued by a signer that is related to the signer’s public-key and his message, the 
difference is that an undeniable signature cannot be verified without tl-9 cooperation 
of the signer. 

Undeniable signature schemes [CA, Ch] consist of two parts, a confirmation protocol 
and a disavowal protocol. In the confirmation protocol, a verifier can verify the validity 
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of a signature by interacting with the signer, and there is no chance that the signer 
can falsely represent the validity of an invalid signature. If the validity test fails, the 
verifier can determine if the signature is invalid or the signer is false by the disavowal 
protocol. 

Chaum’s scheme [Ch] has a problem, in which two different protocols are necessary 
for the confirmation and disavowal of the signature. If a dishonest prover, say, Alice 
claims that her valid signature is not valid, then first the verifier, say, Bob must execute 
the disavowal protocol to check her claim, then knows that her claim is not true. 
However, Bob cannot believe that her signature is valid just from this negative result 
of the disavowal protocol, because Alice may not follow the valid disavowal protocol. 
So, Bob must execute the confirmation protocol to determine that her signature is 
valid. Therefore, in the above case, Bob must execute the both protocols to confirm 
the validity of her signature. 

This paper proposes a new undeniable signature scheme which solves the above 
problem of Chaum’s scheme. That is, our scheme aSSures signature confirmation and 
disavowal with the same protocol. In other words, executing our scheme once is equiv- 
alent to executing both confirmation and disavowal protocols at the same time. Hence, 
without regard to signer’s claim, the verifier can always determine whether a signature 
is valid or invalid, through executing our scheme only once. 

First, in order to  construct our undeniable signature scheme, we formulate a class 
of new proof systems, the interactive bi-proof systems, which can exactly determine 
which of z E L1 or z E Lz is a true theorem where L1 and L2 are disjoint languages. 
Roughly speaking, when z E L1, a prover can prove “x is in LI”, however no prover 
can prove “z is in L1” when z 4 L1. On the other hand, when z E L2, the prover can 
prove ‘‘z is in L2” with the same protocol, however no prover can prove ‘‘2 is in L2” 
when x 4 L2. 

Next, based on the random self-reducible problem [TW], we introduce a pair of 
languages, the common witness problem, and show that any common witness problem 
has the minimum knowledge interactive bi-proof system. Here, the minimum knowledge 
[GHY] is a variant of zero-knowledge. For example, in a zero-knowledge proof, the 
prover releases the knowledge such as ‘‘5 E L”,  while in a minimum knowledge proof, 
the prover releases the knowledge such as which one is correct, ‘‘z E L1” or “z E Lz”. 

Finally, we propose new undeniable signature schemes, which solve the above- 

mentioned problem of Chaum’s scheme, by using these minimum knowledge interactive 
bi-proof systems for a common witness problem. In addition, several variations of our 
scheme are discussed in terms of increasing efficiency and useful applications. 
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2 Interactive Bi-Proof System 

First we formulate a new proof system for our undeniable signature scheme. 
In interactive proof systems [GMR], a prover has infinite power while the verifier is 

restricted to probabilistic polynomial time bounded. They interact to  perform a proof 
‘x E L’ for a language L. When x E L, the proof is accomplished; however, when 
z 4 L, no prover can claim that “I is in L” and such proof is rejected. 

This property approximates that of signature schemes. That is, when a signature 
is valid, the signer can prove it. When, however, the signature is not valid, no signer 
can prove its validity. 

To construct an undeniable signature scheme, we must add a new requirement to the 
interactive proof system: the verifier can distinguish between x $ L and the falseness 
of the signer. The existing interactive proof system does not ensure that the verifier 
can distinguish between them when proof is rejected. We have, therefore, defined a 
new proof system, the interactive bi-proof system, for a pair of disjoint languages, L1 
and L2. When z E L 1 ,  a prover can show that “I is in LI”,  and when x E L2, then ((x 
is in L2”. However, no prover can prove that ‘‘z is in L1” when I 4 L1 or “z is in Lz” 
when z 4 Lz. 

Definition 2.1 Let L1 and L2 be disjoint languages over { O , l ) * .  Let (P, V) be an 
interactive protocol. We say that (P, V) is an interactive bi-proof system for ( L l ,  L , )  
if we have the following: 

Completeness 

o For each k, for su6ciently large x E L1 given as input to (P, V), V halts 
and accepts x as ‘‘z is in L1” with a probability of at least 1 - )z/-~. 

o For each k, for sufficiently large z E L2 given as input to ( P , V ) ,  V halts 
and accepts z as “a: is in L2” with a probabil’ty of at least 1 - IxI-’. 
(The probabilities here are taJien over the coin tosses of P and V.) 

Soundness 

o For each I c ,  for sufficiently large z # L I ,  for any ITM P’, on input z to 
(P’, V), V halts and accepts x its “x is in LI” with a probability of at most 
1zI-t 

o For each, k, for sufficiently large z $! La, for any ITM P’, on input z to 
(P‘, V), V halts and accepts z as ‘‘z is in Lz” with a probability of at most 
1xI-k. 
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(The probabilities here are taken over the coin tosses of P' and V . )  

Next we define the minimum knowledgeness of this proof system. 

Definition 2.2 Let ( P , V )  be an interactive bi-proof system for (L l lL2) .  We say 
that (P,  V )  is minimum knowledge if ,  given any expected polynomial time probabilistic 
Turing machine V ' ,  there exists another probabilistic Turing machine Mv,,  running in 
expected polynomial time, such that for all I E L1 U Lz: 

0 B ( z )  is aprobability distribution where B ( s )  is the output ofinteractive protocol 
(PI V )  and the distribution probability are taken over the coin tosses of P and 
V. 

M ~ I  has  onetime access to an oracle, as follows. Given any input x and auxiliary 
i n p u t  h,  Mv,  queries the oracle with input x; the oracle returns a value dstributed 
according B( z)  . 

0 The ensembles 

{ M V I [ Z ,  h] I 5 E L1 u Lz, h E { 0 , 1 } ~ ' ~ ( ' 4 ) }  

{VIEWVl{(P,V ' ) [z ,h]}  ~ 5 E L ~ U L 2 , h E { 0 , 1 } " " ( ' r ' ) }  
and 

are indistinguishable. 

(If the ensembles are identical, we say that the bi-proof system is perfectly minimum 
knowledge. ) 

See [GMR, GHY] for the definitions of interactive protocol,  I T M ,  minimum knowl- 
edgeness,  VIEW, and indistinguishability. 

3 Interactive Bi-Proof System and Random Self- 
Reducibility 

In this section, we show the essential conditions of the interactive bi-proof system. 
First, we explain random self-reducibility [TW]. 

Definition 3.1 Let hi be a countably infinite set. For any N E N ,  let IN1 denotes 
the length of a suitable rep1 ?sentation of N .  For any N E N ,  let XN, YN be finite sets, 
and R N  C XN x YAv be a relation. Let 

dom RN = (x E XN 1 (sly) E RN for some y E Y N }  
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denote the domain of R N ,  

R N ( 2 )  = (Y I (2 i  Y) E Rh’} 

the image of x E X N ,  and 

R N ( x N )  = (Y I ( x , Y )  E R N ,  2 E x.> 
the image of R N .  R is random self-reducible if and only if there is a polynomial time 
algorithm A that, given any inputs N E Af, x f dom R N ,  and r f (0, l}”, outputs 
z‘ = A ( N ,  2, r )  E dom RN satisfying the following three properties. 

Rl. 

R2. 

R3. 

If the bits of r are random, uniform and independent, then x‘ is uniformly dis- 
tributed over dom RN.  

There is a polynomial time algorithm that, given N , x , P ,  and any y‘ E RN(x’) ,  
outputs y E R N ( x ) .  Here F is the finite prefix of r consumed in computing 
x’ = A ( N ,  2, r). 

There is a polynomial time algorithm that, given N , x ,  r, and any y E R N ( x ) ,  
outputs some y‘ E R N ( z ’ ) .  I f ,  in addition, the bits o f ?  are random, uniform, and 
independent, then y’ is uniformly distributed on RN(z‘). 

Based on the above problem, we define the following problem. 

a.re called the common witness problem. 

(Note that in this case, L R  and Lc are disjoint, and LR n L p  = LR. ) 

Now we can obtain the following theorem about the relation of the interactive 
bi-proof system and the common witness problem. 

Theorem 3.3 Let the relation 4,) and 4 2 )  be random self-reducible and satisfy the 
following conditions: 
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TI .  For any y E R ( , ) , N ( X ( ~ ) , N ) ,  the number of z satisfying ( 5 ,  y) E 4 , ) ~  is one, and 
there are probabilistic polynomial time algorithms B(,) that, given N, y,  output z 

satisfying (2, y) E R(,),N where i =1 and 2. 

There are probabilistic polynomial time algorithms that, given N,  output random 
pairs (2, y)  E q , ) , ~  with 2 uniformly distributed over dom R(,) ,N and y uniformly 
distributed over Z+,),N(z) where i = I  and 2. 

T3. If (t, y )  4 R(,) ,N,  then for any r ,  (z’, y‘) $2 R.(,),N (i = I  and 2) where 5’ is created 
from z and r ,  and y’ is created from y and T .  

T2. 

T4. R ( ~ ) , N ( X ( I ) , N )  = + ) , N ( X ( ~ ) , N ) ,  and any y‘ created from y and T on 41)~ is equal 
to the one created from y and r on 4 2 ) ~ .  

3Y [ ( Z I ,  Y) E R(I),N A ( 2 2 1  Y) E &2).N] * VY [(zl, Y) E &1),N * ( 5 2 ,  Y) E 42),N1. 
Let set F(zl, 2 2 , ~ ; )  be {xh I 3r[z: = A ( l ) ( N ,  zl, r )  A z: = A(2)(N, 22, T ) ] } .  Then, 
for any xl, x 2 ,  and 2‘1, the number of elements of set F ( z I , z 2 ,  xi) is at most 1. 

If there exists a probabilistic polynomial time algorithm that, given 2 1 , 2 2 ,  ~:,zi 
(z, E domZ+,),N,i = 1,2), determines whether 3r [zi = A(l)(N,xl,r) A zi = 
A ~ ) ( f l ,  z2, r )]  with non-negligible probability, then there exists a probabilistic 
polynomial time algorithm that, given (x1,12) E ( L R ,  L c ) ,  determines ( 5 1 ,  x2) E 
LR or (zl, z2) E Lc  with overwhelming probability. 

T5. 

T6. 

Then, on inputs N and x = (xl, z2), there is a minimum knowledge interactive bi-proof 
system (PI V) for any common witness problem ( L R ,  Lc). 

Sketch of Proof: 
We consider the following protocol. Without loss of generality, there exists (xl, yl) 

R ( I ) , N  from the definition of Lp. 

Pro t o c o 1: 
Step 1 Repeat t times from Step 2 to Step 7 where t = O(Jz1). 

Step 2 P generates random numbers r ,  a,  v (1.1 = 1x21 = n), and calculates XI, 2, 

x1 = A(l)(N, X I ,  1.L 

2 = BC(V, u). 

And P sends XI, 2 to V. Here, BC is a bit-commitment function “a], v is 
committed bits, and a is random bits used for conceding v .  (For simplicity, 
we write BC(v, a) as BC(v1, u1)11. . IIBC(v,, u,,), where v = vlll e - l\un, 
u = ulll .  . . Jlu,,, and 11 denotes concatenation.) 
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Step 3 V generates random number u (1.1 = 1.21 = n) ,  and sends u to P. 

Step 4 P calculates q = u @ w and X 2 ,  

x2 = h,G4(2)(N, 2 2 ,  r)). 

And P sends X2 and a ,v  to V. Here, function h, is a hard-core predicate 
or hard-core function shown in Definitions 2 and 3 of [GL], where 191 = 
1A(2)(N, z2, r)l when h, is a hard-core predicate, and 191 = 21A(2)(N, z2, r ) (  

when h, is a hard-core function. Hereafter, for simplicity, we will con- 
sider h, a hard-core predicate. Then, h,(w) = C:=l w;q; mod 2, where 
w = ~ 1 1 )  . . . I ~ W ~ ,  q = q1II . . . (lqn, a d  I w , ~  = lqtl = 1 (i = 1,  . . . , n) .  

Step 5 V checks whether BC(w,a) holds. If it does not hold, V rejects the proof. 
Otherwise, V calculates q = u @ w, generates random bit e,  and sends it to 
P. 

Step 6 P calculates Y. 
Y = r if e =. 0, { Y = y :  i f e = 1 .  

Here yi E R ( l ) , ~ ( z i )  (z: = A(1)(N, 21, r)) is created from y1 and r. And P 
sends it to V .  

Step 7 V check. as follows: 

When e = 0, V checks the following equations 

x1 A A(l)(N, 2 1 ,  Y ) ,  

X2 h,(42)(N, 3 2 ,  Y ) ) .  

If both tests succeed, set this round as “honest” and continue the p r e  
tocol. 

Otherwise V rejects the proof. 

When e = 1, V checks the following equations 

(Xl, Y )  %),ivy 

x2 h,(B(,)(N, Y)). 
If both tests succeed, set this round as (‘LA” and continue the protocol. 
If only first test succeeds, set this round as “Lc” and continue the 
protocol . 
Otherwise V rejects the proof. 
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Step 8 After t rounds, V determines the proof as follows: 

If every round is either “LR” or “honest”, then V accepts as “x E LR”. 
If every round of e = 0 is “honest” and R > 1/3, then V accepts 
as “z E Lc”, where R = #{“Lc” round}/#{“e = 1” round}. (#S 
denotes the number of elements of set S. ) 

Otherwise V rejects the proof. 

Remark: 
hen h, is a hard-core function (or 1 x 2 1  > l), V determines the proof as “t E Lc” 

as follows: When lX21 is O(\zl), if every round is either “ L C ”  or “honest”, then V 
accepts as “Z E Lc”. When 1 x 2 1  is c = 0(1), if every round of e = 0 is “honest” and 
R > 1 - 1/2‘ - d,  then V accepts as “t E Lc”, where d is a constant. 

Consider the completeness and soundness conditions. 

Completeness 

o In the case of z E L R ,  there exists some y, such that (x1,y) E Rjl ) ,N A 

(x2,y)  E R(2) ,N.  Then, it is clear that if P follows the protocol, then both 
checks in Step 7 are accomplished. So V accepts as “z is in LR” with 
probability 1. 

o On the other hand, when 2 E Lc, y where (z l ,y )  E f t l ) , ~  does not satisfy 
( x 2 ,  y) E q 2 ) , N .  Condition T3 directly implies that P’s response Y ~ cannot 
satisfy X, = hq(+) (N ,Y) )  in Step 7 with probability 1/2 in each round. 
So V accepts as “z is in Lc” with overwhelming probability after t rounds 
repetition. 

Soundness 

o In the case of x # LR,  to cheat V with non-negligible Probability, P‘ must 
create the messages X I ,  X 2  and Y which satisfy both tests in Step 7, i.e., 
e = 0 and e = 1. When z @ LR, two cases are considered, z E LG or x @ L p .  

First we consider z E Lc. In this case, for all y where ( t I , y )  E R j l ) , ~ ,  

this y must not satisfy ( 2 2 , ~ )  E 4 2 1 , ~  from the definition of Lc and con- 
dition “5 .  To cheat V ,  Y that is created from y and T ,  however, must 
satisfy X 2  = hq(B(2 , (N ,Y) )  with probability 1. For this, ( X 2 ,  Y )  E R(2),N 
must be satisfied, since q is randomly generated after T is determined. This 
contradicts condition T3. 
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On the other hand, when z 4 L p ,  there is no y where (21, y)  E &),N. So if 
Y satisfies (X , ,Y)  E &,),N, this contradicts condition T3. 

o In the case of z @ Lc, to cheat V with non-negligible Probability, P’ must 
create the messages XI, X2 and Y which satisfy only first side of tests in 
Step 7-2 (e = 1) and both tests in Step 7-1 (e = 0). In this case, two 
cases are also considered, z E L R  or z $ Lp. 
First we consider z E LR. In this case, for all y where (z1, y) E R ( ~ ) , N ,  this 
y must satisfy (z2, y) E R ( ~ ) , N  from the definition of LR and condition T5. 
To cheat V, Y that is created from y and r ,  however, must not satisfy 
X 2  = hq(B(2)(N,  Y)) with probability 1/2 in each round. For this, ( X 2 ,  Y) E 
q2),N must not be satisfied with at least non-negligible probability. This 
contradicts the condition T5. 

On the other hand, when z # L p ,  there is no y where (21, y)  E q l ) , ~ .  So if 
Y satisfies (Xl, Y )  E R f l ) , ~ ,  this contradicts condition T3. 

a Minimum knowledgeness 

Then we prove the minimum knowledgeness. First, on input z E L R  U Lc, the 
simulator accesses to an oracle and knows z E L R  or z E Lc. After that it 
simulates the view of the history by the ‘standard guessing’ algorithm. 

When I E LR, i t  is clear that the simulator can perfectly simulate the view, or 
that this protocol satisfies perfect minimum knowledgeness. 

When z 4 L c ,  to prove that this protocol is (computationally) minimum knowl- 
edge, we must show that (XI, X2, q )  is (computationally) indistinguishable from 
(Xl, a, q ) ,  where a is a real random number. If BC is a secure bit-commitment 
function and the prover is honest, then q is a random number. If the common wit- 
ness problem is not BPP,  then a bit-commitment function BC exists [Na, ILL]. 
From condition T6 and Lemma 1 of [GL], if the common witness problem to be 
proven in this bi-proof system is not in BPP, then (XI, X,) is computationally 
indistinguishable from (XI, a). Then, this protocol is (computationally) mini- 

mum knowledge. If the common witness problem is in BPP,  this protocol is 
trivially (perfectly) minimum knowledge. 
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Remark 1: 

If the common witness problem is defined over the discrete logarithm problem, then 
condition T6 holds, because the problem, given g z ,  mz, to check 3r [ gz+' A mz+'] is 
equivalent to the problem to check 32 [ g' A mZ]. 

Remark 2: 

In the above protocol (sequential version), q is generated in each round. However, 
in the parallel (five round) version of the above protocol [FFS, BMO], the same q 

is commonly used by all t round messages. So, the communication amount of these 
parallel versions is much reduced than that of the sequential version. 

Remark 3: 

The discrete logarithm problem and the graph isomorphism problem are good ex- 
amples of problems that satisfy the above conditions. 

4 Application to Undeniable Signature Schemes 

4.1 Proposed Undeniable Signature Schemes 

We apply the interactive bi-proof system directly to an undeniable signature scheme. 
From Theorem 3.3, if a random self-reducible problem exists, then there exists an 

interactive bi-proof system. The definition of the interactive bi-proof system is suitable 
for undeniable signature schemes, so there exists an undeniable signature scheme based 
on the random self-reducible problem. 

We consider the discrete logarithms problem similar to those in [CA, Ch]. 

0 Center Key Generation 

o Center generates a large prime number p and selects a primitive root g of 
field GF(p). 

Signer Key generation 

o Signer generates his secret key 2, and computes y (= g z  mod p ) .  He p u b  
lishes y as his public key. 



253 

0 Signature generation 

o Signer generates signature s of a message m from p and his secret key z, 

s = rn” mod p. 

Signature confirmation and disavowal 

o Repeat the following procedure t times where t = O(l.1). 

o Signer generates random numbers r, a, w (1.1 = 1z2)), and calculates 

XI = gr a y mod p, 

2 = BC(W, u). 

and sends (XI, Z )  to verifier. 

o Verifier generates random number u (1.1 = 1221), and sends u to the prover. 

o Prover calculates q = u @ v and 

Xz = h,(m‘ - s mod p), 

and sends Xa and a,v to the verifier. 

o Verifier checks whether BC(u, a) holds. If it does not hold, verifier rejects 
the protocol. Otherwise, verifier calculates q = u @ v ,  generates e E R  ( 0 , l )  
and sends it to  the signer. 

o Signer computes Y (= r + ez mod p - 1) and sends it to the verifier. 

o Verifier checks as follows: 

* When e = 0, verifier checks the following equations 

X2 A h,(rnY . s mod p ) .  

If both tests succeed, set this round as “honest” and continue the p r e  
tocol. 
Otherwise verifier rejects the protocol. 

* When e = 1, verifier checks the following equations 

XI g y  mod p, 

X2 A h,(mY mod p). 
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If both tests succeed, set this round as “valid)’ and continue the protocol. 
If only first test succeeds, set this round as ‘5nvahd” and continue the 
protocol. 
Otherwise verifier rejects the protocol. 

o After t rounds, verifier determines the validity of (n, s) as follows: 

* If every round is either “valid” or “honest”, then verifier accepts as “s 
is the valid signature of n”. 

* If every round of e = 0 is “honest” and R > 113, then verifier ac- 
cepts as “s is the invalid signature of n”, where R = #{“invalid” 
round}/#{ “ e  = 1” round}. 

* Otherwise verifier rejects the protocol. 

This protocol satisfies minimum knowledge interactive bi-proof system. 

Remark 

haum’s confirmation and disavowal protocols are called zeTo knowledge; however, 
our protocol is called minimum knowledge. In both schemes, these words mean that 
each protocol releases no additional knowledge except that which the prover wants to 
release. The different point is as follows: 

In Chaum’s scheme, to prove the validity of a signature, signer Alice claims the 
validity/invalidity of her signature before using the confirmation/disavowal protocol. 
To support her claim she then uses the appropriate protocol. In this sequence, the 
protocols release no additional bit than her claim, so each confirmation/disavowd 
protocol of his scheme is zero knowledge. 

However in our scheme, regardless of the signature’s claim, a signer executes the 
same protocol. Our protocol releases one bit, i.e., the validity or invalidity, so our 
scheme is minimum knowledge. 

4.2 Efficiency 

Our scheme is more efficient than Chaum’s because our scheme consists of only one 
protocol. It implies that when this scheme is implemented, the confirmation and dis- 
avowal protocol can be done with the same equipment. Furthermore, in this protocol, 
the number of powering and multiplication oF.trations are smaller than that of the 
disavowal protocol in Chaum’s scheme [Ch]. 

For even more efficiency, we are proposing two enhancements, one is the higher 
degree version and another is the parallel version. Unfortunately these protocols cannot 
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be proven to satisfy minimum knowledgeness, however, both can decrease the amount 
of transmission overhead. 

To satisfy minimum knowledgeness in the parallel version, the constant round zero 
knowledge technique shown in [BMO] can be applied to our scheme. This can reduce the 
round number of the protocol. Moreover, as described in Remark 2 of Theorem 3.3, 
the parallel version reduce the communication amount as well as the round number, 
since the same q is commonly used by all 1 round messages. 

5 Conclusion 

We have proposed a new proof system, the minimum knowledge interactive bi-proof 
system, and constructed an undeniable signature scheme using a formulation of the 
new system. 

We have also defined a pair of languages, the common witness problem, based on 
the random self-reducible problem, and shown that any common witness problem has 
the minimum knowledge interactive bi-proof system. 

A practical undeniable signature scheme was proposed based on such a proof system, 
in which confirmation and disavowal can be done with the same protocol (or at the 
same time). 
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