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Abstract. This paper briefly describes an interactive parallelisation toolkit that
can be used to generate parallel code suitable for either a distributed memory
system (using message passing) or a shared memory system (using OpenMP).
This study focuses on how the toolkit is used to parallelise a complex
heterogeneous ocean modelling code within a few hours for use on a shared
memory parallel system. The generated parallel code is essentially the serial
code with OpenMP directives added to express the parallelism. The results
show that substantial gains in performance can be achieved over the single
thread version with very little effort.

1. Introduction

If oceanographers are to be allowed to continue to do relevant research then they will
need to utilise powerful parallel computers to assist them in their efforts. Ideally, they
should no be burdened with the task of porting their applications onto these new
architectures but instead be allowed to focus their efforts on the quality of ocean
models that are required. For example, the development of models that include
features with both small spatial scales and large time scales and cover as large a
geographic region as possible. The unfortunate reality is that a significant effort is
often required to manually parallelise their model codes and this often requires a great
deal of expertise. One suggestion is to substantially reduce the effort required for the
parallelisation with the introduction of an effective parallelisation toolkit.

Today the shared memory and distributed memory programming paradigms are
two of the most popular models used to transform existing serial application codes to
a parallel form. For a distributed memory parallelisation of these types of codes it is
necessary to consider the whole program when using a Single Program Multiple Data
(SPMD) paradigm. The whole parallelisation process can be very time consuming and
error-prone. For example, data placement is an essential consideration to efficiently
use the available distributed memory, while the placement of explicit communication
calls requires a great deal of expertise. The parallelisation on a shared memory system
is only relatively easier. The data placement may appear to be less crucial than for a
distributed memory parallelisation, but the parallelisation process is still error-prone,
time-consuming and still requires a detailed level of expertise. The main goal for
developing tools that can assist in the parallelisation of serial application codes is to
embed the expertise and the automated algorithms to perform much of the tedious,
manual and sometimes error-prone work, and in a small fraction of the time that
would otherwise be taken by a parallelisation expert doing the same task manually. In
addition to this, the toolkit should be capable of generating generic, portable, parallel
source code from the original serial code [1, 2]. The toolkit discussed here was
developed at the University of Greenwich and has been supplemented by a directive
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generation module [3] from Nasa Ames Research Center. The toolkit can generate
either SPMD based parallel code for distributed memory systems or loop distributed
directive-based parallel code for shared memory systems.

The aim of this paper is to report on how the toolkit was used and what level
of effort was required to parallelise an ocean model code (typified by the
Southampton and East Anglia model [4, 5]) for a shared memory based parallel
system. A similar manual effort has not been undertaken due to the high cost
associated with such a task. Finally, some remarks are made about the quality of the
generated code and the parallel performance achieved on a test case.

2. The interactive parallelisation toolkit

The toolkit used in this study has been used to successfully parallelise a number of
application codes for distributed memory systems [6, 7] based on distributing arrays
across a processor topology. For an SPMD, distributed memory based parallelisation,
the mesh over which these equations are solved is used as the basis for the
partitioning of the data. The quality of the parallel source code generated benefits
from many of the features provided by the toolkit. For example, the dependence
analysis is fully interprocedural and value-based (i.e. the analysis detects the flow of
data rather than just the memory location accesses) [8] and allows the user to assist
with essential knowledge about program variables [9]. There are many reasons why
an analysis may fail to accurately determine a dependence graph, this could be due to
incorrect serial code, a lack of information on the program input variables, limited
time to perform the analysis and limitations in the current state-of-the-art dependence
algorithms. For these reasons it is essential to allow user interaction as part of the
process, particularly if scalability is required on a large number of processors. For
instance, a lack of knowledge about a single variable that is read into an application
can lead to a single unresolved equation in the dependence analysis. This can lead to a
single assumed data dependence that serialises a single loop, which in turn greatly
affects the scalability of the application code. The placement and generation of
communication calls also makes extensive use of the interprocedural capability of the
toolkit as well as the merging of similar communications [10]. Finally, the generation
of readable parallel source code that can be maintained is seen as a major benefit. The
toolkit can also be used to generate parallel code for shared memory based systems,
by inserting OpenMP [11] directives into the original serial code. This approach also
makes use of the very accurate interprocedural analysis and also benefits from a
directive browser (section 5) to allow the user to interrogate and refine the directives
automatically placed within the code.

3. The Southampton-East Anglia (SEA) model

The SEA model [4, 5] was developed as part of a collaborative project between the
Southampton Oceanography Centre and the University of East Anglia. The model is
based on an array processor version of the Modular Ocean Model with a reduced set
of options (MOMA) [12]. Although MOMA was not itself a parallel code, it could be
arranged such that parallelism was exploited and this is what lead to the subsequent
development of the SEA model code. The SEA model code can be configured with
the aid of a C-preprocessor to execute in parallel on a distributed memory system
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[13]. Work has been done relating to the parallelisation of the SEA code onto
distributed memory systems [4, 14] but this will not be discussed here. Instead, a
serial version of the SEA model code was used as the starting point for this study.

The surface of the model ocean is assumed to be split into a 2-D horizontal grid
(i,j). Each (i,j) is used to define a volume of water that extends from the surface of the
ocean to the ocean floor (k-dimension). The k-dimension is represented by a series of
depths. The main variables solved by the model include the barotropic velocities and
associated free-surface height fields as well as the baroclinic velocities and tracers.
All other variables can be derived from these. The governing equations are discretised
using a finite difference formulation in which the velocities are offset from the tracers
and free-surface heights [15].

4. Parallelising a code using OpenMP

There are a number of different types of parallelism that can be defined using
OpenMP, such as task or loop based parallelism. Here we focus on loop based
parallelism and the issues in identifying privatisable variables. However, even in
utilising these techniques there are essentially two practitioners — those that are CFD
specialists (these include authors of the software) and those that are parallelisation
experts. The CFD specialists have a deep level understanding of the code, the
algorithms and their intended applicability, as well as the data structures used. This
aids in identifying parallel loops due to independent calculation for cells in the mesh
and also for identifying privatisable variables as they are often used as workspace or
temporary arrays in CFD codes. These users tend to make use of implicit assumptions
or knowledge about the code during the parallelisation. The parallelisation experts
however, have the know how to carry out what is effectively an implicit dependence
analysis of the code to examine the data accesses and therefore provide a more
rigorous approach to the whole parallelisation process. In doing so, they still typically
make assumptions due to the difficulty in manually performing a thorough
investigation. Ideally, a user is required that has skills drawn from both disciplines to
perform the parallelisation.

Adopting a formal approach to parallelising a code with loop distribution using
OpenMP requires a number of considerations. For instance, it is necessary to catrry
out a data dependence analysis of the code as accurately as it is practical. As well as
detecting parallel loops, the analysis should include the ability to identify the scope of
variable accesses for privatisation. This means that the analysis must extend beyond
the boundaries of a subroutine and therefore be interprocedural. This in itself can be a
daunting task when tackled manually by a parallelisation expert, but can be
implemented automatically as part of a parallelisation tool. The identification of
PARALLEL regions using interprocedural information and the subsequent legal
fusion of a series of these regions can be carried out automatically by the toolkit in
order to reduce as much as possible the overheads associated with starting up and
synchronising PARALLEL regions. In addition, the automatic identification,
placement and legal use of NOWAIT clauses for DO loops can help to greatly reduce
the overheads for synchronising amongst threads. These tasks require a very detailed
analysis of the code and are sometimes viewed as too complex to implement
manually, particularly when attempting to consider interprocedural effects.
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5. The parallelisation of the SEA model code

The parallelisation of the SEA model code was achieved by executing the toolkit on a
supported platform and performing a few simple processes within the toolkit. The
first step is to read in the serial source code. The SEA model code is written in
FORTRAN and contains nearly 8200 lines of source code. The next step was to
perform a dependence analysis of the code using the analyser and this took a few
minutes. Inspection of the unresolved questions identified by the analyser was
followed by the user addition of some simple knowledge relating to the arrays storing
the vertical depths (0<KMU<32 and 0<KMT<32). A subsequent incremental analysis
was performed in order to re-evaluate any uncertainties that remained using the
additional user knowledge. A database is saved at this stage to allow the user to return
at a later date to this point in the parallelisation process. The user can then use the
toolkit to automatically generate OpenMP code without examining the quality of the
code. Not surprisingly, the performance obtained for this version of the code was
comparable to using the SGI auto parallelisation flag —apo. The parallel performance
of this code was very poor with a speed up of 1.5 for 8 threads.

After reloading the saved database, the user is allowed to investigate in detail
any serial loops in the code by using the interactive directives browser (Figure 1).
This investigation is essential as it could lead to further parallelism being identified
by the toolkit with the additional knowledge provided by the user. Equally important
is the failure to look at such loops and allowing them to be executed in serial, as this
can significantly affect the scalability of the code (Amdahl’s law [16]). The directives
browser presents information to allow the user to focus on the precise reasons why,
for example, a loop cannot execute in parallel. The browser also provides information
about which variables cause recurrences and hence prevent parallelism and which
variables could not be legally privatised and therefore inhibit parallelism. This
amount of detail in the browser enables both the parallelisation expert and CFD
specialist (through their knowledge of independent updates in the algorithms and
knowledge of workspace arrays) to address these issues. One possible course of
action is to refine the dependence graph. For example, in the SEA code some array
accesses define a multi-step update of the solution variables that can be executed in
parallel. This may have been too complex to be detected by the dependence analysis
alone. Figure 2 shows pseudo code for just such a case in the SEA code. The current
state of the analysis has failed to capture this very specific case involving the v array.
The serialising array dependence is presented to the CFD expert (through the
browser) who is then able to inform the tools (by deleting the assumed dependencies)
that this is not the case as the v array updates and uses are independent, thereby
enabling the i and j loops to be defined as parallel. This refinement process could be
repeated as often as necessary until the user is satisfied with the level of parallelism
defined and the toolkit can generate the OpenMP code. The time taken to parallelise
the SEA model and generate OpenMP code using the toolkit on an SGI workstation
was estimated to be about 2 hours, most of which was spent trying to exploit further
parallelism by using the toolkit’s interactive browsers. Figure 3 shows an example of
the quality of the code generated by the toolkit for the c1inic subroutine. In this
subroutine alone, it highlights the toolkit’s ability to define parallelism at a high level
(i.e. at the j loop level which includes 12 nested parallel loops as well as calls to
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subroutine state), the scope of all scalar and array variables and the automatic
identification of THREADPRIVATE common blocks.

T CAPO: Directives Browser
Scope: 26 Routines: 1 Parallel loops exploited using directives:
£ ik
AL Al adde | /A8 a0 Jojsta qendi
i —| hcest
Loop Filter: Sub: | el - — -
£ 5 ¢linic
Totally Serial I diag
Covered Serial Mormal extended filename
Falsely Serial CopyIn/Out frees
ds
Reductions Ordered o
ocnlst
Pipeline User Defined options
"Chos'en: g rdrest
Rl More Filter.. rdtopog
' sk
Show Parallel 1I/0: | Yes No RoutineDup.. Why. Update Directives.. Setting.
Current Routine: clinic User ieam Dismiss)  Help.. )
LA CAPO: Why Directives 7
by ORI e
21 e colowlabel | ggp: 11/101: do jesjsta,jend Reason; Parallel [oop sxploited withaut copyin/out variables
g;g M ;;" Type: Chosen New Type., | Private variables Shared variables Copyinfout variables
275 g it o o
517 o detmr sine
278 : W | & | onega
- 9 all parallel lag i t Tl ozds i
580 - o wres cldtue
PR ] |l 41 private vacrizbles veor hr
-
262 :c set k=0 vqd | 46 shared varisbles urest np
283 :c set level 4
264 o set k=kme T A
285 o wertical loor ddu.
286 :c loss to g
287 io snf is { e e
288 o bnf is 4 =
gedige ey Select all Select All Select All
il za0 . vt
2ot wmf Reset %
4 232 unE L o
lioay VHE Dismiss Help...
ggg D ?’El 10/Exit state me nts: 12 Nested parallel loops: Inside parallel loops:
whl i .
G o Al clinic:3/3/216. do k=1,knd, 1 -
297 fwhy
Soell G e | state:1/1/258. do keldme1.2 =
‘ R set up ingd - 3 state :3/1/268: do k=2, kn-1,2
state:5/1/279; do k=l.km, 1
state:6/1/200: do k=1,kk,1
state:7/1/209: do kl=0 kk-E2.2
i

Figure 1 Directive browser displaying loop classification and reasons for loop type

6. Performance of generated parallel code on a test case

An idealised topography for a pseudo global model that extends from 70°S to 70°N
was used as the test case for this study. The topography was generated such that the
horizontal resolution was modified from the default 182x73 resolution to 722x283,
while the number of vertical levels was defined to be 32. It was also indicated that for
such a global model cyclic periodic boundary conditions should be applied to the
latitudinal boundaries. In the initial parallelisation without any user interaction there
were 24 serial and 90 potentially parallel loops (from a total of 114 loops). The toolkit
was able to generate code that exhibited a high degree of parallelism as the majority
of loops selected for parallel execution were based on the outermost J loop. This
ensured that for these loops there was enough computational work to offset the
overhead in initialising and synchronising the threads. Following further user
interaction (described in section 5) the number of potentially parallel loops had
increased to 96.
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nm=1

nc=2

np=3

do loop=1,9999999
call STEP

enddo

SUBROUTINE CLINIC
do j=jsta,jend
do i=ista,iend

200

do k=1, kmc
= v(k,i-1:i+1,j,nc),
v(k,i-1:1+1,j,nm),
v(k,i,j-1:3+1,nc),
v(k,i,j-1:j+1,nm)
enddo
do k=1, kmc
v(i,j,k,np) =
enddo
enddo
enddo

SUBROUTINE STEP
nnc=np
nnm=nc
nnp=nm
np=nnp
nc=nnc
nm=nn
continue
call CLINIC
if (mixts.and.eb) THEN
nc=nnp
np=nnm
mixts=.false.
goto 200
endif

Figure 2 Pseudo code showing the multi-step array accesses for v

common /work/dpdx,dpdy, fue, fuw, fvn, fvs,vmf,vtf, fw, fwbl,
& fwb2, rhoo, rhpo, rhpp, rhop, maskoo, maskpo, maskmo, ...

! $OMP THREADPRIVATE (/work/)

1$OMP PARALLEL DO DEFAULT (SHARED) PRIVATE (detmr, £x,vrest,vcor,
1$OMP& urest,ucor, lcor,temp2, templ, £xb, £xa, fuic, fvjc,k,bmf,
1$0MP& uvmag, smf, kmd, kmc, iml, ipl, i, boxar,boxa,jml, jpl,j)
1$OMP& SHARED (omega,c2dtuv, acor, fkpm,dy4r,dx4r,dy2r,dx2r,grav,
1$0MP& np,dypl25,dxpl25,nc,cdbot,nm,ista, iend,dy,dx, jsta, jend)

do j=jsta, jend
do i=ista,iend
if (kmc.gt.0)then
call

call state

state(t(1,i,3j,1,nc),t(1,i,3,2,nc),...)

call
call

state
state

1,ipl,3j,1,nc),t(1,ipl,3j,2,nc),...)
1,ipl,jpl,1,nc),t(1,ipl,Jpl,2,nc),...)
1,i,3p1,1,nc),t(1,i,jpl,2,nc),...)

Figure 3 Illustration of the automatic OpenMP code generated by the toolkit

Table 1 shows a breakdown of the frequency and type of OpenMP directives that
were generated by the toolkit in the final generated code (referred to as “static opt0”).
In summary, there were a total of 20 PARALLEL regions defined in the code, with
just 25 of the 96 potentially parallel loops selected for parallel execution. In addition
to the 3 REDUCTION loops that were identified there was also another reduction
operation identified that did not conform to the OpenMP specification, but this was
still handled by the code generator, choosing instead to use the CRITICAL directive.
The parallel platform used was a 64 processor SGI Origin 2000, where each processor
was a MIPS R12000 with a 300MHz clock speed. The code was compiled with —mp
—-03 flags and Figure 4 below shows the performance of the OpenMP code generated
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from the toolkit as a result of the parallelisation process described above. An
efficiency of 87% on 32 processors and nearly 60% efficiency on 64 processors is
quite promising given the fairly small, yet essential, user interaction that was needed.

Table 1 Breakdown of OpenMP directives generated by the toolkit

Total number of PARALLEL Regions : 20
Total number of OMP DO Loops defined : 25
PARALLEL regions with a single OMP DO loop: 11
REDUCTION Loops : 3
ATOMIC/CRITICAL Sections 1

Regions containing FIRSTPRIVATE variables : 2

70

A Linear A
60 - © static opt0

50

40

Speed up

30

(=

20

10

0 T T T T
0 10 20 30 40 50 60 70

No. of Threads (processors)
Figure 4 Performance of the OpenMP code generated by the toolkit on an SGI Origin

The possible causes for the degradation in performance could include (i) the
execution of serial loops and the effect described by Amdahl’s law; (ii) the overhead
in starting up and subsequent synchronising of threads; (iii) the granularity of the
computation as the number of threads are increased; (iv) the unbalanced workloads
assigned to the threads. On examination of the code and with the aid of a profiler
(ssrun and prof) a number of optimisations were identified in order to try and improve
the performance of the code. Although the toolkit had already completed a fairly
comprehensive task in reducing the overhead in starting and synchronising the
threads, an additional manual attempt was made to further fuse PARALLEL regions
together. This was only possible in a few loops that were contained within IF
constructs. As a result of this optimisation the breakdown of the OpenMP directives
in the code (Table 2) now show that the number of PARALLEL regions had reduced
to 6 but they contained more OMP DO directives. In addition the number of
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PARALLEL DO regions were also reduced to 4 as many were fused into larger
regions. The performance of the optimised parallel OpenMP code is shown in Figure
5 (static optl) and shows that there was a small improvement in performance.
However, the manual optimisation of fusing the loops did not appear to make a
significant contribution to improving the parallel performance.

Table 2 Breakdown of optimised OpenMP directives generated by the toolkit

Total number of PARALLEL Regions : 10
Total number of OMP DO Loops defined : 25
PARALLEL regions with a single OMP DO loop: 4
REDUCTION Loops ¢ 3
ATOMIC/CRITICAL Sections 1

Regions containing FIRSTPRIVATE variables : 2

Another possible reason for the limited scalability when using 64 threads is the load
imbalance that may exist due to the very nature of the problem being solved.
Although there is a maximum of 32 cells in the vertical direction, these vary in line
with the ocean depth and are defined using an array such that the iterations over the
depth (k-iterations) are different for each i,j cell. In this way, computations are
performed only in the ocean regions and only to the necessary depth. Therefore, the
unbalanced workloads on each processor together with the reduction in effective
computation performed as the number of processors increased -contributed
significantly to the overall performance. In order to try and redress the load
imbalance, the j-iterations need to be distributed in such a way as to provide an even
balance of ocean grid cells for each thread. The default scheduling of iterations for a
parallel OMP DO is referred to as “static”” whereby each thread is assigned a chunk or
fixed number of iterations on which to operate. An alternative strategy is to
dynamically allocate a number of iterations to a thread as soon as it becomes free,
thereby ensuring that all the threads are kept busy. The default chunk size is a single
iteration for each thread should operate on at any one time. Using a dynamic
scheduling process carries a higher overhead than a static one since the allocation of
iterations is continually determined during the parallel execution whereas for a static
schedule the allocation of iterations is performed once at the start of the DO loop.
Figure 5 shows the effect of using a dynamic scheduling process to execute the 5
parallel loops in the time step loop (dynamic optl). The performance on 64 threads
has now increased to an impressive 75%. In spite of the additional overhead in using a
dynamic schedule, it is far outweighed by the superior load balancing achieved.
Solving the same problem with a coarser mesh and using the message passing version
that has a strategy to deal with the load imbalance [4] shows a similar performance
trend.

7. Conclusions

In this paper we have demonstrated that parallelisation tools can be beneficial to both
CFD specialists and parallelisation experts by performing most of the tasks needed to
parallelise real-world application codes typified by the SEA ocean modelling code.
This work also demonstrates the crucial need for an interactive system where the
toolkit not only provides valuable information to the user, but also that the user can
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offer knowledge to supplement and direct the parallelisation process. The interaction
is carried out through the use of browsers that filter the vast information acquired by
the toolkit and this is presented to the user in a more focused manner. It has also been
shown that the generated code is efficient and scalable and that the parallelisation can
be done extremely quickly. In comparison, the manual parallelisation of the code
using OpenMP has not been undertaken to date because of the prohibitive cost of
effort and the expertise that is needed to complete the task.

70 I
A Linear
tati t0 A
60 4 < static op
M static opt1
® dynamic opt1

(%)
o
I
o

o

0 10 20 30 40 50 60 70

No. of Threads (processors)

Figure 5 Performance of the optimised OpenMP code generated by the toolkit on an
SGI Origin.
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