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Abstract. The parallel composition with observers is a well-known ap-
proach to check or test properties over formal models of concurrent and
real-time systems. We present a new technique to reduce the size of the
resulting model. Our approach has been developed for a formalism based
on Timed Automata. Firstly, it discovers relevant components and clocks
at each location of the observer using influence information. Secondly, it
outcomes an abstraction which is equivalent to the original model up to
branching-time structure and can be treated by verification tools such
as KrRONOS [12] or OPENKRONOS [23]. Our experiments suggest that the
approach may lead to significant time and space savings during verifi-
cation phase due to state space reduction and the existence of shorter
counterexamples in the optimized model.

1 Introduction

In formal models of concurrent systems, safety and liveness requirements are
commonly expressed in terms of virtual components (Observers) which are com-
posed in parallel with the set of components that constitutes the system under
analysis (SUA) (e.g., [1]). It is also true that the SUA may comprise some irrel-
evant activities for the evolution of a given observer. In this work the SUA and
the observer are specified basically in terms of sets of communicating Timed Au-
tomata (TAs) [3]. We present a syntactical technique that transforms the original
model into an equivalent one up to TCTL formulas [2] over the observer.

Our technique statically calculates, for each location of the observer, a set
of components and clocks whose activity may influence the observed evolution
of the SUA. Then it obtains an optimized system that activates and deactivates
components and clocks according to that information about relevance of clocks
and components. Experiments show that model-checking tools like KRONOS [12]
or OPENKRONOS [23] produce a noticeable smaller state space and shorter coun-
terexamples when fed with the optimized model.
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1.1 Related Work

The closest related work on automatic syntactic preprocessing of timed models
is the clock reduction technique for TAs presented in [13]. Similarly to our ap-
proach, this technique examines timed-components at a syntactic level to derive
reductions that preserve the branching-time structure. There is also a limited use
of timing information (clocks are variables) to keep the preprocessing as light as
possible. However, our technique includes an “activity calculus” that can be ap-
plied on a SUA given as a parallel composition (i.e., not-already composed) and
the optimization also implies the deactivation of irrelevant components (not just
clocks) during the possibly on-the fly verification step. It is also worth mention-
ing a method for the computation of delays on circuits [22], that uses topological
structure of the circuit to make a partition of the network and a corresponding
symbolic representation of the state space. The idea of ignoring some parts of
the model while performing the verification also appears in [10]], where dynamic
transition relations are introduced in the setting of backward search for mod-
els used in the design of synchronous hardware. In essence, all these techniques
are related to the cone of influence abstraction [IT] and slicing techniques ([I8]
5], etc.). Our technique can be understood as “slicing” the synchronized Carte-
sian productl] without building it, instead of slicing each component, as previous
works on slicing concurrent descriptions. By adapting static analysis ideas to the
timed model setting, we developed a method for discovering a set of variables
(standing for clocks and components) that can be safely eliminated at different
locations of the final composed model. In particular, we need to know which
variables may influence the future behavior of the observer at each location.
Therefore, the granularity level of the static analysis over the Cartesian product
is defined by the set of control locations of the observer. To obtain an optimized
model that activates and deactivates those variables we perform a component-
wise transformation. We do not resort to the concept of slicing criterion, instead
the correctness of the procedure is stated in terms of the preservation of the
branching structure of the transition system up to the propositional assignment
given over the observer. This implies that our optimized model validates the
same set of TCTL formula over the observer. Mentioned works on slicing con-
current models provide abstractions that either just preserve the linear-time
structure of the system or are strongly bisimilar w.r.t. to the original one, a
stronger condition than ours.

Our technique can also be understood as a way to perform a kind of se-
lective search (avoiding transitions of deactivated components). Unlike partial
order methods [T6J2T], etc., our notions are not based on independence but on
influence. In fact, transitions eliminated in the optimized model, in general, are
not independent to the remaining ones. Moreover, runs of our optimized model
are subruns of the original one (i.e., irrelevant activity is not shown). Partial
order methods could be applied in an orthogonal fashion.

L If synchronized Cartesian product is though as a non-deterministic guarded com-
mand program, traditional program slicing techniques seems to be of little help
since all variables are likely to be classified as live.
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In [7] we explain several differences between our technique and compositional
reduction techniques that work over symbolic state space like [20] and [24].

Structure of the paper: In the next section we recall Timed Automata and some
related notions. In Sect. Blwe present an extension of TAs that are the basis of our
method: the I/O Timed Components. In this extension the labels are classified
as input/output and that “uncontrollable/controllable” division of labels greatly
helps to a better understanding of behavioral influence between automata. In
Sect. @ we show the rules that define the relevance of clocks and components,
how to build the correct and complete abstraction, and finally some empirical
results. The paper is summed up with conclusions.

2 Timed Automata

Timed Automata (TAs) has become one of the most widely used formalism to
model and analyze timed systems and is supported by several tools (e.g., [124]
20119], etc.). This presentation partially follows [27]. Given a finite set of clocks
(non-negative real variables) X = {x1,za,...,2,} a valuation is a total function

v: X IR>( where v(z;) is the value associated with clock x;. We define Vx as

the set [X tof IR>] of total functions mapping X to IR>g and 0 € Vx denotes the
function that evaluates to 0 all clocks. Given v € Vx and ¢t € IR>g, v+t denotes
the valuation that assigns to each clock x € X the value v(z) +t. Given a set of
clocks a C X and a valuation v we define Reset,(v) as a valuation that assigns
zero to clocks in o and keeps the same value than v for the remaining clocks.
Given a set of clocks X we define the sets of clock constraints Wx according to
the grammar: Ux 3 ¢ ==z < clz—2a’ < c[ Ap|—9, where x, 2’ € X, <€ {<, <}
and ¢ € IN. A valuation v € Vx satisfies ¢ € ¥x (v |= ) iff the expression
evaluates true when each clock is replaced with its current value specified in v.

Definition 1 (Timed Automata (TAs)). A timed automaton (TA) is a tuple
A= (S, X,Y E I, s0) where S is a finite set of locations, X is a finite set of
clocks, X is a set of labels, F is a finite set of edges, (each edge e € E is a tuple
(s,a,,a,s’) where: s € S is the source location, s’ € S is the target location,
a € X is the label, v € Ux is the guard, « C X is the set of clocks reset at

the edge), I : S tof Ux is a total function associating with each location a clock
constraint called location’s Invariant, and sq € S is the initial location.

Given a TA A= (S, X, X E,I,sy) we define Locs(A) = S, Clocks(A) = X,
Labels(A) = X, Edges(A) = E, Inv(A) = I, Init(A) = sg, and given an edge
e=(s,a,¥,q,s") € E we define src(e) = s, lab(e) = a, grd(e) = 9, rst(e) = a,
tgt(e) = s'. The State Space Q4 of A is the set of states (s,v) € S x Vx for
which v |= I(s) and g9 = (Init(A),0) is its initial state. Given a state ¢ = (s,v)
we denote: ¢ +t = (s,v + 1), ¢® = s, and q(x;) = v(z;). The semantics of
A can be given in terms of the Labeled Transition System (LTS) of A, denoted
Ga = {Qa, qo,—%, X). The relation —! is the set of (time or discrete) transitions
between states. Let ¢ € IR>¢; the state (s,v) has a time transition to (s,v + t)
denoted (s,v) 7 (s,v+1t)if forall #' <t v+t |=1I(s). Let e € E be an edge;
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the state (src(e),v) has a discrete transition to the state (tgt(e),v’) denoted
(sre(e),v) Héab(e) (tgt(e),v") if v = grd(e) and v' = Resel, g )(v); e is called
the associated edge. We will say that ¢ —! if there exists ¢’ such that q —! ¢'.
A run r of A starting at ¢ is an infinite sequence ¢ —{" ¢, 4§ ... of states
and transitions in G 4. The set of runs starting at ¢ is denoted as R4(q). The
time of occurrence of the n*" transition is equal to Z;:Ol t; and is denoted as
7r(n). A position in r is a pair (i,t) € IN x IR>o such that t < t,. We call L(r)
the set of all labels in the run r and II(r) the set of all positions of run r. The
time of the position (i,t) € II(r), denoted 7,-((i,t)) is defined as 7,.(i) +t. Given
(i,t) € II(r) its associated state is 7((i,t)) = q; +t. A divergent run is a run such
that Y .2 t; = co. The set of divergent runs of a TA A starting at state ¢ is
denoted R¥(q). A finite run starting at state ¢ is simply a finite prefix of a run
starting at g. A TA is non-zeno when any finite run starting at the initial state
can be extended to a divergent run that is, the set of finite runs is equal to the
set of finite prefixes of divergent runs. Since we will deal with non-zeno TAs, we
say that the state ¢ is reachable if there is a finite run starting at the initial state
which ends at ¢; we denote the set of reachable states as Reach(A). Usually, A
has associated a mapping P : Locs(A) — 2F7°P$ which assigns to each location
a subset of the set of propositional variables (Props). The parallel composition
of TAs is defined over classical synchronous product of automata. Given a set
Z = {0..n}, we denote ||;cz A; the parallel composition of an indexed set of TA.
If ¢ is a state of that parallel composition II;(g) will denote the local state of
TA A; (locations and local-clock values).

2.1 Continuous Observational Bisimulations

The theoretical notion that supports the correctness of our abstraction mecha-
nisms is a bisimulation relation extending “branching bisimulation” (e.g., [14]) to
timed SystemEE. This notion is weaker than strong timed bisimulation, however
it still preserves branching structure (TCTL logic validity) unlike weaker ver-
sions of model bisimulations (e.g. the observational timed bisimulation of [25]).

Definition 2 (Observationally-7 transition). Given a TA A, its associated
LTS Gz = (Qua,qo0,—}, X)), arelation B C Qa x Q4 between states, two states p
and g such that (p,q) € B, and t € R>o such that p 2, we say that the state q
has an observationally-t transition w.r.t. B and p, of duration t to q,, denoted
q ﬂt gn iff there is a finite run r = q r—>ig q1 r—>,l§11 «qn such that 7,.(n) = t,
and for every position k € II(r), (p+7.(k),r(k)) € B holds (remember that '_’é;
could be ) i.e., a stutter).

Definition 3 (Continuous Observational Bisimulations). Given a LTS
Ga = (Qa,qo,—%, X) and a propositional assignment P : Locs(A) > 2F7Ps,
We say that a symmetric binary relation B C Q4 X Q4 s a continuous obser-
vational bisimulation (CO-Bisimulation) of Ga w.r.t. P iff (p,q) € B implies

2 A more restrictive notion for timed systems is found in [26].
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that P(p®) = P(¢®) and for all a € X, t € IR>o, whenever p —¢ p' then, for
some q',q" € Q,a’ € Y U{M\}, ¢ ﬂo q '—>8/ q", and (p',q") € B, and whenever
p 7 p' then, for some ¢ € Q, q %t q' (which also means that (p',q') € B).

Two TA A; and As are Continuous Observational Bisimilar (CO-Bisimilar)
w.r.t. the propositional assignments P; and Py (A; ~7+P2 A,) iff there exists a
CO-Bisimulation B of G4, UG 4, w.r.t. Py UPs, such that (go1,qo2) € B. Two
CO-Bisimilar TAs are equivalent up to TCTL logic (see [6[9]).

3 1I/0 Timed Components

I/O Timed Components (I/O TCs) [§] is a formalism built on top of TAs, de-
veloped for expressing non-zeno timed behavior (it is always possible to make
time diverge) and to support “assume-guarantee” compositional reasoning with-
out resorting to receptiveness games[I7]. I/O TCs are immediately supported
by several checking tools like KRONOS [12], UPPAAL [4], etcB. As we discuss in
Sect. [ TI/0 interfaces make possible our static calculus of influence. Given a
TA A, we divide Labels(A) into three sets: (1) the set of input-labels (Ina), (2)
the set of output-labels (Out4) and (3) the set of internal-labels (e4), such that
{Ina,Outa,ea} € Part(Labels(A)), where Part(Set) is the set of all partitions
of the set Set. We define the set Expy of exported labels (or interface labels) of
A as Expa = Ina UOuty4.

A set of input selections of A is a set I4 = {I{1,... I} € Part(Ina), a set
of output selections of A is a set O = {O#,...,0#*} € Part(Out ). Note that
I UOA U {ea} € Part(Labels(A)).

Definition 4 (I/O TCs). An I/O Timed Component (or I/O TC) is a pair
(A, (I*,0%)) where A is a non-zeno TA and (I*,04) is an admissible 1/0
interface for A: the sets I and O? are input and output selections (resp.) of
A, and for any state ¢ € Reach(A) the following conditions hold:

1. for any input selection I;* € I* there exists a label i € I7* such that q Y
That is, given any input selection I € I, the TA can always synchronize
using some of the labels of I (there is always at least one alternative of
every input selection enabled at each state).

2. there exists a run r € RY (q) such that L(r)NIna = 0. Input is not manda-
tory and thus non-zenoness must be guaranteed without them.

3. for any output selection O € OA, if there exists a label o € O such that
q =8 then q —g for all o’ € OA. All labels of an output selection are
simultaneously enabled or disabled.

4. for any infinite runr € Ra(q), if a label o € Out 4 appears an infinite number
of times in 1, then necessarily r € R (q) (non-transientness of outputs).

3 Liveness and I/O interfaces have been considered in a general setting for simulation
proof methods “a la” Lynch-Vaandrager [17] geared towards theorem provers. A
further discussion on related work can be found in [g].
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An output selection of size greater than one models alternative behaviors of the
component according to the state of the component exporting those labels as
input. This is similar to an external non-deterministic choice in Process Algebra
like notations.

Definition 5 (Compatible Components). Given two I/O TCs Ay =
(A, (IM,04Y)) and Ay = (Ag, (I42,042)), they are compatible components

1. Labels(Ay) N Labels(As) € Expa, N Expa, (i.e., all common labels are
exported by both Ay and As),

2. for all IAr € TAY and IA2 € 42 if #1M > 1 and #1232 > 1 then [N IA2 =
(0 (intersection of input selections of size greater than one must be empty).

3. Outa, NOuta, =0 (there are not common output-labels).

4. for allO € O U0 and I € Tt U T4 then either INO =0 or I C O.

We refer to a set of pair-wise compatible components as a compatible set
of components. 1/O compatibility is a syntactic condition that implies that un-
derlying TAs can not block each other and, moreover, in [8] we show that the
composition of compatible components is itself a component and therefore a
non-zeno TA.

Ezxample 1. Fig. [l introduces the example of a pipe-line of sporadic tasks. The
pipe-line is composed of tasks together with latches for buffering signals between
them. The observer checks whether an end-to-end response-time requirement is
guaranteed.

4 Optimizing the Composition of I/O Components

4.1 Influence

The core of our technique is a notion of potential “direct influence” of a compo-
nent behavior over another component behavior. A naive solution is to consider
that two components influence each other if they share a label. Unfortunately,
this definition would lead to a rather large symmetric overestimatior. By us-
ing the I/O interface attached to TA (the I/O TCs), we can define a better
asymmetric condition for behavioral influence. Besides, our notion of influence
is relative to the locations considered for each automaton (i.e., assuming that A
is at some location which belongs to the set S4 C Locs(A) and B is at some
location which belongs to the set Sp C Locs(B)). Using two compatible I/O
Timed Component A = (A, (I4,04)) and B = (B, (I%,0P7)), S4 C Locs(A),
Sp C Locs(B), e, € Edges(A), ep,e; € Edges(B), and © € Clocks(B), we
define in Table Mthe following notions of influence:

1. A influences B while they are sojourning S4 and Sg resp., denoted A|g, —
Bls,-

4 An asynchronous variable sharing mechanism of communication would make depen-
dence checking easier using read-write operations.
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Fig. 1. Some components of Pipe-line System

Table 1. Influence rules

src(eqa) €S a,lab(eq)EOut 4,src(ey) SR, lab(ey)=lab(eq) tgt(ep)#sre(ep)
A|SA _)B|SB

T€TA #1>1,lab(ey)El,src(ey)ESB src(e)€Sp,regrd(e) leSp,xzelnv(l)
AlSA_>B|SB CC_’Bls'B Z‘_’13‘53

IeI lab(ep) €l lab(e; )€1 lab(ep)#lab(e} ), src(ey) €SB, sre(e) )ESp,aErst(ey) agrst(e))
Als, —zlsg

src(eq)€Sa,lab(eq)EOut 4,s1rc(ey) ESR,lableq)=lab(ep) xE€rst(ey)  srclep)ESE,xETst(ep)
A‘SAHZ‘SB B|SB—>33

2. A influences clock x of B while they are sojourning S4 and Sp resp., denoted

A|SA - $|SB'
3. B influences its clock x while it is sojourning Sp, denoted B|g, — .
4. z influences its component B while it is sojourning Sg, denoted z — Blg,,.

Note that if Als, — Bls,, Sa € 5}, and Sp C Sp then Als, — Blg; . The
same is also true for the rest of notions of influence.
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In what follows, we consider the system of I/O timed components {4;/i €
{0..n}} where Aj plays the role of the observer while the rest of components
constitutes the SUA. We define a function S; that associates to each observer
location | and component A; a Sojourn Set: a set of locations that A; may visit
while the observer is at [.

Definition 6 (Sojourn Set). Given a set of TAs {A;/i € T} where T = {0..n},
l € Locs(Ay), we define

S1(0) = {1}, and for 1 <i<mn,

Si(i) = {II;(q)® € Locs(A;)/q € Reach(|iez Ai) and II(q)® = 1}.

The exact calculation of the sojourn set is unpractical because it would re-
quire the computation we want to optimize: Reach(||;cz A;). However, these
sets can be overestimated by several procedures [7]. Experience has shown us
that one of the most cost-effective strategies is S)(i) = {l' € Locs(A;)/ (I,U') €
Locs(Ag || A;)}. Since in many cases, even timed systems with relatively small
control structures are intractable (a few thousands of nodes), it is reasonable to
use the untimed composition to get those sets, i.e., S](i) = {I' € Locs(4;)/3s €
Locs(Ag || A1 || ... || An) A IIg(s) =1 A II;(s) = I'}. Hereafter, we denote

s
— Ails,6) — Ajls,g) as Ai = Ay,
— Ails,iiy = ls,(j) or Ailg, iy — = as Aj 5 z, and

Sy
— x — Ajlg,(j) as z = Aj.

4.2 Relevance

Firstly, let us present a couple of definitions that are necessary to calculate
activity of components and clocks to latter optimize the SUA w.r.t. the observer.

Definition 7 (Determination of Components). Given an I/0 Timed Com-
ponent A = (A, (I*,04)), S C Locs(A), and i € X 4, we say that i determine A
while it is sojourning S denoted Det (i, S) iff {i} € I and Ve, e’ € Edges(A) :
sre(e), sre(e’) € S,lab(e) = lab(e') = i implies tgt(e) = tgt(e’) and we denote
tgt(e) as tgt(S,i).

Definition 8 (Determination of Clocks). Given a Timed Automata A, x €
Clocks(A), S C Locs(A), and a € Labels(A), Reseta(a,S) is the mazimum
set of clocks X' C Clocks(A) such that for all e € Edges(A), src(e) € S and
lab(e) = a then X' C rst(e).

We are ready to show how to calculate a pair of functions, that we call Active
and RelClocks, which defines the components and clocks whose activity may
influence the behavior of the observer. Following the static analysis terminology
Active and RelClocks are calculated as the solution of a data flow analysis
problem over the control structure of the observer: a combination of a transitive
closure of the direct influence relation plus a backwards transference function.
For the sake of readability, we present them using a formal system notation
in Table 2l We say that Active and RelClocks conform a correct activity pair
of functions for Ag if they are the minimal functions satisfying the Activity
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Table 2. Activity rules

S,
jeActive(l),x —l>Aj
z€RelClocks(l)

[ObsRel] [Transitivity I]

0€ Active(l)

S
j#i,5€Active(l),A; —SA;
1€ Active(l)

S
zE€RelClocks(l),A; 2y
1€ Active(l)

[Transit. II] [Transit. III]

src(e)=l,i€ Active(tgt(e)),mDet 4, (lab(e),S(i))
1€ Active(l)

[Tranference I]

src(e):l,xEC’locks(Aj),:L‘ERelClock:s(tgt(e))—ResetAj (lab(e),S1(4))
z€RelClocks(l)

[Tranference II]

where 7 = {0..n}, {4;}icz is a set of pair-wise compatible I/O Timed Components,
Active : Locs(Ao) — 2%, RelClocks : Locs(Ag) — 2%, X is the union of the set of
clocks of all components, | € Locs(Ap), and e € Edges(Ao).

rules. When a clock is not marked as relevant at ! that means that the values
it acquires while the SUA is sojourning [ has no effect on the future observed
behavior till it becomes relevant again. The same is true for components that
are not marked as active. The optimized system will only keep track of active
components and relevant clocks. Table[3 shows a correct activity function Active
for the example [l

Table 3. Relevance Function for Sporadic Pipe-line

Obs loc.|Active(loc) ‘

0 Obs, source, latchy, proci, latcha, procs
1 Obs, latchy, proci,latcha, proca

2 Obs, proca, latcha, proca

3 Obs, latchz, proca

4 Obs, proca

5 Obs

6 Obs

4.3 Transformation

In this section we define a procedure to build the optimization according to
RelClocks and Active over Ay (the observer) and the SUA. The transformation
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modifies each component of the SUA adding new transitions and an “idle” loca-
tion named * to model deactivation of the component. The optimization process
implies a total relabeling of transitions. Old labels are embedded and new ones
are added to communicate the change of locations done by the observer (actu-
ally the projections of a new label tell which components should be enabled or
disabled when the edge is traversed). We generate a new label for each edge of
the observer. The idea is that, when the transformed observer jumps from [ to
I’, disabled components (i.e., active components at [ that are inactive at I') syn-
chronize and jump to their idle locations. The effect is similar to the elimination
of variables standing for the control location of disabled components. On the
other hand, enabled components (active components at I’ but non active at 1)
are forced to jump to their right location: the target location of Def. [{l Clocks
are treated in a similar way. What follows formalizes the previous notions.

Given a set of I/O TCs A; = (A;,(I%,0%)), where A; =
(Si, X;, Xi, By, Inv;, s0;) with @ € T = {0..n}, Active and RelClocks as defined
in Table ] first let us define the new set of labels NL = X x 27 x 2X x (T — 9),
with Lab, Dis, Rst, Ena as its projections respectively. The operators Emb()
and NI() build new labels from the original ones and the observer edges.

Given a label a € X, and an edge e € Ey, the new labels b = Emb(a) € NL
and b < Nl(e) € NL are such that:
| [Emb(a)[NI(e) |

Lab(b) a |lab(e)

Dis(b)| 0 |Active(src(e)) — Active(tgt(e))

Rst(b) 0 |RelClocks(tgt(e)) — RelClocks(src(e))

Ena(b)] 0 [{(i tgt(lab(e), Ssree) (1)) /i € Active(tgt(e)) — Active(src(e))}

We define NLabs = {Emb(a) € NL/a € X} U{NI(e)/e € Ey} and
NLabs; = {b € NLabs/Lab(b) € X; Vi € Dis(b)}.

The optimization is defined as

OptActive(AO): <So, Xo, ]\Labso, E(/), In’Uo, 500>,
where E{= {(src(e), Ni(e), grd(e),rst(e),tgt(e))/e € Eo}

For 1 <i<n:

Optactive(Ai)= (S; U {x}, X;, NLabs;, El, Inv; U {(x,true)}, s0; if i €
Active(s0g) else *), where E! is defined by rules of Table [d

The Fig.[2shows the working example optimized respect to Active. Although
the syntactic size of each component is enlarged, deactivation locations reduces
the state space because unnecessary interleaving is avoided [7]. Some experi-
mental results that back up this conjecture are shown in next section. Moreover,
RelClocks could be used to deactivate and activate clocks in the very same spirit
that [13]. More precisely, a clock x such that x ¢ RelClocks(l) could be deacti-
vated whenever the observer performs a jump to [. Tools like OPENKRONOS [23]
allows to explicitly specify deactivation of clocks and this information could also
dramatically improve performanc. It is not difficult to see that this kind of

5 In the figures the assignment = := 1 means that the clock z is deactivated.
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Table 4. Edges rules

be NLabs;,(s,Lab(b),g,r,s'YEE;,igDis(b) be NLabs;,(s,Lab(b),g,r,s'YEE; i€ Dis(b)
<87b7g7T,SI>EEZ{ <S,b,g,7",*>€E§
beNLabs;,Lab(b)¢X; i€ Dis(b) beNLabs; i€ Domain(Ena(b))
(s,b,true,{},*)EE] (*,b,true, Rst(b)NClocks(A;),Ena(b)(i))EE!
bENLabs;,Lab(b)E€In 4, ,ig Domain(Ena(b)) beNLabs;, Lab(b)Z5; ic Dis(b)
(x,b,true,Rst(b)NClocks(A;),x)EE! (*,b,true, Rst(b)NClocks(A;),*)EE!
il SPORADIC 1 il il S1 N

[} siof Q‘
OuplDll

LATCH 1

>=120

S3Dp2
R:=1

OBSERVER

upl U upl

up2

=1
=l
S

Fig. 2. Transformed components of Pipe-line System

abstraction could be directly built on-the-fly adapting verification engines like
OPENKRONOS [23] or TREAT [19] to verify reachability.

The resulting model is CO-Bisimilar to the normal composition and therefore
validates the same TCTL formula over the observer for instance reachability.
Moreover, in the proof of Theorem [ which is given in [7], it is noticeable
that closed runsﬁ of the optimized models are the projections of the runs of the

6 A run is closed if all events are internal or output event of at least one component.
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original model, exhibiting only relevant activity, i.e., lost labels are the events
performed by the non relevant components.

Theorem 1. Given an indexed set of compatible I/O Timed Components
{AiYo<i<n , and an assignment mapping P : Locs(Ag) +— 2F7°Ps if Active
is a correct activity function then (Optactive(Ao) || Optactive(A1) || - |

Opt active(An)) =P P (Ag || AL || ... || An) where P* and P’* are the nat-
ural extensions of P on the locations of Ao || A1 || ... || An and (Opt active(Ao) ||
OptActive(Al) ” H OptActive(An)) resp.

As mentioned, from the TCTL preservation theorem in [6l9] we obtain:

Corollary 1. Given an indexed set of compatible I/O Timed Components
{AiYo<i<n , and an assignment mapping P : Locs(Ag) +— 2F7°P If Active
is a correct activity function. Then, for all TCTL formula ¢ (Optactive(Ao) ||

OptActive(Al) || || OptActive(An)) ':77/* d) Aaad AO H Al || || An ':73* ¢
where P* and P'™* are the natural extensions of P on the locations of Ag || A1 ||
|| A’fl and (OptActive(AO) ” OptActiUe(Al) ” ” OptActive(An)) Tesp.

4.4 Some Experiments

OPENKRONOS [23] was our testbed to show how these ideas can improve the
performance of a verification back-end tool. We have ran several experiments
with OPENKRONOS on an AMD K7 1333Mhz 256Mbytes LINUX 7.2 platform.
Tables Bl and [B] show verification times, the size of the symbolic state space built
by OPENKRONOS in the case that the error is not reachable or the length of the
shortest counterexample we could findd. O /M stands for “out of memory”: the
internal memory has been exhausted and the verifier process trashed. O/T stands
for “out of time”, meaning that the verification process over the original model
has been stopped after waiting more than 100 times the verifier performance
over the optimized model. The first example is the pipe-line of processes. We
play with three parameters: the number of stages, the period of the incoming
signal, and the deadline expressed in the observer (we take n x 60). Remember
that there are two automata for each stage (the process and the latch) therefore,
n stages means n X 2 + 2 automata and the same number of clocks. The state
space is halved when the error is not reachable and this allows us to treat cases
that trash without this proposed optimization. It is remarkable how dramatically
the time and length of counterexamples are reduced using the optimized system.
Again, some intractable cases has been treated in less than one second. It seems
that the exploration tool works in much more guided fashion over the optimized
system specially while sojourning observer locations where some components are
discarded.

The second example is an extension of the FDDI token ring protocol [23] plus
an observer that monitors the time the token takes to return to a given station.
The model is composed by a ring and n stations which, in turn, are composed

7 time is the time it takes to inform the existence of a counterexample, while time* is
the time it takes to build the shortest counterexample when we provide a maximum
depth for the search.
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by the station itself (containing 2 clocks) plus an automata that keeps track of
the parity of the times the station received the token (this is needed to know
how to manipulate clocks each time). In this case, stations perform some internal
activity after releasing the token and before obtaining it again. This increases the
state space with intuitively irrelevant activity for the observed behavior. Thanks
to transference rules, our method discovers this phenomena. Just one station
should be active at each locations of the observer. However, it safely keeps all
clocks and parity automata active since they are needed whenever the station is
interrupted by a new arrival of the token. Table 6l shows the important impact
of this reduction. Other experiments using backward verification of full TCTL
can be found in [T5].

Table 5. Verification results for the Pipe-line example

Hit Error = false Original Optimized
# stages|period ||# st |# tr |time |[|# st # tr time

4 180]|| 4,009| 7,485 0.25| 2,383 4,391 0.13
4 1201|38,376| 90,478| 3.82| 22,817| 53,817| 2.00
5 180([61,081{136,388| 6.90| 32,523| 71,938| 3.23
5 120|| O/M - -11680,421|2,009,126|234.67
6 180|| O/M - -11573,541|1,507,124|184.80
6 120 O/M - o/ - -

Hit Error = true

# stages|period ||depth |time |time *||depth |time time *
4 99 35/ O/M| 2.90 22 0.15] 0.02
4 40 33 3.38] 1.56 22 0.01] 0.11
5 99 O/M| O/M| O/M 27 0.01] 0.01
5 40 50| 241.19|241.19 27 0.01| 0.01
6 99|| O/M| O/M| O/M 299 0.45] 65.70
6 0] O/M| O/M| O/M 75 0.02| 41.40

5 Conclusions and Future Work

It is well known that in order to mitigate state explosion problem combinations
of different techniques should be applied. We provide a correct and complete
approach to optimize the analysis of timed systems. Our technique can be fed
naively with the components of the timed system under analysis plus the ob-
server. It statically discovers the underlying dependence among components and
the observer and provides the set of elements (components and clocks) that
can be safely ignored, from the observational point of view. This implies signif-
icant time savings during the verification step. The tool is also rather easy to
use and integrate as a preprocessor for known tools: it just requires I/O (un-
controllable/controllable) declarations which, in general, are intuitively known
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Table 6. Verification results for the FDDI example

Hit Error = false Original Optimized

# stations|deadline||# st |# tr time ||# st |# tr |[time
6 430((169,952(1,137,408| 66.89| 3,828| 4,540 0.50
8 480( O/M Oo/M 18,419|21,833| 4.35

10 530{ O/M Oo/M -1181,574(96,559| 32.68
Hit Error = true
# stations|deadline||depth |time time *||depth |time |time *

6 420 447 66.13| 0.63 14| 0.48] 0.01
8 470\ 2,045 O/T| 9.23 18| 4.36| 0.03
10 520 12,305 0/T|224.61 22| 32.62| 0.07

by modelers or can be automatically provided by high-level front-end modeling
languages. It is worth remarking that in some cases we are able to treat cases
where the analysis of the original standard composition is unfeasible under the
same conditions. In all case studies, the verification tool run faster and obtains
shorter counterexamples over the optimized than over the original model. Two
main factors affecting the efficiency of the technique: the influence “coupling”
of components and the topology of the observer. For instance there are cases
where the more detailed the observer is (in the sense of the sequence of events)
the more reduction is obtained; particularly when the detailed observer shows
an expected sequence of events and thus irrelevance of components is more likely
to be detected at some locations of that observer. We believe that the ideas of
our approach can be migrated to several frameworks and are complementary to
many state space reduction techniques. Future work also includes less conserva-
tive definitions of influence, the extension of these techniques to automata with
variables and the integration with other popular tools like UPPAAL [4]. Our tech-
nique could also obtain the basic information to calculate the relevant events for
each component. Then, components could be abstracted to exhibit the same set
of runs up to those relevant events. Linear-time properties like reachability may
be checked using these simulation equivalent reductions. An ad hoc automatic
procedure for the aforementioned reduction is presented in [6].
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