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Abstract. In this paper we present a technique to generate animated
3D models from a limited set of images. We adopt a model-based ap-
proach to shape recovery to obtain a specific model parameterisation for
animation. A generic animatable 3D mesh model is first manually posed
to match the pose in the images. Shape information from multiple 2D
image silhouettes is integrated by reconstructing the occupied volume
of an object. The mesh is then deformed to match the reconstructed
volume using a robust coarse to fine matching technique. We formu-
late an irregularly parameterised generic mesh as a shape constrained
deformable surface to preserve the prior shape information and specific
parameterisation in the model. Our interest lies in the generation of ani-
mated human models in a multi-camera studio. We assess the technique
using artificial test cases and present results for a dancer in a studio.

1 Introduction

We introduce a novel model-based technique to recover shape from a limited
set of calibrated images in order to generate animated models of people in a
multi-camera studio. Applications include advertising, computer games, video
conferencing, user-interface agents, virtual environments and clothing retail.
Active sensing systems such as laser scanning or structured light projection
are used to capture highly accurate body surface data through high-cost special-
ist scanning booths. In the studio setting, passive image based techniques such
as stereo reconstruction [7] and shape from silhouette [3/10] have been adopted.
These techniques produce static surface models and do not recover the neces-
sary structure to animate the model. The reconstruction of animated human
models has been addressed through model-based shape from silhouette [5] and
model-based shape from stereo [4]. The model-based approach deforms a generic
model to fit the available shape information, the reconstructed model can then
be animated using the pre-defined animation structure of the generic model.
Our approach extends current methods of shape from silhouette [I5] from 2D
silhouette matching to 3D volume matching using the approximate reconstructed
volume of an object from multiple image silhouettes, the “visual-hull”. Matching
of articulated models in 2D can be problematic as only small differences in shape
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and pose can lead to large variations in the apparent image silhouette. We make
the assumption that where ambiguities occur in a single 2D view, shape infor-
mation is available from additional views to resolve the ambiguity in matching.
We therefore integrate the shape information in multiple images by matching
to the 3D visual-hull. The visual-hull provides only a convex approximation to
the shape of an object, we therefore formulate the generic model as a shape con-
strained deformable surface in matching, to preserve the prior shape information
in the model.

Model-based shape from volume has been introduced previously for segmen-
tation from volumetric medical image data using anatomical templates. Ter-
zopoulos et. al. [I6] first introduced deformable models as a method of shape
recovery. This has proved effective in medical image analysis, exploiting prior
shape knowledge in the shape of the model for segmentation while also allow-
ing for significant variation in the final segmented shape [T1]. Shape constraints
have been included in models using global shape parameters as wells as prob-
ability distributions on shape variables to capture expected variations in shape
[14]. The shape of the human body can be parameterised [I7], however we ex-
pect significant variability in shape with clothing and consider only a locally
constrained shape. Our formulation for a shape constrained surface follows the
work of Montagnat and Delingette [12], who made use of the specific parameter-
isation of 2-simplex meshes to formulate a constrained model. Here we extend
the concept of shape constrained models to irregularly parameterised triangular
meshes, where we attempt to preserve both the shape and the initial mesh pa-
rameterisation that may be optimised for model animation. We also combine the
constrained deformable surface model with a coarse to fine matching technique
to achieve robust matching of the model to the volume.

This paper describes a novel technique for model-based shape reconstruction
of animated models from the approximate volume of an object, using a novel
shape constrained deformable model and robust coarse to fine matching of the
model to volume surface. Section 2 introduces volume reconstruction from multi-
ple view image silhouettes. Section 3 formulates a shape constrained deformable
surface model. In Section 4 we define the assignment of the model to the surface
of the reconstructed volume and give the algorithm for coarse to fine matching
of the model to the volume surface. Finally in Section 5 we present results for
generating animated human models, first in artificial test cases demonstrating
the reconstruction of scanned human data-sets and secondly in a real test case
of a dancer in a studio.

2 Volume Reconstruction

A volumetric representation of an object can be obtained from multiple binary
image silhouettes by a technique termed “Volume Intersection”, introduced by
Martin and Aggarwal [9]. Each silhouette together with the camera view point
forms a generalised cone in space that contains the object. The intersection of
multiple silhouette cones provides a bounding volume, termed the “visual hull”,
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on the object that approximates the object shape according to the position and
number of cameras.

Volume intersection is generally performed by dividing the scene into a set of
3D voxels. The voxels are then labelled as either occupied or vacant according
to the intersection with the silhouette cones. A voxel is occupied if its projection
overlaps all silhouettes and conversely it is vacant if the projection does not
overlap any single silhouette. Here we wish to extract the set of surface voxels to
generate a surface model. The volume of interest is divided into NxNxN voxels
with (N41)x (N+1)x(N+1) corners. The projection of each corner is tested for
overlap with each image silhouette, a corner being marked as non-overlapping if
the projection lies outside any silhouette and over-lapping otherwise. A voxel is
defined as occupied if it has at least one over-lapping corner. The surface set of
voxels is extracted as the set of occupied voxels 6-connected to the non-occupied
voxels. An octree representation of the surface voxels is constructed for efficient
retrieval of closest surface voxels in model to voxel matching. The normal for
each surface voxel is also calculated using a central difference operator on the
occupied voxels.

Accurate camera calibration and silhouette extraction is critical for the recon-
struction of detailed 3D shape. Calibration errors and silhouette noise typically
lead to incorrect labelling of voxels as unoccupied. Our target environment is the
virtual production studio and so we are free to use pre-calibrated fixed cameras
and a blue-screen background for silhouette extraction.

Fig. 1. Volume reconstruction for 2, 4, 6 and 8 simulated cameras spaced at equal
angles around the subject.

It is important to note that volume intersection does not uniquely determine
the shape of an object, only the visual hull can be recovered. The visual hull is the
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maximal volume that generates the original object silhouettes. Futhermore with
only a limited number of viewpoints the apparent occupied volume increases,
leading to protrusions around the object as shown in Figure [[l Here we make
use of prior information on the human shape by seeking to match a generic
human surface model to the surface of the occupied volume.

3 Constrained Surface Model

Standardised methods of representing 3D human models are provided by the
VRML Humanoid Animation Working Group (H-Anim) [I8]. We adopt a H-
Anim 1.2 seamless model consisting of a single triangular mesh defining the
body shape, attached to an underlying skeleton structure with 17 joints to syn-
thesise the gross movements of the body and texture map(s) attached to change
appearance. We make the assumption that the model is first posed to match the
subject in the images either by manual positioning or selection of joint positions
in the images [15]. The model mesh is then deformed to fit the extracted set of
surface voxels.

Deformable surface models were introduced by Terzopoulos et. al. [I6] as a
method of recovering shape from images. The problem is formulated as an energy
minimisation task across the model surface where the potential energy derived
from data fitting is minimised along with the internal energy of the model,
Equation (Il). The deformation of the model in fitting is then regularised by
the changes to the internal energy. The most prominent regularising functional
treats the surface as a thin-plate material under tension, producing a smooth
model that fits the data with a minimum area and minimum distortion.

Etotal = Edata + aEinternal (1)

Fig. 2. Facet based local frame. Central vertex locations z,z,,z, are defined by
barycentric coordinates u, v, h in outer frame x5, 2,z

We seek to regularise data fitting by minimising the deformation of a tri-
angular mesh from the default shape and default parameterisation. Local mesh
shape has been approximated using quadratic surface patches either in vertex
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based or facet based local frames [8]. For a vertex based scheme on an irregu-
lar mesh the default position of the central vertex, defining the default shape
and parameterisation, is not well defined with respect to the neighbourhood of
the vertex. We therefore consider a facet based local patch as introduced by
Kobbelt et. al. [8] and shown in Figure (2)). The default vertex positions of the
central face z, z;, 2, can be defined by the barycentric coordinates in the frame
of the surrounding vertices x5, z,,z5 of the patch. We minimise the deviation
of the mesh vertices from the default vertex positions reconstructed from the
default barycentric coordinates in each facet based patch, preserving the local
shape and relative parameterisation of the mesh. Equation (2) gives the internal
energy of the shape constrained deformable surface where z, is a vertex in the
mesh with valence IV;, and (u?f, v?f, h?f) are the default barycentric coordinates

of the vertex in the f** facet based frame.

lz; — z(ufy, vif, hip)|1?
Einternal = § Z Z‘{V‘ i ! (2)
i f t

Figure (B) demonstrates the effect of the internal energy on an irregular
mesh with added noise and no data fitting term. The mesh recovers the original
shape of the model under the shape constraint, even in the presence of severe
distortions.

Fig. 3. Restoration of an irregular mesh (a) original shape (b) shape + noise (c) 50
itertions (d) 100 iterations (e) 150 iterations



Reconstruction of Animated Models from Images 387

4 Model to Volume Surface Matching

Our task is to match the shape constrained active surface model to the surface
set of voxels from volume intersection, in order to deform the model to match
the apparent shape of a subject in a studio. Kakadiaris et. al. [6] addressed
a comparable problem in fitting deformable models to 2D images of body seg-
ments, making using of an “all-neighbours” assignment method for model to data
matching. Here we use a similar assignment approach. A simple nearest neigh-
bour type assignment would lead to distortions of the surface model according
to the initial alignment of the model with the surface voxels. We therefore as-
sign each vertex of the active surface model to all the surface voxels and use the
robust point matching technique introduced by Rangarajan et. al. [I13] to weight
the assignment as the surface deforms.

The energy function we seek to minimise in data-fitting is the least-squared
error between the model and the set of surface voxels. The energy function is
given by Equation (&) where x,; spans the set of I model vertices and Y, spans
the set of K surface voxels.

Baata = »_ > _milly, — ;| (3)
k

%

The all-neighbour assignment is defined by a matrix M of continuous match
variables m;j, subject to the following constraints ([H): a voxel Y, can match one
model vertex m;; = 1, partially match several vertices ), m;;, < 1 or may not
match a vertex m;, = 0, and a model vertex z; must be assigned to the voxels
> Mik = 1. The inequality constraint is transformed to an equality constraint

by augmenting the match matrix by the slack variables m i1 .

0<m <1
Sy =1 (4)
k=K
Zk:l mg = 1

We explicitly constrain the model to match the surface voxels. If the vertices
were free to not match the voxels, then the model to voxel assignment could be
lost where the restoring forces from the internal energy of the model become
comparable to the assignment forces in matching. It is important to note that
this approach is therefore only appropriate where the majority of the surface
area is reconstructed by volume intersection. We rely on the shape constraint
energy of the model to prevent excessive distortions in the presence of occlusions.

Rangarajan et. al. [I3] make use of deterministic annealing approach to the
assignment by adding an entropy term to the energy function. The temperature
T of the entropy term defines the degree of fuzziness in the assignment (G).

Egata = Y > mally, —zll> + T > ma (lg(ma) — 1) (5)
% k 7 k
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The final energy equation for the shape constrained deformable model is then
given by Equation ().

2
Etotal—azzux N‘" Zf’hf)”
Sl TE S )
7 k 3 .

For a fixed temperature 7' and fixed model configuration z; the match pa-
rameters m;, can be derived by differentiating the energy function with respect
m; ([[). The Sinkhorn balancing technique of alternating row and column nor-
malisation of the match matrix M can then be performed to satisfy the match
constraints (@) [I]. Equation (@) shows that a vertex assignment is therefore
weighted according to the relative distance to a surface voxel |y, — ;| with
the temperature T defining the effective region of matching in space. As the
temperature tends to zero this method approaches nearest neighbour matching.

dmm = ”yk 1'”2 + Tlg(mik) =0

—x. 2
My = eTp ( lly, Til” > (7)

Similarly for a fixed assignment we can derive the gradient of the energy
function with respect to the mesh vertices z;, Equation (§)), giving a gradient
descent solution for the evolution of the mesh. We seek to fit the active surface
model to the surface voxels by alternately updating the assignment to the surface
voxels m;y, using Equation (@) and Sinkhorn balancing of the match matrix M
to satisfy the constraints in Equation (d]), then updating the vertex positions of
the model z; using Equation (§). The temperature is reduced as the model is
updated to refine the assignment, giving a coarse to fine approach to matching.

dt
%: %:—QZZ xz,; —J? zf’ lf’ +szzk (8)

We start at an initial temperature T;,;; that gives a matching region larger
than the greatest expected error, typically we set Tj,;; = 0.4m?. The match pa-
rameters are initialised according to Equation (@) and the slack matches mj41
set to the minimum match m;y for each voxel k. We then iteratively update the
model and reduce the temperature until the final temperature T'f;nq; is reached.
T'tinal is set in the order of the voxel size for a close fit to the voxel surface. At a
set temperature and defined matches, the model is updated using explicit Euler
integration steps until convergence. The convergence criteria is set as the max-
imum component of the gradient falling within the current region of matching,
that is max { || 4£]| } < VT.

The number of surface voxels is potentially large, depending on the voxel
size chosen in volume intersection. In practice we therefore restrict the number
of voxels used in matching for each vertex to a closest sub-set. This also leads to
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more efficient storage of the match matrix M. We use the octree representation
of the surface voxels to efficiently retrieve the closest voxels. We also only match
a vertex to those voxels whose surface normal lies in the same half-plane as the
vertex normal in order to avoid incorrect surface matches.

5 Results

The technique was tested using virtual views generated for human 3D scanned
data-sets, provided by Cyberware, in a simulated studio. A varying number of
cameras were positioned in the studio at equal spacing and 3m radius around
each data-set. An ideal pin-hole camera model was used with NT'SC resolution
and typical intrinsic parameters. Images of the data-sets were then rendered in
OpenGL and used to test the shape reconstruction. Volume intersection was
performed using a lcm voxel size. Both the internal and data fitting energy
terms represent geometric errors at the mesh vertices and we give equal weight
to both terms in matching, o« = 1. We find this provides adequate data fitting
without the need for fine tuning of the parameter «, although we note that this
may be case specific and that this requires further investigation.

;

Fig. 4. Error distribution (/m) in fitting to voxel surface from 2,4,6,8 simulated cam-
eras.

Figure () shows the distribution of errors between the deformed active sur-
face model and the original scanned data-set across the surface of the model, for
the surface voxels reconstructed from 2,4,6 and 8 cameras as shown in Figure
[ The Metro tool [2] has been used here to measure and display the errors. We
can see that the shape constrained surface leads to feasible shape solutions even
for a limited number of camera views in the presence of large deviations in the
reconstructed volume from the true body shape. The shape constraint of the
active surface model leads to a smooth approximation of the body shape. The
model cannot recover the fine detail and concavities in the original data-set that
are not reconstructed in the visual hull. The illusion of additional surface shape
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information would be obtained by texture mapping the smooth model. Figure
(B) shows the reconstructed shape for a dancer in a 6 camera studio.

6 Conclusions

We have presented a method for 3D reconstruction of animated models from
a limited number of camera images. We introduce a model-based approach to
shape from silhouette that preserves the prior shape information in the model,
regularising data fitting, and the parameterisation of the model for animation.
A generic animated model is first manually posed. The model is then matched
to multiple image silhouettes simultaneously by fitting to the reconstructed
visual-hull of an object. We formulate an irregular triangular mesh model as
a shape constrained deformable surface. The mesh is deformed to match the
reconstructed volume using a robust coarse to fine matching technique. This has
been applied to reconstruct smooth animated models of humans. Further work is
required to test this approach for a variety of subjects wearing different clothing
in a studio. The task also remains to apply colour texture from the images to
generate photo-realistic models.

Ty

Fig. 5. Reconstructed model for a dancer in a studio showing 3 of the 6 captured image
silhouettes and the reconstructed visual-hull
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