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ABSTRACT 

We investigate the possibility of using error correcting codes in digital signatures. 

A scheme combining one way functions and a MDS code is presented and analyzed. 

We then study an attack upon this scheme and upon more general ones called 

"random knapsack schemes" involving a linear combination Xi T(xi,i) of the 

message elements x i .  

I. INTRODUCTION 

Digital signature schemes provide two kinds of authentication services : integrity of 

messages and identification of users. This paper is concerned with integrity aspects of 

digital signatures. Various terminologies and techniques are used in this context : 

MAC, MDC; MIC, seal, cryptographic checksum, one way hash function, 

compression, condensation ...([ 1],[2],[3]). The motivation is to prevent malicious 

changes in a transmitted or stored message x . The basic process is the following : 

associate with x a short "certificate" s(x) which is transmitted or stored in a secure 
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manner (i.e. with protection against active attack). We will restrict ourselves to 

systems which do not require the sender and the receiver to share a secret key K . 

The basic requirements are : 

(i) s(.) is easily computable, s(x) is concise (e.g. from 8 up to 128 bytes), 

(ii) s(.) is unforgeable : given y in the signature domain, it is computationally 

unfeasible to calculate a quasi inverse +(y) of y. 

To avoid small falsifications (e.g. change of a name, of an amount in a payment 

message), we add an extra condition : 

(iii) Two messages with the same length must differ from d symbols or blocks. 

In the following we assume that the message x is composed of symbols x i  

belonging to an alphabet X, then x = (x l ,  XZ, ... x k ) ,  we set [k]={ 1,2,...,k}+ 

We distinguish two types of attacks : 

(a) Given x find x' such that s(x')=s(x). 

(b) Find two messages x and x' such that s(x')=s(x). 

This two types have some similarities with the so called "known plaintext" and 

"chosen plaintext" attacks in a classical cryptographic system for confidentiality. 

A more realistic attack of type (a), productive for the intruder, is the following : 

(a') Given a message x and y = s(x), a fraudulent message x' partially specified 

in a subset I of symbol positions, find x )  fo r j  E J =[k]V such that s(x)=s(x'). 

A similar attack (b') of type (b) can be defined. 

In data networks, a reasonable goal should be to gather together different aspects 

of integrity, in particular : 

- error detection and correction 

- manipulation detection and localization. 

Merging these items brings some "technical" problems. One major difficulty comes 

from the following fact : nearly all constructing methods for error-correcting codes 
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are based on linear computations which are well known for their cryptographic 

weakness. 

We studyseveral schemes which use linear combinations of the different elements 

of the message. 

II. RANDOM KNAPSACK SCHEMES 

When designing an integrity signature scheme without secrete key, a basic need is 

to dispose of a one-way function 6. In contrast with well known public key 

algorithms such as RSA, there is no necessity here to invert $J with the help of some 

hidden trap door information. Then we can consider purely random generated 

knapsack : 

Generate k random numbers a l ,  a2, ..., ak bounded by M ; and calculate sfx) = 
Ci Xi ai . In this paragraph, the alphabet X is binary, X = (0,1} . 

When k is large enough, this scheme is deeply insecure against attack of type (b) 

as shown by our next proposition. 

Proposition 1 : Given k integers aI, a2, .... ak with a i I M  , it is always possible 

to find I ,  J E { 1,2 ,..., k }, I d  , such that 
C iEI ai = C j E l  a, 

in O(kZog(k)) operations when M I k W k J l 4 .  

For instance if k =220 (message with 128 Kbyte) and M = 2loo, an attack needs 

about 20.106 additions. 

Proof : After sorting, we can assume ai-1 I ai for 1 < i I k .  We derive a new 

sequence of length k : bl=al and bi =ai -ai-l for 1 <i S k. There exists an element a; 
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in { bi } such that u', I M/k.  If = bj , we then discard from the sequence { U i  1, 
the two elements uj and u,-l involved in u )  . Then we determine an other element u'2 

such that u'2 I M / ( k - 2 ) .  Iterating the process k'=k/4 times, we then obtain k' 

elements a']. a'2. ..., u',,, such that a'i < M/(k-2 i )  I 2Mlk. 

Assuming than k=2U,  M=2', we have at our disposal a new sequence {a'i 1 of 
length k'=2"-' wjth elements bounded by M'=2-+'. We consider the recursion : 

u('+') = uc!, - 9 

vO+V = Vet) - -@) + 1, with uCOJ = and do) = v, 

then we obtain : 

u(')= u - 2t and 

d')= v - tu + tz .  

Note that vW reaches its minimum vmin for r=tdn=u/2, then vmin= v-u2/4 . If 
v - 4  all the elements of the sequence { ui(tmid } vanish. This occurs if v<u2/4 or M 
I k 1 0 d W .  Each step of the algorithm requires kW2 = 2u(') -1 additions and a sorting, 

that is O(kcrjZog(kct))) additions. Then the total complexity is less than k Zogk + 
(2k/3)(k+Zogk) c 4 k Zog(k) additions ; that is O(k Zogk). The algorithm needs no 

more than O(kZog(k)Zog(M)) binary operations. 

Notice that this algorithm is not probabilistic : at each step, the worst case is 

considered. To perform attack of type (a), algorithms which require more 

computational effort exist. A probabilistic algorithm will appear as a consequence of 

proposition 2. 

III . ERROR-LOCALIZING CODES SCHEME 

We present a scheme combining one way function and error correcting code : 

Split the message x into blocks xi E Fi  of length u (e.g. u = loo), x = (XIJZ, 

... , xk) , then use a one way injective function &(.) from F; to F' (e.g. IF'I =q = 
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212*). For instance @(xi)  can be written as $;(xi) = $(i hi), where "I" stands for 

concatenation. We therefore obtain k symbols n = $jjlxi) in F.  Encode (yj, B, ... , 
yk) with a [n,k,d 1 error correcting code over F .  The n-k (e.g. n-k = 4 )  

redundancy symbols %+I, %+2, ... , yi form the signature s. 

Detection and correction 

We consider codes over very large alphabet I? of cardinality q . Then n < q, and 

we can restrict ourselves to MDS code. It is well known that most of the error 

correcting codes are far from perfection. More precisely, the density A = 2-5 of the 

packing is small ; A is the fraction of the space Fn which lies inside the spheres Bt 

of radius t centered on the code words. Therefore, most of space may be used for 

detection. For a [n,k,d] code C, we have .t = [ ( & I )  /2] and A = ICI . lBtl / 1F"I. One 

can consider than a part log IBJ of the redundancy (i.e. (n-k)log(q) bits) is used for 

correction, the remaining part 6 = (n -k ) log (q )  - log lBtl for detection. A 

straightforward estimation gives : 

S=log(q) [ n - k -  t (  1+ logqn -log,t) 3 
n-k For our application, we have t = [- 3 (cf. MDS codes), and possible order of 2 

magnitude of the parameters is : 1 I t  I 10, n < 232, q > 2100 . Then, we have 

t < n << q and S = Zog(q) [ (n-k) /2]  . Half of the signature symbols are used to 

detect error or manipulation. 

Localization or correction 

Using Berlekamp-Massey algorithm, it is possible to localized errors in O(n.d) 
operations over F. But, due to the presence of the one way functions &, the error 

evaluation on the can not be exploited to correct errors on the xi. . However, for 

some type of messages, errors can perhaps be corrected by try and error procedures 

for instance, by exploiting natural redundancy of a language. 

The error correction algorithm can be carried out only if it is possible to invert 

each q5i for each position i in error using some (secret) trap door information. 
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Weakness of the scheme in low characteristic 

It is important to select the field F with a high characteristic. For instance if the 

characteristic of F' is 2, i.e. q = 2v, then it is possible to perform an attack of type 

(a') by modifying U I=O((n-k)v) blocks of a arbitrary fraudulent message x' . In 

this case the signature s is computed in FZ(n*' following the formula : 

where n and HW are respectively lxv and vxv(n-k) binary matrices. The binary 

image of the [n,k] MDS code over F is then a [nv,kv] code over F2 with parity 

check matrix H = [ZW, ..., IN]. 
Let J the set of position used to adapt the fraudulent message to the desired 

signature, we consider the cheating procedure : 

- For the legitimate message, compute y(iJ = 
and then a = X i ,  ikl y(i) . 
- For a fraudulent message x', choose randomly {x; ] for jgJ ,  

compute similar quantities, 

for i.s [k]  

y'i = $i(x'i) , y'(j) = y 'i ; 

0' = E i E i k ]  Y'(i) * 

- Find { Ej ; E ~ E  F2, j E J  } such that U-U' = C j E ,  Ej (y(jj-y'(j,) ; 

this is possible if the vectors (yo)-y'o) ), j g  J , generate F;(n-k) , 

which is true with high probability if IJI = 2 (n-k)v. 

- Let x:= E j X j +  ( I - E j )  x )  be the values of the final message x' in the positions 

j E J .  

The complexity of this procedure resides essentially in the computation of 

O((n-k)v) additional one-way functions @,i(x)). It is possible to specify similar 

procedures with smaller IJ I and for code defined on other fields with low 

characteristic. For such fields, the proposed scheme is therefore very weak. 

In the following paragraph, we present an attack adapted for high characteristic. 
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Iv . AN ATTACK UPON SCHEMES BASED ON LINEAR COMPUTATIONS 

We consider a generalization proposed by Gaston Gonnet, Waterloo of the binary 

knapsack scheme for signature. To precise this scheme it is sufficient to present an 

attack of type (a') which consists in solving the following problem : 

Problem A : 

Given a finite set of indices J ,  an integer a<M,  and a function T(.,.) from X X J 

into 2, fiid a sequence in Xm, X = ( X , ) , ~ J  which satisfies 

E j E l  T(xj,j) = a (1) 

Remark : Notice that solving problem A reduces to solving the following knapsack : 

z(xj, J f l  &,j) T ( x j j )  = a 

subject to 

v k.j7, &,j, E {O,1} 
V j ,  xx E X  { (x , j )  = 1. 

When we exhibit a sequence x for a set of indices J which verifies (l), we say that 

set J is a support for a . The goal is to find an algorithm to resolve the problem for 

small or medium support size V 1. 

In [4], this kind of problem has been studied in a algebraic structure different 

from the additive group (Z,+) of integers. The considered structure G is the group 

of invertible 2x2 matrices with entries in the field Fp . The algorithm proposed in 

[4] supposes the existence of a chain of subgroups Hi, G I, Hp-l 2 H p - z z !  ... a HI 

such that the indexes [ H ,  : H,-1] are not too large. The method can be applied to 

commutative groups with small prime exponent. When G contains a (cyclic) 

subgroup Z l P Z  with large prime P ,  a similar method can be used embedding Z l P Z  
in Z and using the Chinese remainder theorem. 
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A probabilistic algorithm to solve Problem A 

Let M be an upper bound for the possible values of a. We choose M as a 
product of coprime numbers M = I I r E w ]  P, where P r z  P ,  P <2P. We assume that 

IJ I= 2p b. It will appear that Wl> 2P. 
Setting J = 4’’ and by successive dichotomies over J, we obtain : 

J”’ - f-1’ f-1’ f - f )  J”-”= 0 , d:)l = 2r-1 b 
s - 2s-1 2s where 2s In 2s 

We thus get p partitions of J for r+l = p, p-l , . . . ,  2,l : 

J = v 4). 
SE [ul-.] 

The algorithm has p steps. The principle is to determine for each step I and each 
set J’ = .(’, s E [2’-7, a set of K ( P , ~ )  solutions to the equation 

C j E r  T(xi,i) = a 61 (s) modulo Plr)’= I I iE[r ]  P i ,  

where 131 (s) =1 if s = 1, and 0 otherwise. Grossly, we choose K(P,r)=O(P). 

Basic procedure : It consists in determining from 2 sets V1 et V2, each with O(P) 
elements of the form (T(xil, il), ..., T(xi,, it,)), t = 2‘-’b, for r 1 1, a set V’, VI XV2 2 

V’, and IV’I = O ( P )  in which every 2%-tuple’s components add up to 0 (or a ) 

modulo P i ,  i <r. If a l l  the numbers are specified modulo P,  this procedure requires 

essentially a sorting and then O(PlogP) additions. Indeed V I  (resp. V2) is sorted 

according to the value of the component’s sum of its elements modulo P,. After the 

two sortings are performed, then selecting the matching couples needs O ( P )  

comparisons. More precisely, if IVI I = alp and IV2 I = a2P , finding out all 

matching couples need (a] + a z ) P  comparisons since two elements have been 
compared, the smallest is dropped. 

For a fixed step r of the algorithm, this procedure is applied 2C1-7 times for 
Each set V‘I’, SE [D-r], contains O(P) elements with determining 9 - r  sets 
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support J y  . 

Algorithm complexity : 

The basic procedure is applied W-1+ 2@+ ...+ 20 = 3 times. If we assume that the 

complexity of computing one value T(xj j )  is O( l), the overall complexity is K = 2P 

P log(P) p = p2 D + p  for a number U I=% b of symbols used to adapt the signature. 

If, we set K I=2a, M =2m, P =D, we then get : m =pp, & =2p. 

For a = 1, we obtain b = 2p = 2 m / p ,  K = ~ J J + ~ / P  ( m / p ) 2  which reaches its 

minimum for p - 6 ,  we then have K = 22G m and = U 1=2&+1 G&. 
If we consider larger blocks (e.g. a =loo) we can choose b =I, and we obtain the 

same type of result : @ 2 2 G  m and = UI = 2 G .  

Proposition 2 : Using a probabilistic algorithm, it is possible to solve problem A in 

O ( 2 2 G )  operations modifying only U 1=2G+1 4% symbols (U 1=2& if 1x1 > 

Application : M = 2100, in the binary case (cf. paragraph 2) , it is possible to forge a 

(fraudulent) message with the same signature by adapting U I = 2* 2 = 20 

OOO bits, the process needs about 106 operations. 

If the signature domain is sufficiently large (say m=1000 bits) this attack is 

clearly ineffective. The security of the scheme proposed in 9 III remains an 
open problem when the field F is Z/qZ where q is a prime such that Zog(q) = 128, 

and C is a [n,k] code with n-k =8, leading to a signature which is m = (n-k)log(q) 

= 128.8=210 bits long. 
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