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ABSTRACT 

We deal with authentication / secrecy codes having unconditional secu- 
rity. Besides some new results for a "spoofing attack of order L", we give 
several constructions using finite incidence structures (designs, general- 
ized quadrangles). 

1 AUTHENTICATION-SECRECY 

It is the aim to deal in this paper with codes having unconditional se- 
curity, which means that the security is independent of the computing 
power. Analogously to the theory of unconditional secrecy due to Shan- 
non [12], Simmons developed a theory of unconditional authentication 

~ 4 1 -  

Consider a transmitter who wants t o  communicate a source to a re- 
mote receiver by sending messages through an imperfect communication 
channel. Then there are two fundamentally different ways in which the 
receiver can be deceived. The channel may be noisy so that the symbols 
in the transmitted message can be received in error, or the channel may 
be under control of an opponent who can either deliberately modify legit- 
imate messages or else introduce fraudulent ones. Simmons [14] showed 
that both problems could be modeled in complete generality by replac- 
ing the classical noisy communications channel of coding theory with a 
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game - theoretic noiseless channel in which an intelligent opponent, who 
knows the system and can observe the channel, plays so as to optimize his 
chances of deceiving the receiver. To provide some degree of immunity to 
deception (of the receiver), the transmitter also introduces redundancy in 
this case, but does so in such a way that, for any message the transmitter 
may send, the altered messages that the opponent would introduce using 
his optimal strategy, are spread randomly. Authentication is concerned 
with devising and analyzing schemes (codes) to achieve this "spreading". 

In the model some simplifying assumptions are made. We suppose 
that the transmitter and receiver trust each other completely and that 
neither acts to  deceive the other. We also assume that only the receiver 
need be convinced of the authenticity of a message, so there is no third 
party (arbiter) involved here. In addition, we also agree that all successful 
deceptions of the receiver are of equal value to the opponent. We have 
to distinguish the authentication schemes in which the opponent knows 
the state of source (message authentication without secrecy) from the 
message authentication in situations in which the opponent is ignorant of 
the information being communicated to the receiver by the transmitter. 

2 A MATHEMATICAL AUTHENTICATION 
MODEL 

In this model (see [14], [15], [16], [17], [lS]) there are three participants: 
a transmit ter ,  a receiver and an opponent. The transmitter wants to 
communicate some information t o  the receiver. The opponent wanting 
to deceive the receiver, can either impersonate the receiver, making him 
accept a fraudulent message as authentic, or, modify a message which 
has been sent by the transmitter. 
Let S denote the set of k source states, n/r the set of ZI messages and E 
the set of b encoding rules. 
A source state s E S is the information that the transmitter wishes to 
communicate to the receiver. The transnitter and receiver will have se- 
cretly chosen an encoding ruZe e E E beforehand. An encoding rule will 
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be used t o  determine the message e(s) to be sent to communicate any 
source state s. In a model with splitting, several messages can be used to 
determine a particular source state, However, in order for a receiver to be 
able to uniquely determine the source state from. the message sent, there 
can be at most one source state which is encoded by any given message 
m E M ,  for a given encoding rule e E E (this means: e(s) $ e(s') if 
s # s'). 

An opponent will play impersonation or substitution. When the oppo- 
nent plays impersonation, he sends a message to the receiver, attempting 
to have the receiver accept the message as authentic. When the opponent 
plays substitution, he waits until a message m has been sent, and then 
replaces m with another message m', so that the receiver is misled as 
to the state of source. More generally, an opponent can observe i (2 0) 
distinct messages being sent over the channel knowing that the same key 
is used to transmit them, but ignoring this key. If we consider the code 
as a secrecy system, then we make the assumption that the opponent can 
only observe the messages being sent. Our goal is that the opponent be 
unable to determine any information regarding the i source states from 
the i messages he has observed. 

The following scenario for authentication is investigated. After the 
observation of i messages M' c M ,  the opponent sends a message m' to 
the receiver, rn' 6 M' ,  hoping to  have it accepted as authentic. This is 
called a spoofing attack of order i [9], with the special cases i = 0 and 
i = 1 corresponding respectively to the impersonation and substitution 
game. The last games have been studied extensively by several authors 

(see [41, PI, ~ 3 1 ,  ~ 4 1 ,  1161). 

For any i, there will be a probability on the set of i source states which 
occur. We ignore the order in which the i source states occur, and assume 
that no source state occurs more than once. Also, we assume that any 
set of i source states has a non-zero probability of occurring. Given a set 
of i source states, we define p ( S )  to be the probability that the source 
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states in S occur. 

Given the probability distributions on the source states described 
above, the receiver and transmitter will choose a probability distribu- 
tion for E ,  called an encoding strategy. If splitting occurs, then they will 
also determine a spli t t ing strategy to determine m E M ,  given s E S and 
e E E (this corresponds to non-deterministic encoding). The transmit- 
ter/receiver will determine these strategies to  minimize the chance that 
an opponent can deceive them. 

Once the transmitter/receiver have chosen encoding and splitting strate- 
gies, we can define for each i 2 0 a probability denoted P4, which is the 
probability that the opponent can deceive the transmitter/receiver with 
a spoofing attack of order i. 

In this paper, we consider only codes without splitting. We shall use 
the following notation. Given an encoding rule e, we define M ( e )  = 
{e(s) I s E S}, i.e. the set of messages permitted by encoding rule 
e. For a set M' of distinct messages, and an encoding rule e, define 
f e ( M ' )  = {s 1 e(s) E M'} ,  i.e. the set of source states which will 
be encoded under encoding rule e by a message in M'. Define also 
E(M')  = {e E E I M' & M ( e ) } ,  i.e. the set of encoding rules under 
which all the messages in M' are permitted. It is useful to  think of a 
code as being represented by a b x k matrix A,  where the rows are in- 
dexed by encoding rules, the columns are indexed by source states and 
the entry in row e and column s is e(s). We cm also define a b x v 
incidence matrix X in which the rows represent the encoding rules, the 
columns the messages and the entry on row e and column m is 0 or 1 
according m @ M ( e )  or m E M(e) .  
Finally we denote by AC(k,  v, b) an authentication system with k source 
states, v messages and b encoding rules. 

Example. Consider the following code on 2 source states using 4 encod- 
ing rules given by: 
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A =  s 2  s4 
s3 \ and X = 

s1 s 2  s 3  s4 I 1 0 0 1  Y 0 1 1 0  

This is the "best" authentication system possible for k = 2, b = 4, since 
we have Pd,, = Pdl = 112 = I/&. 

3 BOUNDS ON Pd, 

Many of the bounds on Pd depend on entropies of the various probability 
distributions. For a probability distribution on a set X, we define the 
entropy of X ,  H ( X )  as follows: 

H ( X )  = - c P ( 4  * k l P ( Z ) *  
2 EX 

As well, the conditional entropy H ( X / Y )  is defined to  be 

Theorem 3.1 (Simmons [14]) In  an authentication system without split- 
ting Pb > klv. 

An authentication system which satisfies the bound of this theorem with 
equality is said t o  be perfect. 

In a perfect authentication code without splitting, the following proper- 
ties hold (Brickell 141): 

1. for all messages m, Pdo = C I ~ ~ ~ ( ~ ) )  p ( e )  = k/v 

2. for any message m, p ( s )  is constant for all s such that there is an  e 
such that  es = m. 

The following bound is for substitution with secrecy. 
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Theorem 3.4 (SchZbi [ll], Stinson [17]) In an  authentication sys- 
t e m  without  spli t t ing 

k - i  
u - i  Pd, 2 - (i 2 0). 

Following Massey [9], an authentication system is L-fold secure against  
spoofing if 

k - i  
Pd, = - .) fo ra l l i ,  O S i s L .  

U - - 2  

Remarks. An authentication code which is perfect (in the sense of 3.1) 
is O-fold secure against spoofing (see [4]). 

The first bound for Pdl ,  found by Gilbert, MacWilliams and Sloane [6] 
using an uniform source distribution, is given by 

They called a system with this bound perfect. Examples of such a sys- 
tems are included in [6], [2]. 

Afterwards this bound was proven under general conditions by Sim- 
mons and Brickell. They obtained 

UG = rnaxC(P4, pdl) 2 2 - + H ( E )  

and if equality holds, then UG = 2H(E/M)-" (E)  a d  vG = 2a(s)-H('w) (in a 

system without splitting). They called a system with this bound doubly 
perfect. Hence doubly perfect implies perfect (in the sense defined in 3.2). 
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4 SECRECY 

Considering the secrecy properties of a code, we desire that no informa- 
tion be conveyed by the observation of the messages. A code has perfect  
L-fold secrecy (Stinson [17]) if, for every set MI of at most L messages 
observed in the channel, and for every set S1 of at most IMII source states, 
we have p(SI/Ml)  = p(S1). This means that observing a set of at most 
L messages in the channel does not help the opponent to determine the 
L source states. 
On the other hand, a code is said to be Cartesian ([4], [IS]) if any mes- 
sage uniquely determines the source state, independent of the particular 
encoding rule being used. 
In terms of entropy, this is expressed by H ( S / M )  = 0. Hence in a Carte- 
sian authentication code there is no secrecy (it has O-fold secrecy). 

5 BOUNDS O N  THE NUMBER O F  KEYS b 

The first example of an authentication code with Pdl  = l/& was given 
by Gilbert, MacWilliams and Sloane [6] using a finite projective plane 
PG(2,q). However it has the disadvantage that the number of keys q2 is 
much larger then the number of source states q + 1. Codes with k >> b 
have more interest. 

The number of keys is basically influenced by the following two aspects: 

0 the distribution on the source states 

0 the secrecy of the code. 

To illustrate this we mention the following theorems. 

Theorem 5.1 (Massey 191, Schijbi [ll]) For a n  authenf ica t ion  system 
which i s  L-fold secure against  spoofing there holds 
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Theorem 5.2 (Stinson [17]) If a code achieves perfect L-fold secrecy 
and is ( L  - 1)-fold secure against  spoofing, then  

b >  (1). 
Theorem 5.3 If a n  authent icat ion sys tem without splitting achieves per-  
fect  Lt-fold secrecy and i f  it i s  L-fold secwe against spoofing, L' < L + 1, 
t hen  

* (  ;[)- b >  ( L L )  

(L:J 

Proof. Let MI be a set of i 5 L messages which are permitted under 
a particular encoding rule. Let 2 be any message not in MI. Let us 
suppose there is no encoding rule under which all messages in MI U {z} 

are valid. Then it follows from the proof of 3.4 in [17] that we would 
obtain Pd, > (k - i ) / ( v  - i), a contradiction. Hence, it follows that every 
(L + 1)-subset of messages is valid under at least one encoding rule. 

Now pick any L'-subset M2, such that M2 C M I .  In order to achieve 
perfect L'-fold secrecy, the messages in M2 must encode every possible L'- 
subset of source states. Hence every L'-subset M2 is a valid set of messages 

under at least ( i, ) encoding rules. We remark that the same L'-subset 

k - L' 
occurs in exactly (I, + 1)-subsets. Hence counting L'- 

subsets of messages we obtain: 
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or 

We define an optimal (L' ,  L)-code, 0 5 L' 5 L + 1, to be a code which 
achieves perfect L'-fold secrecy and is L-fold secure against spoofing and 
for which b meets the bound given in 5.3. According to Stinson [17], for 
L' = L + 1, w e  cal l  it an optimal ( L  + 1)-code. 

6 CONSTRUCTIONS OF AUTHENTICATION 
CODES FOR AN ARBITRARY SOURCE DIS- 
TRIBUTION 

6.1 Authent icat ion codes derived from generalized 
quadrangles 

A (finite) generalized quadrangle (GQ) is an incidence structure G = 
( P ,  0,Z) in which P and B are disjoint (nonempty) sets of objects called 
points and lines resp., and for which I is a symmetric point-line incidence 
relation satisfymg the following axioms: 

1. Each point is incident with 1 +t lines ( t  2 1) and two distinct points 
are incident with at most one line. 

2. Each line is incident with 1 + s points (s  2 1) and two distinct lines 
are incident with at most one point. 

3. If z is a point and L a line not incident with 2, then there is a unique 
pair (y, M )  E P x B for which z I iM I y I L. 
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The integers s and t are the parameters of the GQ and G is said to 
have order ( s , t ) .  There is a point-line duality for GQ (of order ( s , t ) )  
for which in any definition or theorem the words "point" and "Line" are 
interchanged and the parameters s and t are interchanged. There holds 
IPI = ( s + l ) ( s t + l ) ,  IBI = ( t + l ) ( s t + l )  and s f t  divides s t ( s + l ) ( t + l ) .  

Let x , y  E P ,  we write x w y and say that x and y are collinear, pro- 
vided that there is some line L for which 1: I L I y. And x $ y means 
that x and y are not collinear. For x E P ,  put 1:' = {y E P ly  - z}, 

and note that x E xL. For x, y E P ,  1: f y)  the trace of the pair 
(z,y) is the set {z,y}' = z1 n y'. We have I { ~ , y } ~ l  = s + 1 or t + 1 
according as x - y or x + y. The span of the pair (z,y) is the set 

{x,y}" = {U E P(u E z' Vz E {z,y}'}. For z - y, th;s is the set of 
points of the line xy, while for x $ y, l { ~ , y } ~ ~ /  _< t + 1. 
A spread of a GQ G is a set R of lines of G such that each point of G is 
incident with a unique line of R. Hence there holds In( = s t  + 1. 
Further information about GQ can be found in [ l o ] .  

Let G be a GQ of order ( s , t ) ,  s , t  > 1. Take an arbitrary point 2. Let 
the sources be defined by the t + 1 lines which are incident with x, the 
messages are the points of z'\{x} and the encoding rules are the points 
of P\xl. 

Theorem 6.1 If there exists a GQ of order ( s , t )  then there i s  a Cartesian 
AC(t + 1, ( t  + l ) s ,  t s 2 )  which is 0-fold secwe against spoofing. 

Proof. It is easy to verify that k = t + 1 ,  v = ( t + l ) s  and b =  ( s f l ) ( s t +  
1 )  - ( t  + 1)s  - 1 = s2t.  We define an encoding rule in the following way. 
Given a point y zl, we define for a source state L,  z l L ,  the message 
e,,(L) = z with t the unique point on L such that y - z I L. We use each 
encoding rule with probability l / s 2 t .  We verify that Pdo = k/v. For an 
arbitrary message m, there exists s t  encoding rules containing m. Hence 
payoff(m), the probability that the message rn is accepted by the receiver 
is given by 
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s t  1 k  
payoff(m) = C p ( e )  = - = - = -. 

s2t s U eEE(m) 

We also remark that Pdl = 1/s > (k - l ) / ( u  - 1). 
Indeed, let rn, m’ be two distinct messages. We obtain 

1 - - E{eEE(m,m’)} P ( s  = f e ( m ’ ) )  - - - 
C { e E E ( m f ) }  P(S = f e ( m ’ ) )  st s ’  

since there are t encoding rules for which both m, m‘ occur. 
payoff(m, m‘)=I/s. 

Hence 

Remarks 1. Using the same set of source states and messages we can 
define an 
AC(t + 1, ( t  + l)s,ts2(t + 1)) with P4 = l/s, pd, = l/s, which is 0-fold 
secure against spoofing and which has perfect 1-fold secrecy. From each 
encoding rule of the preceding theorem we d e h e  t + 1 new encoding rules 
in the following way. Let M(ey) = My = {zl, ..., then we define 
for each 0 5 i 5 t 

e(My,i) = (e j  I 1 5 j 5 t + 1) where ej = zj+; (modt+l).  

This illustrates the influence of the secrecy of the code on the number of 
encoding rules b.  

2.  If the point z is regular, this means that I { ~ , y } ’ - ~ l  = t +  1, Vy E P ,  
y # z (see [lo]), the foregoing code can be improved to an AC(t + 
1, ( t  -t l)s ,  ( t  + 1)s’) with Ph = l/s, pd, = l /s ,  which is 0-fold secure 
against spoofing and which has perfect 1-fold secrecy. Therefore we take 
M(ey) = {z,y}”, Vy E P ,  y + 2. Since we have s2 different sets Me, the 
number of encoding rules (using the same procedure as in 1.) now equals 
s 2 ( t  + 1). 

3. A complete description of the ”known” GQ of order (s,t) is given in 

P O I  * 
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Consider again a GQ G of order (s, t )  which contains a spread 

R={Ll,. . . ,&+I]. Define the source states as the lines of R (Ic = st+ 1) 
and the messages as the points of G (v = ( s t  + l)(s + 1)). Denote the 
points as ~ 1 , 1 , ~ 1 , 2 , .  . . , zi,j7. . . , ~ , t + l , , + i ,  with zi,j I Li7 1 5 j 5 s + 1, 
15 i 5 s t +  1. 
Then we define an encoding rule in the following way. We associate with 
each point xivj  a n  encoding rule 

ezij (Lk) = Zi+k,lr7 

with zi+k,It the unique point on the line Li+k which is collinear with X i , j  

(where i + k  is taken (mod s t f l ) ) .  In this way we obtain b = ( l + s ) ( l + s t )  
encoding rules. 

Theorem 6.2 If there exists a GQ of order ( s , t )  containing a spread R, 
then  there is  a n  optimal 1-code f o r  s t  + 1 sowce states and ( s t  + 1)(s + 1 )  
messages. 

Proof. We shall use each encoding rule with probability l / ( s+  l ) ( s t  + 1). 
Let us first verify that Pk = k / v .  Consider a message m. Then rn occurs 
in s t  + 1 encoding rules (since there are s t  points collinear with m, not 
on the line of the spread incident with n). Hence payoff(m) is given by 

k - -. - 1 - -  - s t  + 1 
( S + l ) ( S t + l )  s + l  z1 

~ a ~ o f f ( m )  = C p ( e )  = 
e E E ( M )  

So the system is 0-fold secure against spoofing. The code has perfect 
1-fold secrecy since each message occurs exactly once in each column of 
the b x Ic matrix. Since b = v ,  equality is valid in 5.2 and we have an 
optimal 1-code. 

Remark. For the known spreads in GQ of order (s, t )  we refer again to 

[101. 

Implementation of the optimal 1-code. 

We implement the optimal 1-code derived from the GQ T . ( O )  of order 
( q  - 1 ,  q + l), q = 2h  (see [lo]). Therefore we use the coordinatization of 
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this quadrangle given in [ 5 ] .  

Consider an automorphism CY of GF(q) ,  q = Z h ,  such that Oa = 0, 
la = 1 and{( l ,z ,xa) ,x  E GF(q)}~((O,O,1)}definesanovalinPG(Z,q). 

The source states are the lines of the spread [[m,k]], m,k E GF(q) .  
Denote them by L ' L + ~ .  
The messages are the points ( m , g , k ) ,  m , g , k  E GF(q) ,  which will be 
denoted by z k + m q , g .  

The encoding rules are given by 

e k + m q , g ( L j )  = z k + k t + ( m + m / ) q , g t  

with j = Ic' + m'q and g' = g + ( k ' n ~ ' - l ) ~ m .  
Hereby is z k + k f + ( m + m j ) q , g t  the unique point (m + m', g + (k'n~'-')~, k + k') 
on the line L k + p + ( m + m / ) q  collinear with (m, g, k). 

6.2 Authentication codes derived from Steiner systems 

Consider a t-(v, I c ,  A) design 23. For X = I, these are the so called Steiner 
systems (see El], [3], [S]). 

Theorem 6.3 A Steiner system2) defines an AC(k , v , v ! ( k - t ) ! / ( v - t ) ! )  
which has perfect t-fold secrecy and ( t  - 1)-fold security against spoofing. 

Proof. In a t-(v, k, 1) design D, each element occurs in T = (v - 1) - - . (v - 
t + l ) / ( k  - 1) - - . (k - t + 1) blocks and the total number of blocks is given 
byv.(v-1) - - . ( ~ - t + l ) / k - ( k - l )  . . - ( k - t + l ) .  Weconstruct k! encoding 
rules from every block of D ,  since for each block A = (21,. . . , xk} this is 
the number of keys required to do a perfect enciphering on the k points. 
Denote the keys, derived from the block A by eAl , .  . . , eAk!. Hence we 
obtain 

21 * (v - 1) * - * (21 - t + 1) v!(k - t ) !  b =  . k !  = 
k .  (k - 1)**-(k - t +  1 )  (v - t ) !  

eqcoding rules, which we shall use with probability l / b .  
We first verify that the code is ( t  - 1)-fold secure against spoofing. 
Let M' C M ,  IM'I = i ,  i 5 t - 1, rn E M\M', then we obtain: 
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since we use the uniform encoding strategy. 
First we remark that the messages of M', resp. M' U {m}, occur in 
A' = (v - i) . ' .  (v - t + l)/(k - i) . . . ( k  - t + l), resp. Xh = (v - (i + 
1)) . + - (v - t + 1)/( k - (i + 1)) 1 . - ( k  - t + 1) blocks. For each such block 
there are exactly (k-i)! encoding rules e k  such that M' C M(eA,), resp. 
M ' U  {m} C M ( e A )  and f e (M')  = S' c S with JS'l = i. 
There results 

k - i  
A' v - 2  

- A:, P& = - - -. 
The authentication code has perfect t-fold secrecy since p(S'/M') = p(S') ,  
for every S' C S, M' c M with IS'\ = JM'J = t . ~  

Remark. The foregoing construction of an optimal t-code can be applied 
to a more general structure, nl. a group-divisible t-design. 
A group-divisible t-design GD(k,  A, n, t ,  v) is a triple (X, G, A )  satisfying: 

1. X is a set of v elements called points 

2. G is a partition of X into v/n subsets of .n points, called groups 

3. A is a set of subsets of X (called blacks), each of size k ,  such that a 
group and a block contain at most one common point 

4. every t points of distinct groups occur in exactly X blocks. 

Note that a G D ( k ,  A, n, t ,  k . n) is equivalent with a transversal t-design 

Applying the same construction as in 6.3 a GD(L,X,n,t,v) defines an  
(see [71). 

X - v f (v - n> . - (v - (t - 1)n) a 

k!) v7 k . (k - 1) . . . (k - t + 1) 
which has perfect t-fold secrecy and for which Pk = (k - i ) / ( v  - i - n) ,  
for 0 5 i 5 t -  1. 
Moreover the code is ( t  - 1)-fold secure against spoofing if and only if 
n = 1, in which case we have a t-(v,  k, A) design. 
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7 AUTHENTICATION CODES FOR UNIFORM 
SOURCE DISTRIBUTION 

We consider the construction of authentication codes for uniform source 
distributions ( p ( s )  = l / k ,  for any source state s). As before we are 
dealing only with codes without splitting. We know that the best bound 
is given by PA = ( k  - i ) / (v  - i ) ,  for a spoofing attack of order i. 

Theorem 7.1 An authentication system is L-fold secure against spoofing 
w.T.t. the uni form probability distribution on the souTce states i f  and only 
if, f o r  every i ,  0 5 i 5 L and for every &I' c M ,  IM'I = i + 1, 

k k - 1  k - i  c 244 = ; * = - - - = *  

e E E ( M ' )  

PTOO~.  Stinson [18] proved the theorem for L = 0 , l .  We procede by 
induction. 
Suppose that the system is ( L  - 1)-fold secure against spoofing, then for 
every i, 0 5 i 5 I, - 1, and for every M' C M ,  IM'I = i + 1, 

k k - 1  k - i  c P ( 4  = ; * ~ * * * ~ ~  

eE E (M') 

There holds PdL = (k - L ) / ( v  - L )  if and only if, for every M" C M ,  
IM"I = L,  m E M\M", we have 

Since the source distribution is uniform, this is equivalent to: 

z { e E E ( M " L ' { m } ) )  de> - - L .  - c{ eE E (M ")} P ( e )  v - L  

Taking account of the induction hypothesis, 

k k - 1  k - ( L - - l )  C p ( e )  1 -.- . . .  
eEE( M " )  ZI v - 1  v - ( L - l ) '  

and hence 

k k - 1  k - L  
* a  c +) = -.-...- 

eEE(  M " L J { ~ ; )  v v - 1  ' U - L  
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Remarks. In many authentication codes, the encoding strategy is to 
choose every encoding rule with probability l /b .  If we assume that this 
encoding strategy is in fact optimal, then the properties of the foregoing 
theorem are of purely combinatorial nature. We can formulate the fol- 
lowing theorem. 

Theorem 7.2 An authentication s y s t e m  is L-fold secure against spoofing 
with respect to  a un i form encoding strategy and a uniform probability 
distribution o n  the source states if and only .if the following property is 
valid f o r  every i, 0 5 i 5 L and every M‘ c M ,  IM‘I = i + 1, 

k k - i  
v v - i  

IE(M’)( = b - - a  
-- 

Example. A t - ( v , k , X )  design (see 111, 131, [S]) defines a n  authentication 
system f o r  a uniform source distribution and a uniform encoding strategy 
AC(k ,  v, b) which is ( t  - 1) -fold secure against spoofing. 

Indeed, let D be a t - ( v , k , X )  design. Then 2) is also a t ’ - ( v , k ,&)  
design, 0 5 t’ 5 t ,  with 

(v - t’) * (21 - t’ + 1) - * - (21 - t + 1) 
A:, = x - 

(k - t‘) * (k - t‘ + 1) * - * (k - t + 1)’  

Since for a 2-design v . T = b . k and (k - 1) T = (v - 1) - A;, we obtain 

v * T  21 - (v - 1) *-*(?I - t + 1) b = -  = A -  
k k - ( k  - 1) * * * ( k  - t + 1)‘ 

Using the uniform encoding strategy and uniform source probability, we 
define a code, identifying blocks with keys and points with messages. 
Any t’ messages occur in A’ blocks and hence for M’ C M ,  IM’I = t’, 
15 t’ 5 t,  

- - (v - t‘) * .  * (v - t + 1) 
(k - t’) * * * (k - t + 1)  

/E(M‘)I = A;, = x * 

k . ( k - l ) - - * ( k - t ’ + l )  
b .  

21 1 (v - 1) . * * (v - t’ + 1) 
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and theorem 7.2 is satisfied. 

Using known families of t-(v,  k, A) designs we can define many authen- 
tication codes for uniform source distributions.' 

Consider the symmetric Hadamard 2-(n-I,; n-1,:n-I) design and the 
Hadamard 3-(n,in,in-l) design, derived from a Hadamard matrix of or- 
der n. We remark that there exist Hadamard matrices for each power 2k,  

Hence we can derive l-fold secure AC(2k-1 - 1, 2k - 1, 2k - 1) and 2-fold 
secure 
AC(2k-1, 2k, 2(2k  - 1)) authentication systems. 
A Hadamard matrix of order 4k2, k > 1, defines a symmetric 2-(4k2, 2k2- 
k, k2 - k) design and hence a l-fold secure AC(2k2 - k, 4k2, 4k2). 
Note that it is a conjecture that Hadamard matrices exist for all n 
(mod4), n > 0. (the smallest unsettled case at the present is n = 188). 
We also want to  mention the following nice property of Hadamard ma- 
trices. If there exist Hadamard matrices of order m, resp. n, then there 

k 2 2 (see PI, [31, [11). 

0 

exists a Hadamard matrix of order m - n. This unables us to define new 
authentication systems derived from those systems which are associated 
with Hadamard designs. 
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