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Jǐŕı Srba�

BRICS��, Department of Computer Science, University of Aarhus,
Ny Munkegade bldg. 540, 8000 Aarhus C, Denmark

srba@brics.dk

Abstract. We define a class of transition systems called effective com-
mutative transition systems (ECTS) and show, by generalising a tableau-
based proof for BPP, that strong bisimilarity between any two states of
such a transition system is decidable. It gives a general technique for
extending decidability borders of strong bisimilarity for a wide class of
infinite-state transition systems. This is demonstrated for several process
formalisms, namely BPP process algebra, lossy BPP processes, BPP sys-
tems with interrupt and timed-arc BPP nets.

1 Introduction

Semantics of various formalisms for description of concurrent processes like pro-
cess algebra, Petri nets, pushdown systems and many others is usually given in
terms of labelled transition systems. This provides a common ground for study-
ing such systems, and the usually considered problems as model checking and
equivalence checking (see e.g. [8]) can be defined purely in terms of labelled
transition systems. In this paper we focus on the equivalence checking problem
and show a general approach for extending known decidability borders of strong
bisimilarity for commutative-based process formalisms. In particular, we exam-
ine the class of transition systems generated by algebras with the operator of
parallel composition and we discuss its extensions with lossiness, interrupt and
with time features.

It is known that strong bisimilarity is undecidable for a typical representa-
tive of fully parallel models — Petri nets [15]. Nevertheless, in [9,10] Christensen,
Hirshfeld and Moller proved using a tableau technique, that bisimilarity is de-
cidable for an important fragment of Petri nets called communication free Petri
nets. The complexity of this algorithm is still open — no primitive recursive
upper bound is known. PSPACE-hardness of the problem was recently shown
in [23]. The class of transition systems definable by communication free Petri
nets can be equivalently described in terms of process algebra with a commuta-
tive operator for parallel composition and recursion. It is this formalism, usually
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called Basic Parallel Processes (BPP), that is used in the original tableau-based
proof in [10]. For an overview on the tableau technique consult e.g. [16].

We abstract from the specific BPP syntax and generalise the proof for a class
of transition systems called effective commutative transition systems (ECTS).
We give six simple conditions on a transition system to be an ECTS and if all of
them are satisfied, bisimilarity between any two states of the transition system
is decidable. There is no need to know the syntactic description of the system.
Moreover, the generalisation is achieved in several ways: (i) states can be tuples
of bounded multisets of natural numbers and not only tuples of natural numbers,
(ii) we do not insist on a specific computation of successors of a given state —
any effectively computable and finite set of successors is acceptable, and (iii) an
auxiliary equivalence relation on states is introduced in order to check invariants
for pairs in a bisimulation relation.

Semantics of many formalisms can be defined as an ECTS and this yields
immediately decidability of bisimilarity. We demonstrate this on four examples
— BPP process algebra, lossy BPP processes, BPP systems with interrupt and
timed-arc BPP nets — thus extending in several ways the known decidability
border which lies somewhere between BPP systems and state-extended BPP
systems (state-extended BPP systems are a strict subclass of Petri nets where
bisimilarity is still undecidable [8,16]).

Note: full version of this paper appears as [22].

2 General Method

Let N0 = {0, 1, . . .} be the set of natural numbers. A multiset of N0 is a function
M : N0 → N0. Let i ∈ N0, then M(i) denotes the number of occurrences of
i in the multiset M . The empty multiset ∅ is a function such that ∅(i) = 0
for all i ∈ N0. The multiset union of two multisets M1 and M2 is defined by
(M1 �M2)(i) = M1(i) +M2(i) for all i ∈ N0. By B∞ we denote the set of all
multisets of N0. Let m ∈ N0. We define a set Bm of all multisets of {0, 1, . . . ,m},
i.e., M ∈ Bm iff M ∈ B∞ and M(i) = 0 for all i ∈ N0 such that i > m. We
call a multiset M ∈ B∞ finite if there is some m ∈ N0 such that M ∈ Bm. For
finite multisets we sometimes use an alternative set-like notation: e.g. a multiset
{0, 1, 1, 4, 4, 4} is the same as a multiset M such that M(0) = 1, M(1) = 2,
M(4) = 3 and M(i) = 0 for i ∈ N0 � {0, 1, 4}.

Let M,N ∈ Bm. We write M ≺� N iff there is k, 0 ≤ k ≤ m, such that
M(k) < N(k) andM(i) = N(i) for all i, 0 ≤ i < k. LetM,N ∈ Bm thenM 
= N
implies that either M ≺� N or N ≺� M . We write M �c N iff M(i) ≤ N(i) for
every i, 1 ≤ i ≤ m, i.e., iff there is M ′ ∈ Bm such that N =M �M ′.

Let m,n ∈ N0 and n > 0. We define a structure S = (Bnm,⊕, ∅n) where Bnm
is a set of n-tuples of elements from Bm. Let α = (M1,M2, . . . ,Mn) ∈ Bnm and
β = (N1, N2, . . . , Nn) ∈ Bnm, then α⊕β = (M1 �N1,M2 �N2, . . . ,Mn �Nn). Of
course, α⊕ β ∈ Bnm. The structure S is a commutative monoid. If α ∈ Bnm then
αi, 1 ≤ i ≤ n, is the i’th coordinate of α. We introduce two orderings on Bnm.
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Let α, β ∈ Bnm, then α <� β iff there is k, 1 ≤ k ≤ n, such that αk ≺� βk and
αi = βi for every i, 1 ≤ i < k; and α ≤c β iff αi �c βi for every i, 1 ≤ i ≤ n.

Observe that <� is a well-founded ordering (there is no infinite sequence
α1, α2, . . . such that α1 >� α2 >� . . .) since ≺� is well-founded. Moreover for any
α 
= β either α <� β or β <� α. Also notice that α ≤c β iff there is α′ ∈ Bnm such
that β = α⊕α′. We write α <c β iff α ≤c β and α 
= β. The following lemma is
a simple generalisation of Dickson’s Lemma [12].

Lemma 1. Every infinite sequence from Bnm has an infinite nondecreasing sub-
sequence w.r.t. ≤c.
A labelled transition system is a 4-tuple (S,Act,−→, Eqv) where S is a set of
states (or processes), Act is a set of labels (or actions), −→⊆ S ×Act × S is a
transition relation, written α a−→ β, for (α, a, β) ∈−→, and Eqv ⊆ S × S is an
equivalence relation on states.

Our definition of labelled transition systems is a generalisation of labelled
transition systems with final states — see an overview paper [8]. Let F ⊆ S
be a set of final states. In order to recover the definition from [8] we define
(α, β) ∈ Eqv iff α ∈ F and β ∈ F , or α 
∈ F and β 
∈ F .

Let α ∈ S. We write α 
−→ whenever there is no β ∈ S and a ∈ Act such that
α

a−→ β. As usual we extend the transition relation to the elements of Act∗. We
define a norm of α ∈ S by N (α) = min{|w| | w ∈ Act∗ such that ∃β ∈ S. α w−→
β 
−→}. By definition min ∅ =∞.

Let T = (S,Act,−→, Eqv) be a labelled transition system. A binary relation
R ⊆ S × S is a bisimulation iff whenever (α, β) ∈ R then for each a ∈ Act: if
α

a−→ α′ then ∃β′ ∈ S such that β a−→ β′ and (α′, β′) ∈ R; if β a−→ β′ then
∃α′ ∈ S such that α a−→ α′ and (α′, β′) ∈ R; and (α, β) ∈ Eqv.

States α, β ∈ S are bisimulation equivalent or bisimilar in a transition system
T , written α ∼T β, iff (α, β) ∈ R for some bisimulation R. If T is clear from the
context, we write only α ∼ β instead of α ∼T β.

Remark 1. Sometimes the bisimilarity checking problem is formulated in this
way: we are given a pair of labelled transition systems T1 and T2 with states α1
from T1 and α2 from T2, and the question α1 ∼ α2 is asked. In this case, we can
consider a disjoint union of T1 and T2 (i.e. the sets of states of T1 and T2 are
disjoint) as a new transition system T and ask the question α1 ∼T α2.

Let (S,Act,−→, Eqv) be a labelled transition system. The stratified bisimulation
relations [19] ∼k⊆ S × S for k ∈ N0 are defined as follows:

– α ∼0 β for all α, β ∈ S such that (α, β) ∈ Eqv, i.e., ∼0= Eqv
– α ∼k+1 β iff for each a ∈ Act: if α a−→ α′ then ∃β′ ∈ S such that β a−→ β′

and α′ ∼k β′; if β a−→ β′ then ∃α′ ∈ S such that α a−→ α′ and α′ ∼k β′; and
(α, β) ∈ Eqv.

Given a labelled transition system T = (S,Act,−→, Eqv) we define next(α, a) =
{β ∈ S | α a−→ β} for α ∈ S and a ∈ Act. We also define next(α, ∗) =⋃
a∈Act next(α, a). The system T is image-finite iff the set next(α, a) is finite

for every α ∈ S and a ∈ Act. The following lemma is a standard one.
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Lemma 2. Let (S,Act,−→, Eqv) be an image-finite labelled transition system
and α, β ∈ S. Then α ∼ β iff α ∼k β for all k ∈ N0.

Definition 1 (Effective Commutative Transition System). A labelled
transition system T = (S,Act,−→, Eqv) is an effective commutative transi-
tion system (ECTS) iff there exist n,m ∈ N0, n > 0 such that the following
conditions are satisfied:

(1) S = Bnm,
(2) Act is a finite set,
(3) given α, β ∈ S it is decidable whether (α, β) ∈ Eqv,
(4) next(α, a) is effectively constructible for every α ∈ Bnm and a ∈ Act,
(5) T is image-finite,
(6) if α ∼k β then (α⊕ γ) ∼k (β ⊕ γ) for every α, β, γ ∈ Bnm and k ∈ N0.

Let us call the elements of Bnm processes. Since any ECTS is image-finite (5), the
fact that ∼k are congruences (6) together with Lemma 2 implies: (6’) if α ∼ β
then (α⊕ γ) ∼ (β ⊕ γ) for every α, β, γ ∈ Bnm.
Theorem 1. Let T = (Bnm,Act,−→, Eqv) be an ECTS. Given A,B ∈ Bnm, it is
decidable whether A ∼ B.

Proof. The proof is by tableau-technique and it is a generalisation of the tableau-
based proof used by Christensen, Hirshfeld and Moller in order to demonstrate
decidability of bisimilarity for BPP [9,10].

A tableau for (A,B) ∈ B2nm is a maximal proof tree rooted with (A,B) and
built according to the following rules. Let (α, β) be a node in the tree. A node
(α, β) is either terminal (leaf) or nonterminal. The following nodes are terminal:

– (α, α) is a successful leaf for any α ∈ Bnm (note that always (α, α) ∈ Eqv),
– (α, β) is a successful leaf if next(α, ∗) ∪ next(β, ∗) = ∅ and (α, β) ∈ Eqv,
– (α, β) is an unsuccessful leaf if for some a ∈ Act it is the case that next(α, a)∪

next(β, a) 
= ∅, and either next(α, a) = ∅ or next(β, a) = ∅,
– (α, β) is an unsuccessful leaf if (α, β) 
∈ Eqv.
We say that a node is an ancestor of (α, β) if it is on the path from the root to
(α, β) and at least one application of the rule EXPAND (defined later) separates
them. If (α, β) is not a leaf then we reduce it using the following RED rules as
long as possible.

REDL
(α, β)

(γ ⊕ ω, β)
if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such that
γ <� δ and α = δ ⊕ ω for some ω ∈ Bnm

REDR
(α, β)

(α, γ ⊕ ω)
if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such that
γ <� δ and β = δ ⊕ ω for some ω ∈ Bnm

If no other reduction RED is applicable and the resulting node is not a leaf,
we apply the rule EXPAND for a set of relations Sa, a ∈ Act, where Sa ⊆
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next(α, a) × next(β, a) such that ∀α′ ∈ next(α, a).∃β′ ∈ next(β, a). (α′, β′) ∈ Sa
and ∀β′ ∈ next(β, a).∃α′ ∈ next(α, a). (α′, β′) ∈ Sa.

EXPAND
(α, β)

{(α′, β′) | a ∈ Act ∧ (α′, β′) ∈ Sa}
The set notation used in the rule EXPAND means that each element (α′, β′) in
the conclusion of the rule becomes a new child in the proof tree. Now, we start
again applying the RED-rules to every such child (which is not a leaf) as long
as possible. Note that reduction rules are applicable to a node iff the node is not
terminal (leaf).
Lemma 3. Any tableau for (A,B) is finite and there are only finitely many
tableaux.

Proof. Observe that any tableau for (A,B) is finitely branching because of the
assumption (5) and the condition that Act is finite (2), which implies that for a
given a ∈ Act any relation Sa is finite and there are finitely many such relations.
Should the tableau be infinite, there is an infinite branch, which gives an infinite
sequence of vectors from B2nm . Since the rules RED can be used only finitely
many times in a sequence (they decrease the <� order, which is well founded),
there must be an infinite subsequence of vectors on which the rule EXPAND was
applied. Using Lemma 1, this sequence must contain an infinite nondecreasing
subsequence p1 ≤c p2 ≤c . . .. However, the rule EXPAND cannot be applied on
p2 since one of the rules RED is applicable. This is a contradiction.

Since there are only finitely many relations Sa for an a ∈ Act available for
the EXPAND rule and finitely many possibilities for an application of the RED
rule, there are always finitely many possibilities how to extend already existing
partial tableau. Suppose that there are infinitely many tableaux starting from
(A,B). Then there must be a tableau for (A,B) with an infinite branch, which
contradicts that every tableau is finite. ��
We call a tableau for (A,B) successful if it is maximal (no further rules are
applicable) and all its leaves are successful.
Lemma 4 (Completeness). If A ∼ B then there is a successful tableau for
(A,B).

Proof. We construct a tableau from the root (A,B) such that every node (α, β)
in the tableau satisfies α ∼ β. Hence this tableau cannot contain any unsuccessful
leaf and it must be finite because of Lemma 3. Suppose that (α, β) is already
a node in the tableau such that α ∼ β and consider the rule REDL applied
on (α, β). We may assume that γ ∼ δ, which means using (6’) that (γ ⊕ ω) ∼
(δ ⊕ ω) = α ∼ β. Hence (γ ⊕ ω) ∼ β. Similarly for REDR. From the definition
of ∼ follows that the rule EXPAND is also forward sound, i.e., if α ∼ β then we
can choose for every a ∈ Act a relation Sa such that (α′, β′) ∈ Sa implies that
α′ ∼ β′. ��

Lemma 5 (Soundness). If there is a successful tableau for (A,B) then A ∼ B.
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Proof. For the sake of contradiction assume that there is a successful tableau for
(A,B) and A 
∼ B. We show that we can construct a path from the root (A,B)
to some leaf, such that for any pair (α, β) on this path α 
∼ β.

If A 
∼ B then using Lemma 2 there is a minimal k such that A 
∼k B. Notice
that if α 
∼k β such that k is minimal and we apply the rule EXPAND, then at
least one of its children (α′, β′) satisfies that α′ 
∼k−1 β′. We choose such a child
to extend our path from the root.

If we apply REDL on (α, β) where α 
∼k β and k is minimal, then the
corresponding ancestor (γ, δ) is separated by at least one application of EXPAND
and so γ ∼k δ. This implies that (γ ⊕ ω) 
∼k β, otherwise using the assumption
(6) we get that α = (δ ⊕ ω) ∼k (γ ⊕ ω) ∼k β, which is a contradiction with
α 
∼k β. The same is true for REDR. Thus there must be a path from the root to
some leaf such that for any pair (α, β) on this path α 
∼ β. This is a contradiction
with the fact that the path contains a successful leaf. ��
We have proved that it is decidable whether A ∼ B, since it is the case iff there
is a successful tableau for (A,B). There are only finitely many tableaux and
all of them are finite, moreover the conditions (3) and (4) ensure that they are
effectively constructible. ��

3 Applications

In this section we consider several specific classes of commutative transition
systems. We study in particular BPP and lossy BPP processes, interrupt BPP
systems and timed-arc BPP nets.

3.1 BPP and Deadlock-Sensitive BPP

The class of Basic Parallel Processes (BPP) [9] is a natural subclass of PA (Pro-
cess Algebra) where only the operator of parallel composition is used. It is a well
known fact that bisimilarity is decidable for BPP [9,10]. We give the definition
of BPP by means of process rewrite systems [17], which is more convenient for
our purposes than the usual one by process equations used by Milner [19]. We
remind the reader of the fact that these two definitions are equivalent in the
sense that they define the same class of processes up to bisimilarity.

Let Act and Var be countable sets of actions and process constants such that
Act ∩ Var = ∅. We define a class of process expressions EVar over Var by the
following abstract syntax E ::= ε | X | E||E, where ε is the empty process
and X ranges over Var. The operator ‘||’ stands for a parallel composition. We do
not distinguish between process expressions related by a structural congruence
≡ ⊆ EVar × EVar, which is the smallest congruence over process expressions
such that ‘||’ is associative and commutative, and ‘ε’ is a unit for ‘||’.

A BPP process rewrite system (PRS) [17] is a finite set ∆ ⊆ Var×Act×EVar

of rules, written X a−→ E for (X, a,E) ∈ ∆. Let us denote the set of actions and
process constants that appear in ∆ as Act(∆) resp. Var(∆) (note that these sets
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(X a−→ E) ∈ ∆
X

a−→ E

E
a−→ E′

E||F a−→ E′||F

Fig. 1. SOS rules for BPP

are finite). A process rewrite system ∆ determines a labelled transition system
T (∆) = (EVar(∆)/≡,Act(∆),−→, Eqv) where states are ≡-equivalence classes
of process expressions over Var(∆), Act(∆) is the set of labels, the transition
relation −→ is the least relation satisfying the SOS rules in Figure 1 (recall that
‘||’ is commutative and in what follows we often abuse the notation and write
only E instead of [E]≡, i.e., the equivalence class represented by E). There are
two possibilities for defining the equivalence relation Eqv. In the usual setting
Eqv = (EVar(∆)/≡) × (EVar(∆)/≡) is the universal relation (thus it is in fact
unused) and we call this class BPP. Another possibility is to define Eqv by

Eqv = {(E,F ) ∈ (EVar(∆)/≡)× (EVar(∆)/≡) | E = [ε]≡ ⇐⇒ F = [ε]≡}.

We call this class deadlock-sensitive BPP. A study of strict (deadlock-sensitive)
and nonstrict (deadlock-nonsensitive) bisimilarity for a sequential analogue of
BPP called Basic Process Algebra (BPA) is provided in [21].

We show that given a BPP system∆, we can interpret its semantics as a com-
mutative transition system such that states are elements of Bn−1 = B1n−1 where
n = |Var(∆)|. Because of the structural congruence ≡, any process expression
E over Var(∆) can be represented by a vector of n natural numbers. Suppose a
fixed ordering on Var(∆) = {X0, X1, . . . , Xn−1}. Then the corresponding vector
contains on i’th coordinate the number of occurrences of the variable Xi in E.
Formally, we define a mapping φ : EVar(∆) → B1n−1 by

φ(ε) = ∅
φ(Xi) =M such that M(i) = 1 and M(j) = 0 for j 
= i

φ(E1||E2) = φ(E1)⊕ φ(E2).

The following proposition is an easy observation.

Proposition 1. Let E,F ∈ EVar(∆). Then E ≡ F if and only if φ(E) = φ(F ).

Hence any rule (X a−→ E) ∈ ∆ can be represented by φ(X) a−→ φ(E). The
system ∆, where n = |Var(∆)|, generates a commutative labelled transition
system T c(∆) = (B1n−1,Act(∆),−→, Eqv), where α a−→ β iff there exists a rule
(X a−→ E) ∈ ∆ such that α = φ(X)⊕ ω and β = φ(E)⊕ ω for some ω ∈ B1n−1.
The relation Eqv for BPP and deadlock-sensitive BPP is defined in the same
fashion as above.

Example 1. Let ∆ = {X0
a−→ X0||X1||X2||X1, X0

a−→ ε, X1
b−→ ε, X2

c−→ ε}.
Then n = 3 and e.g. φ(X0) = {0}, φ(X0||X1||X2||X1) = {0, 1, 1, 2} and φ(ε) = ∅.
A sequence of transitions X0

a−→ X0||X1||X2||X1
a−→ X0||X1||X2||X1||X1||X2||X1



394 Jǐŕı Srba

(X a−→ E) ∈ ∆
X

a−→ E

E
a−→ E′

E||F a−→ E′||F E
drop−→ F

if ∃F ′�=ε s.t. E = F ||F ′

Fig. 2. SOS rules for lossy BPP

b−→ X0||X2||X1||X1||X2||X1
c−→ X0||X1||X1||X2||X1 has a straightforward ana-

logue in B12: {0} a−→ {0, 1, 1, 2} a−→ {0, 1, 1, 1, 1, 2, 2} b−→ {0, 1, 1, 1, 2, 2} c−→
{0, 1, 1, 1, 2}.

Obviously, T (∆) and T c(∆) are isomorphic labelled transition systems.

Theorem 2. Given a BPP1 process rewrite system ∆ (or a deadlock-sensitive
BPP process rewrite system ∆) and a pair of processes P1, P2 ∈ EVar(∆)/≡, it
is decidable whether P1 ∼T (∆) P2.

Proof. By Theorem 1 and the fact that T c(∆) defined above is an ECTS. ��

3.2 Lossy BPP

The notion of unreliability, in particular lossiness, has been intensively studied
with a number of interesting results. Let us mention e.g. Lossy Channel Sys-
tems [1] and Lossy Vector Addition Systems [7,18]. Lossy BPP systems were
studied in [18] in the context of model checking problems. In lossy BPP we al-
low process constants disappear spontaneously at any time. We give a formal
definition of lossy BPP systems first.

A lossy BPP process rewrite system is a finite set ∆ ⊆ Var×Act× EVar of
rules, written X

a−→ E for (X, a,E) ∈ ∆. A process rewrite system ∆ deter-
mines a labelled transition system T (∆) = (EVar(∆)/≡,Act(∆) ∪ {drop},−→,
Eqv) where states are ≡-equivalence classes of process expressions over Var(∆),
Act(∆) ∪ {drop} is the set of labels with a distinguished label drop 
∈ Act(∆)
modelling lossiness, the transition relation −→ is defined by the SOS rules in
Figure 2 (we again abuse the notation and write only E instead of [E]≡) and
Eqv for lossy BPP can be defined as in the case of BPP — deadlock sensitive or
deadlock nonsensitive.

Example 2. Let ∆ = {X0
a−→ X0||X0, X0

b−→ ε}. Then X0 −→∗ Xk
0 for any k ∈

N0 where X0
0 = ε and Xk+1

0 = X0||Xk
0 . Also, X

k
0
drop−→ Xk′

0 for any k′, 0 ≤ k′ < k,

in particular, Xk
0
drop−→ ε and ε 
−→. This means that any reachable state in T (∆)

has norm at most 1. Moreover,Xk
0 
∼T (∆) X

k′
0 for any k 
= k′. Hence there cannot

be any BPP process bisimilar to X0 (there are only finitely many nonbisimilar
BPP states of norm less or equal to 1). On the other hand this property in general
disallows to find a bisimilar lossy BPP process for a given BPP process. Thus the
classes BPP and lossy BPP are, as expected, incomparable w.r.t. bisimilarity.
1 For BPP this is already proved in [9,10]. We repeat the theorem in order to demon-
strate that our technique is general enough to cover already known results.
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We are now ready to define semantics of lossy BPP in terms of commuta-
tive transition systems, similarly as for BPP. Let ∆ be a lossy BPP system,
where n = |Var(∆)|. By T c(∆) = (B1n−1,Act(∆) ∪ {drop},−→, Eqv) we denote
a commutative transition system, where α a−→ β iff either (i) there is a rule
(X a−→ E) ∈ ∆ such that α = φ(X)⊕ ω and β = φ(E)⊕ ω for some ω ∈ B1n−1,
or (ii) β <c α and a = drop. The relation Eqv for lossy BPP is defined in the
same fashion as mentioned above (deadlock sensitive or deadlock nonsensitive).

Obviously, T (∆) and T c(∆) are isomorphic labelled transition systems. This
implies the following decidability theorem for lossy BPP systems.

Theorem 3. Given a lossy BPP process rewrite system ∆ (either deadlock sen-
sitive or deadlock nonsensitive) and a pair of processes P1, P2 ∈ EVar(∆)/≡, it
is decidable whether P1 ∼T (∆) P2.

Proof. By showing that T c(∆) is an ECTS and then by using Theorem 1 and
the isomorphism between T (∆) and T c(∆). Details can be found in [22]. ��

3.3 Interrupt BPP

In this subsection we investigate mode transfer operators in BPP process alge-
bra, in particular the interrupt operator. Quoting [3]:“A useful feature in pro-
gramming languages and specification languages is the ability to denote mode
switches. In particular, most languages have means to describe the disrupt and
interrupt of the normal execution of a system.” Various mode transfer operators
were considered in the literature [2,3,5,11,13]. We define interrupt BPP systems
that extend the pure BPP systems with an interrupt vector and a mechanism
for handling the interrupt. The motivation is that every state is annotated with
a set of allowed interrupts and if no interrupt appears, a normal execution of the
process is performed. At any time an interrupt can be raised by performing the
action int. A normal execution of the process is interrupted and the raised inter-
rupt is handled. During this all interrupts are disallowed. After the interrupt is
finished, the action iret is performed and a normal execution of the interrupted
process continues.

Formally, an interrupt BPP process rewrite system ∆ is a pair (∆1, ∆2)
where ∆1 is a finite set ∆1 ⊆ Var × Act × EVar × 2Var(∆2) and ∆2 is a BPP
system. We write (X a−→ E, enable) for (X, a,E, enable) ∈ ∆1. By Var(∆1) we
denote the set of variables that occur in the first and the third component of
∆1. A process rewrite system ∆ = (∆1, ∆2) determines a labelled transition
system T (∆) =

(
(EVar(∆1)/≡)× 2Var(∆2)×{0, 1}× (EVar(∆2)/≡),Act(∆1)∪

Act(∆2)∪ {int, iret},−→, Eqvu) where states are 4-tuples (E1, IV, IF,E2) such
that E1 is a BPP process, IV is an interrupt vector, IF is an interrupt flag (0
means normal execution and 1 means interrupt call) and E2 is ε if IF = 0 or
it contains the interrupt handling process in the case IF = 1. We assume that
int, iret 
∈ Act(∆1)∪Act(∆2). The SOS rules for −→ are defined in Figure 3 (E
again represents [E]≡ and ‘||’ is commutative) and for the sake of simplicity let
us assume that Eqvu is the universal relation on states.
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(X a−→ E1, enable) ∈ ∆1

(X, IV, 0, ε) a−→ (E1, IV ∪ enable, 0, ε)
(E1, IV, 0, ε)

a−→ (E′1, IV ′, 0, ε)
(E1||F1, IV, 0, ε)

a−→ (E′1||F1, IV
′, 0, ε)

X ∈ IV
(E1, IV, 0, ε)

int−→ (E1, IV, 1, X) (E1, IV, 1, ε)
iret−→ (E1, IV, 0, ε)

(X a−→ E2) ∈ ∆2

(E1, IV, 1, X) a−→ (E1, IV, 1, E2)
(E1, IV, 1, E2)

a−→ (E1, IV, 1, E′2)
(E1, IV, 1, E2||F2)

a−→ (E1, IV, 1, E′2||F2)

Fig. 3. SOS rules for interrupt BPP

Example 3. Let ∆ =
({
(X0

a−→ X0||X0, {Y0}), (X0
b−→ ε, {Y1})

}
,
{
Y0

c−→
ε, Y1

d−→ Y1
})
. Consider an initial state (X0, ∅, 0, ε). Then the following se-

quence of transitions is possible in T (∆): (X0, ∅, 0, ε) a−→ (X0||X0, {Y0}, 0, ε) b−→
(X0, {Y0, Y1}, 0, ε) int−→ (X0, {Y0, Y1}, 1, Y0) c−→ (X0, {Y0, Y1}, 1, ε) iret−→
(X0, {Y0, Y1}, 0, ε) int−→ (X0, {Y0, Y1}, 1, Y1) d−→ (X0, {Y0, Y1}, 1, Y1) d−→
(X0, {Y0, Y1}, 1, Y1) d−→ · · · . It is an easy observation that there is no BPP pro-
cess bisimilar to the initial state (X0, ∅, 0, ε) of T (∆) — we use similar arguments
as in Example 2.

We remind the reader of the fact that for any BPP system we can find a
bisimilar interrupt BPP system simply by disallowing interrupts at all — we
define enable = ∅ in every rule of the BPP system. Hence the class of interrupt
BPP is strictly more expressive (w.r.t. bisimilarity) than the class of BPP.

We demonstrate now, how to give an alternative semantics in terms of a
commutative transition system T c. The idea is that the normal process execu-
tion is simulated one-to-one in T c and the interrupt calls are checked using the
relation Eqv — thus there are no actions int and iret. Let ∆ = (∆1, ∆2) be
an interrupt BPP system such that Var(∆1) = {X0, . . . , Xn1−1} and Var(∆2) =
{Y0, . . . , Yn2−1}. In what follows we denote by T (∆2) the deadlock sensitive tran-
sition system generated by the BPP process ∆2. Since bisimilarity in T (∆2) is
decidable (Theorem 2), we may assume w.l.o.g. that Yi 
∼T (∆2) Yj for all i, j
such that 0 ≤ i < j ≤ n2 − 1. Let n = max{n1 − 1, n2 − 1}.

Let T c(∆) = (B2n,Act(∆1)∪Act(∆2),−→, Eqv). The intuition is that in the
first component of a state (M,N) ∈ B2n we remember a BPP expression of normal
process execution and in the second component we remember an interrupt vector
IV in the following sense: N(i) = 0 if Yi 
∈ IV , and N(i) > 0 if Yi ∈ IV . For
α = (M,N) ∈ B2n, let IV (α) = {Yi | 0 ≤ i ≤ n2 − 1 ∧ N(i) > 0} and let
cut(α) = (M,N ′) ∈ B2n such that

N ′(i) =

{
0 if N(i) = 0
1 if N(i) > 0
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for all i ∈ N0. We define α = (M,N) a−→ (M ′, N ′) = α′ iff (E, IV (α), 0, ε) a−→
(E′, IV (α′), 0, ε) such that a 
∈ {int, iret}, φ(E) =M , φ(E′) =M ′, and cut(α′) =
α′. The last condition (cut(α′) = α′) ensures that T c(∆) becomes image-finite.
Finally we define Eqv as such a relation that for states α, β ∈ B2n: (α, β) ∈
Eqv iff IV (α) = IV (β).

The following property is an immediate consequence of the definition.

Property 1. Let α ∈ B2n. Then α ∼T c(∆) cut(α).

Proposition 2. Let ∆ = (∆1, ∆2) be an interrupt BPP system. Then it holds
that (E, ∅, 0, ε) ∼T (∆) (F, ∅, 0, ε) iff (φ(E), ∅) ∼T c(∆) (φ(F ), ∅) for any E,F ∈
EVar(∆1).

Proof. It is obvious that any transition under a where a 
∈ {int, iret} in T (∆)
can be simulated naturally in the system T c(∆) and vice versa. An interrupt call
in T (∆) is checked using the relation Eqv and whenever (α, β) 
∈ Eqv in T c(∆)
then we can distinguish the corresponding states in T (∆) by an appropriate
interrupt call. ��

Theorem 4. Given an interrupt BPP process rewrite system ∆ and a pair of
processes (E, ∅, 0, ε), (F, ∅, 0, ε) in T (∆), it is decidable whether (E, ∅, 0, ε) ∼T (∆)
(F, ∅, 0, ε).
Proof. By Proposition 2 it is enough to show that T c(∆) is an ECTS and then
we use Theorem 1. Details can be found in [22]. ��

Remark 2. We used BPP processes for interrupt handling (the system ∆2). In
fact, any process algebra where bisimilarity is decidable can be used.

3.4 Timed-Arc BPP

In this subsection we establish decidability of bisimilarity for a timed extension
of BPP systems, called timed-arc BPP. It is worth mentioning another positive
decidability result for timed BPP. The authors in [4] show that performance
equivalence (a version of timed bisimilarity) is decidable in a polynomial time
for BPP processes where actions have a certain time duration. However, their
definition of timed BPP does not allow to interpret ordinary BPP systems as
timed ones since a duration of an action cannot be equal to 0 and must be
strictly positive. We define timed-arc BPP as a natural subclass of timed-arc
Petri nets where time (age) is associated to tokens and transitions are labelled
by time intervals, which restrict the age of tokens available for firing a transition
— see e.g. [6,14]. Our definition implies that timed-arc BPP are a strict extension
(w.r.t. bisimilarity) of ordinary BPP systems, as it is demonstrated later.

First, we introduce labelled timed-arc Petri nets, following definitions from
[20] and then we define timed-arc BPP as its subclass where each transition
has exactly one input place. A labelled timed-arc Petri net (LTAPN) is a tuple
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N = (P, T, F, c, L, λ,Σ), where P is a finite set of places, T is a finite set of
transitions such that T ∩ P = ∅, F ⊆ (P × T ) ∪ (T × P ) is a flow relation,
c : F |P×T → N0 × (N0 ∪ {∞}) is a time constraint on transitions such that for
each arc (p, t) ∈ F holds that t1 ≤ t2 where c(p, t) = (t1, t2), L is a finite set of
labels, λ : T → L is a labelling function, and Σ ⊆ N0 is a recursive set of allowed
time-elapsing steps.

Let x ∈ N0 and c(p, t) = (t1, t2). We write x ∈ c(p, t) whenever t1 ≤ x ≤ t2.
We also define •t = {p | (p, t) ∈ F} and t• = {p | (t, p) ∈ F}. A marking M
on N is a function M : P → B where B denotes the set of all finite multisets on
N0. Each place is thus assigned a certain number of tokens, and each token is
annotated with a natural number (age). Let x ∈ B and a ∈ N0. We define x<+a
such that we add the value a to every element of x, i.e., x<+a = {b+a | b ∈ x}.

Let us now define the dynamics of LTAPNs. We introduce two types of transi-
tion rules: firing of a transition and time-elapsing. LetN = (P, T, F, c, L, λ,Σ) be
a LTAPN,M a marking and t ∈ T . We say that t is enabled byM iff ∀p ∈ •t. ∃x ∈
M(p). x ∈ c(p, t). If t is enabled by M then it can be fired, producing a marking
M ′ (written M [t〉M ′) such that ∀p ∈ P. M ′(p) =

(
M(p)�C−(p, t)

)
∪C+(t, p)

where C− and C+ are chosen to satisfy the following equations (note that there
may be more possibilities and that all the operations are on multisets):

C−(p, t) =
{ {x} such that x ∈M(p) and x ∈ c(p, t) if p ∈ •t
∅ otherwise

C+(t, p) =
{ {0} if p ∈ t•
∅ otherwise.

Note that the tokens added to places t• are of age 0. We define also time-elapsing
transitions τk, k ∈ Σ, as follows: M [τk〉M ′ iff ∀p ∈ P. M ′(p) =M(p)<+ k.

Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. We define the corresponding la-
belled transition system T (N) = ([P → B], L ∪ {τk | k ∈ Σ},−→, Eqvu), where
states are markings of N , actions are labels from L together with symbols for
time-elapsing, and M a−→ M ′ iff either M [t〉M ′ and a = λ(t), or M [τk〉M ′ and
a = τk for some k ∈ Σ. For simplicity we define Eqvu to be the universal relation.
Definition 2. A timed-arc BPP is a LTAPN such that |•t| = 1 for all t ∈ T .

Example 4. Consider a timed-arc BPP net ({p1, p2}, {t1, t2}, F, c, {a, b}, λ, {1})
where F , c and λ are defined in Figure 4. Names of places (circles) are p1 and
p2 (from left to right) and names of transitions (squares) are t1 and t2 (from
left to right) such that λ(t1) = a and λ(t2) = b. Notice that •t1 = {p1} and
•t2 = {p2}, so the net is indeed a timed-arc BPP. Let ({0}, ∅) be an initial
marking — since |P | = 2 we can identify any marking M : P → B with
a pair (M(p1),M(p2)). Now e.g. ({0}, ∅) a−→ ({0}, {0}) a−→ ({0}, {0, 0}) b−→
({0}, {0}) τ1−→ ({1}, {1}) τ1−→ ({2}, {2}) τ1−→ . . .. Using similar arguments as in
Example 2, there cannot be any BPP process bisimilar to the initial marking.
On the other hand, for any BPP process there is a timed-arc BPP net bisimilar
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��������0
[0,0]

��
a�� ���������� [0,0] �� b

Fig. 4. A timed-arc BPP net

to it — we use the fact that any BPP process is essentially a Petri net where
|•t| = 1 for every transition t and then we define all the time constrains as [0,∞]
and set Σ = ∅. So the class of timed-arc BPP is strictly more expressive (w.r.t.
bisimilarity) than the BPP class.

Assuming a fixed ordering on P = {p1, . . . , pn}, there is a natural one-to-
one correspondence between [P → B] and Bn. Let M : P → B then we define
(N1, . . . , Nn) ∈ Bn by Ni =M(pi) for 1 ≤ i ≤ n and vice versa. In what follows
we freely interchange these equivalent notations.

The system T (N) is almost a commutative labelled transition system. There
are only two problems: (i) states are not elements from Bnm for some fixedm ∈ N0
and (ii) the set of actions can be infinite. The following arguments show how to
avoid these problems.

Definition 3. Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. We define its maximal
guard mg(N) ∈ N0 as the maximal time constraint that appears in N , i.e.,
mg(N) = max

(
{t1, t2 | ∃f ∈ F |P×T . c(f) = (t1, t2)}�{∞}

)
. LetM ∈ [P → B].

We define a compression of M , CM ∈ [P → Bmg(N)+1], by

CM (p)(k) =



M(p)(k) if k < mg(N) + 1∑∞
i=mg(N)+1M(p)(i) if k = mg(N) + 1

0 if k > mg(N) + 1.

Lemma 6. Let N = (P, T, F, c, L, λ,Σ) be a LTAPN and M1,M2 ∈ [P → B].
If CM1 = CM2 then M1 ∼T (N) M2.

Proof. It is a routine exercise to verify that R = {(M1,M2) ∈ [P → B]× [P →
B] | CM1 = CM2} is a bisimulation. ��

Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. By m we denote the number
mg(N) + 1. We define a commutative transition system T c(N) = (Bnm, L∪ {τk |
k ∈ Σ ∧ k < m} ∪ Tm,−→, Eqvu) where Tm = {τm} if there is k ∈ Σ such that
k ≥ m, otherwise Tm = ∅ (note that the construction of Tm is effective since Σ is
a recursive set). We define M a−→M ′ for M,M ′ ∈ Bnm iff either (i) M [t〉M ′ and
a = λ(t), or (ii) M [τk〉M ′′ where m > k ∈ Σ or τk ∈ Tm, such that M ′ = CM ′′

and a = τk.

Proposition 3. Let N be a LTAPN andM1,M2 a pair of markings on N . Then
M1 ∼T (N) M2 iff CM1 ∼T c(N) CM2 .

Proof. Immediately from Lemma 6. Also note that in T (N) for any k ≥ m =
mg(N) + 1 holds that if M τm−→M ′ and M τk−→M ′′, then CM ′ = CM ′′ . ��



400 Jǐŕı Srba

Theorem 5. Given a timed-arc BPP net N = (P, T, F, c, L, λ,Σ) and a pair of
markings M1,M2 on N , it is decidable whether M1 ∼T (N) M2.

Proof. First show that T c(N) is an ECTS. Then by Proposition 3 and Theo-
rem 1. For details see [22]. ��

Remark 3. It remains an open problem whether bisimilarity is decidable for
timed-arc BPP with continuous time, i.e., if we allow e.g. Σ = R

+
0 .

4 Conclusion

We suggested a subclass of labelled transition systems called effective commuta-
tive transition systems (ECTS) where bisimilarity is decidable, and we showed
that semantics of many extensions of BPP process algebra can be defined within
the ECTS class. This approach seems to be feasible also for other natural exten-
sions of BPP: the crucial condition to be satisfied is probably (6), saying that
∼k are congruences. This condition fails e.g. for Petri nets, and indeed strong
bisimilarity becomes undecidable here [15].

Decidability of weak bisimilarity of BPP is still a well known open problem.
Here the problematic condition is (5), stating that the transition system is image-
finite, which is not the case for weak bisimilarity. Nevertheless, we can still
instead of potentially infinite set of successors next(α, a) examine only its finite
subset such that soundness and completeness of the tableau system is preserved.
This possibility was exploited by Stirling in [24] for weak bisimilarity of normed
BPP, however, with additional technical restrictions. To design finite subsets of
next(α, a) preserving soundness and completeness even in the general case might
be a reasonable way to attack this problem.
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