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Abstract. We extend the informatic derivative to compact elements
in domains. This allows one to quantitatively analyze processes which
manipulate both continuous and discrete data in a uniform manner.

1 Introduction

One of the important aspects of the measurement formalism in domain theory
is its informatic derivative: Given a map f : D → D on a domain with a
measurement (D,µ), its informatic derivative is given by

dfµ(p) := lim
x→p

µf(x)− µf(p)
µx− µp ,

where the limit is taken in the µ topology at a point p which is not isolated in
the µ topology on D.

As one might expect, this idea was applied to establish the first relationship
between domain theory and the differential calculus [2], where it was shown that
it could be used to give a purely domain theoretic account of C1 mappings on the
real line. But it has other applications which appear to be more promising. One
of these is that it allows us to make sense of the idea “rate of change” with respect
to a measurement. For instance, one can discuss the rate at which a mapping
on a domain converges to its fixed point. This has natural applications in the
study of what one might term continuous phenomena, like in numerical analysis,
where it provides a uniform approach to calculating rates of convergence – while
some rates of convergence may be determined using the classical derivative (an
example of an informatic derivative), some of the most well-known methods for
zero finding in all of numerical analysis have rates of convergence that arise as
informatic derivatives which are not classical (in the sense of calculus).

But if one looks closely at the definition of the informatic derivative above, it
has a computationally restrictive aspect: The requirement that p not be isolated
in the µ topology. This is equivalent to saying that p must not be a compact
element of D. From the mathematical viewpoint, one does not object to this:
Mathematics offers us no way of obtaining unique ‘limits’ at isolated points
of topological spaces. Nevertheless, computationally, it is easy to write down
simple examples of mappings on domains, which should have derivatives, but
are excluded simply because they work only with compact elements.
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For instance, on the domain of lists [S], the map rest: [S] → [S] which removes
the first element from a nonempty list, and sends the empty list to itself, satisfies

µ rest(x) = µ(x)− 1

for x �= [ ], where µ is the length measurement. Thus, we ought to be able to say
that d(rest)µ(x) = 1 for x �= [ ].

In this paper, we offer an extension of the definition of informatic derivative
which applies at compact elements (as long as they are not minimal). One of
the benefits of this work is that we are finally able to understand the sense in
which the asymptotic notions of complexity used in numerical analysis (rates of
convergence) are the same as those used in the analysis of ‘discrete’ algorithms
(for example, list processing). Another is that we have identified ideas which
allow us to systematically calculate both of these complexity notions in a uniform
manner. But what appears more pertinent than either of these is that we are
(slowly but surely) developing a very real understanding of informatic rates of
change.

2 Background

2.1 Domain Theory

Let (P,�) be a partially ordered set or poset [1]. A nonempty subset S ⊆ P is
directed if (∀x, y ∈ S)(∃z ∈ S)x, y � z. The supremum

⊔
S of S ⊆ P is the least

of its upper bounds when it exists. A dcpo is a poset in which every directed set
has a supremum.

For elements x, y of a dcpo D, we write x 	 y iff for every directed subset
S with y � ⊔S, we have x � s, for some s ∈ S. In the special case that this
occurs for x = y, we call x compact. The set of compact elements in D is K(D).

Definition 1. Let (D,�) be a dcpo. We set

• ↓↓x := {y ∈ D : y 	 x} and ↑↑x := {y ∈ D : x	 y}
• ↓x := {y ∈ D : y � x} and ↑x := {y ∈ D : x � y}

and say D is continuous if ↓↓x is directed with supremum x for each x ∈ D. A
domain is a continuous dcpo.

The Scott topology on a domain D has as a basis all sets of the form ↑↑x for
x ∈ D. A function f : D → E between domains is Scott continuous if it reflects
Scott open sets. This is equivalent to saying that f is monotone,

(∀x, y ∈ D)x � y ⇒ f(x) � f(y),

and that it preserves directed suprema:

f(
⊔
S) =

⊔
f(S),

for all directed S ⊆ D.
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Definition 2. A subset B of a dcpo D is a basis for D if B ∩ ↓↓x contains a
directed subset with supremum x, for each x ∈ D. A dcpo is algebraic if its
compact elements form a basis. A dcpo is ω-continuous if it has a countable
basis.

The next definition is fundamental in this paper: Splittings model the recur-
sive part of an algorithm [4].

Definition 3. A splitting on a poset D is a function s : D → D with x � s(x)
for all x ∈ D.

2.2 Examples of Domains

In this section, we give examples of domains that we will use in this paper.

Example 1. Orders on the naturals.

(i) The naturals N∞ = N ∪ {∞} in their usual order with a top element ∞:

(∀x, y ∈ N∞) x � y ⇔ (x ≤ y & x, y ∈ N) or y = ∞.
(ii) The naturals N∗ = N in their dual order: x � y ⇔ y ≤ x.

(iii) The naturals N� = N ordered flatly: x � y ⇔ x = y.

Example 2. The interval domain is the collection of compact intervals of the real
line

IR = {[a, b] : a, b ∈ R & a ≤ b}
ordered under reverse inclusion

[a, b] � [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo. The supremum of a directed set S ⊆ IR is
⋂
S, while

the approximation relation is characterized by I 	 J ⇔ J ⊆ int(I). A countable
basis for IR is given by {[p, q] : p, q ∈ Q & p ≤ q}.
Our final example is the domain [S] of finite lists over a poset (S,≤).

Definition 4. A list over S is a function x : {1, ..., n} → S, for n ≥ 0. The
length of a list x is |dom x|. The set of all (finite) lists over S is [S]. A list x is
sorted if x is monotone as a map between posets.

A list x can be written as [x(1), ..., x(n)], where the empty list (the list of length
0) is written [ ]. We also write lists as a :: x, where a ∈ S is the first element
of the list a :: x, and x ∈ [S] is the rest of the list a :: x. For example, the list
[1, 2, 3] is written 1 :: [2, 3].

Definition 5. A set K ⊆ N is convex if a, b ∈ K & a ≤ x ≤ b⇒ x ∈ K. Given
a finite convex set K ⊆ N, the map scale(K) : {1, ..., |K|} → K given by

scale(K)(i) = min K + i− 1

relabels the elements of K so that they begin with one.
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Definition 6. For x, y ∈ [S], x is a sublist of y iff there is a convex subset
K ⊆ {1, . . . , length y} such that y ◦ scaleK = x.

Example 3. If L = [1, 2, 3, 4, 5, 6], then [1, 2, 3], [4, 5, 6], [3, 4, 5], [2, 3, 4], [3, 4], [5]
and [ ] are all sublists of L. However, [1, 4, 5, 6], [1, 3] and [2, 4] are not sublists of
L.

Lemma 1 (Martin [2]). The finite lists [S] over a set S, ordered under reverse
convex containment,

x � y ⇔ y is a sublist of x,

form an algebraic dcpo with [S] = K([S]). Thus, [S] is ω-continuous iff S is
countable.

The order on [S] is based on computational progress: Intuitively, it is easier
to solve a problem on input [ ] than for any other input x, hence x � [ ].

2.3 Content and the µ Topology

It is during the study of measurement [2] that one encounters for the first time
the µ topology on a domain. Let [0,∞)∗ denote the domain of nonnegative reals
in the order opposite to their natural one.

Definition 7. A Scott continuous map µ : D → [0,∞)∗ on a domain measures
the elements in a set X ⊆ D when for all x ∈ X, if (xn) is a sequence with
xn 	 x then

lim
n→∞µxn = µx⇒

⊔
n∈N

xn = x,

and this supremum is directed. We write this as µ→ σX .

The terminology used in [2] and [5] is different, but the ideas are identical. The
next result is fundamental and we use it often (implicitly).

Proposition 1 (Martin [2]). Let µ : D → [0,∞)∗ be a map that measures
X ⊆ D. Then for all x ∈ D and y ∈ X, we have x � y and µx = µy ⇒ x = y.

For the sake of formality, we mention the following.

Definition 8. A measurement is a map µ : D → [0,∞)∗ which measures the
set kerµ := {x ∈ D : µx = 0}.

If x is an approximation of r, that is, x	 r, then |µx− µr| is a measure of
how closely x approximates r, while µx is a measure of the uncertainty in x. If
we obtain an improved approximation y of r, x � y 	 r, then y should be more
certain than x. Hence µx ≥ µy.
Definition 9. The µ topology on a continuous dcpo D has as a basis all sets of
the form ↑↑x ∩ ↓y where x, y ∈ D. It is denoted µD.
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To clarify the relation between the two ideas, given a measurement µ→ σD,
consider the elements ε-close to x ∈ D, for ε > 0, given by

µε(x) := {y ∈ D : y � x & |µx− µy| < ε}.
Regardless of the measurement we use, these sets are always a basis for the µ
topology.

Theorem 1 (Martin [2]). For a Scott continuous mapping µ : D → [0,∞)∗,
µ→ σD iff {µε(x) : x ∈ D & ε > 0} is a basis for the µ topology on D.

This also turns out to be the topology one needs to define rates of change on
a domain. This comes as something of a surprise since the µ topology is always
zero-dimensional and Hausdorff. In the next definition, the limit is taken with
respect to the µ topology.

Definition 10. Let D be a domain with a map µ : D → [0,∞)∗ that measures
X ⊆ D. If f : D → R is a map and p ∈ X is not a compact element of D, then

dfµ(p) := lim
x→p

f(x)− f(p)
µx− µp

is called the informatic derivative of f at p with respect to µ, provided that it
exists.

If the limit above exists, then it is unique, since the µ topology is Hausdorff,
and we are taking a limit at a point that is not isolated: It is not difficult to
show that {p} is µ open iff p is compact. Notice too the importance of strict
monotonicity of µ in Prop. 1: Without it, we could not define the derivative.

Definition 11. Let f : D → D be a function on a domain (D,µ) with a map µ
that measures D at p ∈ D \K(D). If

dfµ(p) := d(µf)µ(p)

exists, then we call this number the informatic derivative of f at p with respect
to µ.

Our first example of this comes from calculus, and in fact provided the first
relationship between domain theory and the differential calculus [2].

Theorem 2 (Martin [2]). Let f : R → R be a continuous map on the real line
with p ∈ R. If f ′(p) exists, then

df̄µ[p] = |f ′(p)|
where f̄(x) = f(x) is the canonical extension of f to IR and µ[a, b] = b− a.
In particular, any iterative process with a classical derivative has an informatic
derivative, and from the complexity viewpoint, they are equal. Here is an example
of a process with an informatic derivative that is not classical.
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Example 4. The Bisection Method. To a continuous map f : [a, b] → R, we may
assign the splitting

splitf : IR → IR

splitf (x) =
{

left(x) if left(x) ∈ C(f);
right(x) otherwise;

where C(f) = {[a, b] ∈ IR : f(a) · f(b) ≤ 0}, left[x, y] = [x, (x + y)/2] and
right[x, y] = [(x + y)/2, y]. At any [r] ∈ fix(splitf ), its rate of convergence is
given by

d(splitf )[r] = 1/2.

Notice that this informatic derivative is not a classical derivative.

Other examples appear in [2], [6] and [5]. To be brief, let us say this: The smaller
the derivative of a map on a domain at a fixed point, the quicker the convergence.

3 The Derivative at an Isolated Point

The reason that the informatic derivative requires points which are not isolated
is that there must be enough nontrivial µ open sets around p so that we can
take a limit in the formal sense of topology – without enough nontrivial open
sets, a limit may not be unique.

However, any point p �∈ min(D) := {x ∈ D : ↓x = {x}} can be approximated
from below using the nontrivial µ open subsets of D which are contained in ↓p
and which themselves contain p and at least one other element:

approxµ(p) = {V ∈ µD : p ∈ V ⊆↓p and V �= {p}}.

Thus, the existence of approximations is not the problem – the problem is that
we need a concept more applicable than ‘limit’.

Definition 12. Let f : D → R be a function and p ∈ D. We set

d+fµ(p) := sup{c : (∃V ∈ approxµ(p))(∀x ∈ V ) f(x)− f(p) ≥ c · (µx− µp)}

and

d−fµ(p) := inf{c : (∃V ∈ approxµ(p))(∀x ∈ V ) f(x)− f(p) ≤ c · (µx− µp)},

provided p is not a minimal element of D, i.e., p �∈ min(D).

Trying to conceptualize these quantities isn’t such a good idea, so we resort to
theorem proving.

Theorem 3. Let f : D → R be a function with p ∈ D \ K(D). Then dfµ(p)
exists iff d+fµ(p) exists, d−fµ(p) exists and d−fµ(p) ≤ d+fµ(p). In either case,
we have dfµ(p) = d+fµ(p) = d−fµ(p).
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Proof. First suppose that dfµ(p) exists. Then by definition, for each ε > 0 there
is a δ > 0 such that

(∀x)x � p & 0 < |µx− µp| < δ ⇒
∣∣∣∣f(x)− f(p)
µx− µp − dfµ(p)

∣∣∣∣ < ε.
Because µ measures D at p and p is not compact,

µδ(p) := {x : x � p & |µx− µp| < δ} ∈ approxµ(p).

Thus, the sets used in the definition of d+fµ(p) and d−fµ(p) are nonempty since
for the set V = µδ(p), we can write

(∀x ∈ V ) f(x)− f(p) ≥ c+ · (µx− µp) & f(x)− f(p) ≤ c− · (µx− µp),
where c+ = dfµ(p)−ε and c− = dfµ(p)+ε. But now if we can show that d+fµ(p)
and d−fµ(p) exist, the argument just given applies to give

d−fµ(p) ≤ dfµ(p) + ε and dfµ(p)− ε ≤ d+fµ(p),

for each ε > 0, and hence that d−fµ(p) ≤ dfµ(p) ≤ d+fµ(p).
With this last remark in mind, suppose we have numbers c+, c− and µ open

sets V +, V − ∈ approxµ(p) such that

(∀x ∈ V +) f(x)− f(p) ≥ c+ · (µx− µp)
and

(∀x ∈ V −) f(x)− f(p) ≤ c− · (µx− µp).
Because p is not compact, we have V = V + ∩ V − ∈ approxµ(p) and

c+ ≤ f(x)− f(p)
µx− µp ≤ c−

for all x ∈ V \ {p}. Letting x→ p in the µ topology, we have c+ ≤ dfµ(p) ≤ c−.
Then d−fµ(p) and d+fµ(p) both exist and satisfy d+fµ(p) ≤ dfµ(p) ≤ d−fµ(p).
Now our earlier remark applies, leaving d+fµ(p) = dfµ(p) = d−fµ(p).

For the other direction, suppose d−fµ(p) and d+fµ(p) both exist and satisfy
d−fµ(p) ≤ d+fµ(p). First we show that d−fµ(p) = d+fµ(p). Let ε > 0. Then
there are numbers c+, c− and µ open sets V +, V − ∈ approxµ(p) such that

d+fµ(p)− ε/2 < c+ ≤ d+fµ(p) and (∀x ∈ V +) f(x)− f(p) ≥ c+ · (µx− µp)
and

d−fµ(p) ≤ c− < d−fµ(p) + ε/2 and (∀x ∈ V −) f(x)− f(p) ≤ c− · (µx− µp).
Let V = V + ∩ V − ∈ approxµ(p). Then the inequality

d+fµ(p)− ε/2 < c+ ≤ f(x)− f(p)
µx− µp ≤ c− < d−fµ(p) + ε/2
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holds for all x in the nonempty set V \{p}. Using this inequality once, we obtain
d+fµ(p) < d−fµ(p)+ε for each ε > 0 and hence d+fµ(p) ≤ d−fµ(p), which gives
d−fµ(p) = d+fµ(p). But going back to the inequality a second time reveals that
the number d := d+fµ(p) = d−fµ(p) has the following property: For all ε > 0
there is a µ open set V ∈ approxµ(p) such that

(∀x ∈ V ) x �= p =⇒ d− ε < f(x)− f(p)
µx− µp < d+ ε.

This is precisely the statement that dfµ(p) exists and is equal to d. ��

The previous theorem justifies the following definition.

Definition 13. Let f : D → R be a function on a domain D with a measure-
ment µ which measures D at p ∈ D \min(D). If d−fµ(p) exists, d+fµ(p) exists
and d−fµ(p) ≤ d+fµ(p), then we define

dfµ(p) := d+fµ(p)

and call this number the informatic derivative of f at p.

By Theorem 3, the new definition and the old definition agree in the continuous
case (p �∈ K(D)). We now turn our attention to the discrete case (p ∈ K(D)).

Theorem 4. Let f : D → R be a function on an algebraic domain D with a
measurement µ that measures D at p ∈ K(D) \min(D). Then the following are
equivalent:

(i) The derivative dfµ(p) exists.
(ii) The supremum

sup
{
f(x)− f(p)
µx− µp : x ∈ K(D)∩ ↓p, x �= p

}

exists and the infimum

inf
{
f(x)− f(p)
µx− µp : x ∈ K(D)∩ ↓p, x �= p

}

exists.

In either case, the value of d+fµ(p) is the supremum in (ii), while the value of
d−fµ(p) is the infimum in (ii).

Proof. (i) ⇒ (ii): By assumption, d+fµ(p) and d−fµ(p) both exist. We first show
that the supremum exists. Let x ∈ K(D) with x � p and x �= p. Then

f(t)− f(p) ≥ c · (µt− µp)
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for all t ∈ V = {x, p} ∈ approxµ(p), where c = (f(x) − f(p))/(µx − µp). Since
d+fµ(p) exists, we have c ≤ d+fµ(p). But then the set of all such c is bounded
from above by d+fµ(p). Thus, its supremum satisfies

sup
{
f(x)− f(p)
µx− µp : x ∈ K(D)∩ ↓p, x �= p

}
≤ d+fµ(p).

Similarly, since d−fµ(p) exists, the same argument gives d−fµ(p) ≤ c, which
implies that the set of all such c has an infimum which satisifes

d−fµ(p) ≤ inf
{
f(x)− f(p)
µx− µp : x ∈ K(D)∩ ↓p, x �= p

}
.

(ii)⇒ (i): To show that dfµ(p) exists, we must show that d+fµ(p) exists, d−fµ(p)
exists and that d−fµ(p) ≤ d+fµ(p). We establish this by proving that d+fµ(p)
is the supremum in (ii), while d−fµ(p) is the infimum in (ii).

First the case of d+fµ(p). To start, recall the definition of d+fµ(p),

d+fµ(p) := sup{c : (∃V ∈ approxµ(p))(∀x ∈ V ) f(x)− f(p) ≥ c · (µx− µp)}
Because D is algebraic and p is a compact element that is not minimal, the set
of all such c is nonempty. To see why, let y � p be an element with y �= p, which
exists since p is not minimal. By algebraicity of D, y can be approximated by
some compact element x	 y � p. Then as in the proof of (i) ⇒ (ii), we have a
µ open set V = {x, p} ∈ approxµ(p) such that

(∀t ∈ V ) f(t)− f(p) ≥ c · (µt− µp),
where c = (f(x)− f(p))/(µx− µp).

Now that we know this set is nonempty, let V ∈ approxµ(p) and c be any
constant such that f(x) − f(p) ≥ c · (µx − µp) for all x ∈ V. Let y ∈ V be
some element with y �= p, which exists since V �= {p}. By the algebraicity of D,
y is the supremum of compact elements, and since V is µ open, there is some
compact element x 	 y with x ∈ V. Then x � p since V ⊆↓p, and x �= p, since
y �= p. But this means

f(x)− f(p)
µx− µp ≥ c,

and since we know that the set of all such elements has a supremum,

c ≤ sup
{
f(x)− f(p)
µx− µp : x ∈ K(D)∩ ↓p, x �= p

}
,

which means that the set of all such c is bounded from above, and thus that
d+fµ(p) exists and satisifes

d+fµ(p) ≤ sup
{
f(x)− f(p)
µx− µp : x ∈ K(D)∩ ↓p, x �= p

}
.

The other inequality was established in the proof of (i) ⇒ (ii), assuming only
the existence of d+fµ(p). The dual argument handles the case of d−fµ(p). ��
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Finally, the definition of derivative for selfmaps on a domain D.

Definition 14. Let f : D → D be a function on a domain (D,µ) with a map µ
that measures D at p ∈ D \min(D). If d(µf)µ(p) exists, then we write

dfµ(p) := d(µf)µ(p)

and call this number the informatic derivative of f at p with respect to µ. We
also set d∗fµ(p) := d∗(µf)µ(p) for ∗ ∈ {+,−}.
It is easy to extend this definition for a map f : (D,µ) → (E, λ), as was done
for the original formulation of the derivative in the continuous case [2], but in
the present paper there are no applications warranting such an abstraction.

Example 5. Derivatives of list operations.

(i) The map first : [S] → [S], first(a :: x) = [a], first[ ] = [ ]. Using Theorem 4,

d(first)µ(x) = d+(first)µ(x) = d−(first)µ(x) = 0,

for all x �= [ ]. At x = [ ], d(first)µ(x) = d+(first)µ(x) = 1 ≥ 0 = d−(first)µ(x).
(ii) The map rest : [S] → [S], rest(a :: x) = x, rest[ ] = [ ]. Using Theorem 4,

d(rest)µ(x) = d+(rest)µ(x) = d−(rest)µ(x) = 1,

for all x �= [ ]. At x = [ ], d(rest)µ(x) = d+(rest)µ(x) = 1 ≥ 0 = d−(rest)µ(x).

There is something worth pointing out before we focus on the derivative in
the discrete case. The definition of dfµ(p) splits into two cases, the continuous
(p �∈ K(D)) and the discrete (p ∈ K(D)). From this bifurcation appears a
remarkable duality: In the continuous case the inequality df+µ (p) ≤ df−µ (p) always
holds, but df−µ (p) ≤ df+µ (p) may not; in the discrete case the opposite is true,
df−µ (p) ≤ df+µ (p) always holds, but df+µ (p) ≤ df−µ (p) may not.

The results of this section allow for only one interpretation of this phe-
nomenon: In the continuous case, the derivative is determined by local prop-
erties of the function; in the discrete case, the derivative is determined by global
properties of the function.

4 Measuring the Length of an Orbit

Throughout this section, we assume that (D,µ) is an algebraic domain whose
compact elements form a lower set. Some important examples of this are N∗,
N∞, [S], Pω, Σ∞, and [N → N⊥]. Computationally, this is not much of an
assumption.

Theorem 5 (The Mean Value Theorem). Let f : D → D be a function on
(D,µ) such that dfµ(p) exists at a compact element p. Then

(µx− µp) · d−fµ(p) ≤ µf(x)− µf(p) ≤ d+fµ(p) · (µx− µp),
for all x � p.
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Proof. Immediate by Theorem 4, in view of our assumption that the compact
elements of D form a lower set. ��

If a splitting r has a compact fixed point p reachable by iteration
⊔
rn(x) = p,

then the derivative of r at p can be used to provide a precise measure of the
number of iterations required to get to p from an input of x. Later we will see
that such quantities can play an integral role in determining the complexity of
certain algorithms.

Definition 15. Let r : D → D be a splitting. An orbit is a sequence of iterates
(rnx). An orbit is compact if

⊔
n≥0

rn(x) ∈ K(D).

The length of a compact orbit (rnx) is

|(rnx)| := inf{n ≥ 0 : rn+1(x) = rn(x)}.
A compact orbit is nontrivial when |(rnx)| > 0; otherwise it is a fixed point.

In this new language, we can say that we are interested in determining the
length of nontrivial compact orbits of splittings. If (rnx) is a compact orbit, then
rl(x) is a fixed point of r where l = |(rnx)|. For this reason, we say that the
orbit (rnx) ends at p = rl(x).

Lemma 2. If a splitting r : D → D has a nontrivial compact orbit which ends
at p ∈ K(D), and drµ(p) exists, then 0 ≤ drµ(p) ≤ 1.

Proof. By assumption, there is an x �= p with
⊔
rn(x) = p. Since drµ(p) exists,

by Theorem 4, we have

drµ(p) = sup
{
µr(x)− µ(p)
µx− µp : x ∈ K(D) ∩ ↓p, x �= p

}
.

Because r is a splitting, µr(x) ≤ µx for all x, which means that the supremum
on the right is bounded above by 1. Hence drµ(p) ≤ 1.

To see that drµ(p) ≥ 0, we use the fact that x �= p and rx ∈ K(D) ∩ ↓p, to
deduce

0 ≤ µr(x)− µp
µx− µp ≤ drµ(p),

which finishes the proof. ��

Theorem 6. Let r be a splitting with a nontrivial compact orbit (rnx) that ends
at p. If drµ(p) = 0, then r(x) = p. If 0 < drµ(p) < 1, then

n ≥
⌈

log((µx− µp)/ε)
log(1/drµ(p))

⌉
+ 1 ⇒ |µrn(x)− µp| < ε,

for any ε > 0.
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Proof. First the case drµ(p) = 0. Because rx � p, we can apply the monotonicity
of µ followed by the mean value theorem (5) to derive

0 ≤ µr(x)− µp ≤ 0 · (µx− µp).
Then since µ measures the domain at p and µr(x) = µp, we must have r(x) = p.

For the other case, we simply apply the mean value theorem to obtain

0 ≤ µrn(x)− µp ≤ (drµ(p))n(µx− µp),
and then the rest follows from arithmetic. ��

By the compactness of p, there is a choice of ε > 0 which will ensure that
|µrn(x)− µp| < ε ⇒ rn(x) = p, but at this level of generality we cannot give a
precise description of it. It depends on µ. For lists, the value is ε = 1.

Example 6. Let r be a splitting on [S] with 0 < drµ(p) < 1 at any fixed point p.
Then for any x, there is some k ≥ 0 such that rk(x) = p is a fixed point. By the
last result, doing

n >

⌈
log(µx− µp)
log(1/drµ(p))

⌉

iterations implies that rn(x) = p.

Let’s consider an important example of this type.

Example 7. Contractive list operations. For a positive integer x > 0, define

m(x) =
{
x/2 if x even;
(x+ 1)/2 if x odd.

Consider the splittings

left(x) = [x(1), · · · , x(m(µx)− 1)]

right(x) = [x(m(µx) + 1), · · · , x(µx)]

each of which takes lists of length one or less to the empty list [ ]. Each has a
derivative at its unique fixed point [ ] as follows.

First, since both of these maps are splittings and p = [ ] has measure µp = 0,
each has a derivative at p – it is simply a matter of determining d+ at [ ] in each
case. For this, if x �= [ ], then

µ left(x)
µx

≤ (µx/2)− (1/2)
µx

=
1
2
·
(

1− 1
µx

)
≤ 1

2

µ right(x)
µx

≤ µx/2
µx

=
1
2

which means d(left)µ[ ] = d(right)µ[ ] = 1/2.
Notice that the case of ‘left’ is much more interesting than the case of ‘right.’

In the former, the value of the derivative is never attained by any of the quotients
µ left/µ – it is determined by a ‘limit’ process which extracts global information
about the mapping left.



322 Keye Martin

Already we notice a relationship to processes in numerical analysis: The case
drµ(p) = 0 is an extreme form of superlinear convergence (extreme since in
one iteration the computation finishes), while the case 0 < drµ(p) < 1 behaves
just like ordinary linear convergence. However, unlike numerical analysis, we can
actually say something about the case drµ(p) = 1.

To do this is nontrivial, and in what follows, we seek only to illustrate the
value of the informatic derivative in the discrete case by showing that the precise
number of iterations required to calculate a fixed point p by iteration of a map
r can be determined when drµ(p) = 1 – a case in which classical derivatives are
notorious for yielding no information.

We exploit the nature of the discrete: Given a compact element p that is not
minimal, it has a natural set of predecessors, these are formally defined as the
set of maximal elements in the dcpo ↓p \ {p}:

pred(p) = max(↓p \ {p}).
To see that this makes sense, notice that ↓p \ {p} is nonempty since p is not
minimal, and is closed in the µ topology, as the intersection of µ closed sets. But
a µ closed set is closed under directed suprema, and so must have at least one
maximal element.

Theorem 7. Let r : D → D be a splitting on (D,µ) with a compact fixed point
p = r(p) such that

(∀x)x � p⇒
⊔
n≥0

rn(x) = p.

If d+rµ(x) = 1 for all x � p and d−rµ(x) = 1 for all x � p with x �= p, then for
all x � p with x �= p, there is q ∈ pred(p) such that

rn(x) = p⇔ n =
µx− µp
µq − µp .

Proof. Let x � p with x �= p. Let m ≥ 0 be the least integer with rm+1(x) = p.
Set q = rm(x). This element belongs to pred(p). To see this, first note that
q belongs to the dcpo ↓p \ {p}, and so there is z ∈ pred(p) with q � z. By
assumption, d+rµ(z) = d−rµ(z) = 1, so applying the mean value theorem at z
yields

µr(q)− µr(z) = µq − µz.
But

⊔
rn(z) = p and z ∈ pred(p), so r(z) = p. And since r(q) = p by definition,

the expression on the left is zero, leaving µq = µz. Hence q = z ∈ pred(p) by
strict monotonicity of µ at the point z. Now we find the length of this orbit.

By the mean value theorem applied at q, we have µr(x) − µr(q) = µx − µq
for x � q. By induction, we obtain

µrk+1(x)− µr(q) = k · µr(q) + µx− (k + 1) · µq
for k ≥ 0 whenever rk(x) � q. Because r(q) = p, we can see that rn(x) = p iff
n = k + 1, where µrk+1(x)− µr(q) = 0. Setting the equation above to zero and
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solving for k yields

k =
µx− µq
µq − µp ,

which means that n = k + 1 = (µx− µp)/(µq − µp). ��
It is interesting to notice in the last result that if d−rµ(p) = 1, then we must
have r(x) = x for all x � p. Of course, our hypotheses on r rule this out since
the fixed point p must be an attractor on ↓p.
Example 8. In Example 5, we saw that the map rest : [S] → [S] is an example
of the sort hypothesized in Theorem 7 with p = [ ]. The predecessors of p are the
one element lists

pred(p) = {[x] : x ∈ S}.
Thus, the last theorem says that

restn(x) = [ ] ⇔ n = µx,

for any x �= [ ].

5 Complexity

Due to space limitations, we cannot go into great detail about how it is that
algorithms can be represented in a manner favorable to the theory presented
here. However, the interested reader can consult [2] and [4]. Nevertheless, we
can still give the reader a good feel for how it is that our study of the informatic
derivative gives us a new perspective on the complexity of algorithms.

Example 9. Linear search. To search a list x for a key k consider

search : [S]× S → {⊥, }

given by
search([ ], k) = ⊥
search(x, k) =  if first x = k,
search(x, k) = search(rest x, k) otherwise.

Let D = [S]×S� – the product of [S] with the set S ordered flatly. We measure
this domain as µ(x, k) = µx. Let r : D → D be the splitting r(x, k) = (restx, k).

On input (x, k) in the worst case, the number of comparisons n done by this
algorithm is the same as the number of iterations needed to compute rn(x, k) =
([ ], k). Since d+rµ(x) = 1 for all x and d−rµ(x) = 1 for all x �= ([ ], k), Theorem 7
applies to give

rn(x, k) = ([ ], k) ⇔ n = µ(x, k) = µx,

which helps us understand how the complexity of a discrete algorithm can be
determined by the derivative of a splitting which models its iteration mechanism.
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Example 10. Binary search. To search a sorted list x for a key k, we use the
partially defined

bin : [S]× S → {⊥, }
is given by

bin([ ], k) = ⊥
bin(x, k) =  if midx = k,
bin(x, k) = bin(leftx, k) if midx > k,
bin(x, k) = bin(rightx, k) otherwise.

Again D = [S] × S� and µ(x, k) = µx. This time we consider the splitting
r : D → D by

r(x, k) =
{

(leftx, k) if midx > k;
(rightx, k) otherwise.

On input (x, k) in the worst case, the number of comparisons n must satisfy
rn(x, k) = ([ ], k). In this case, we have drµ([ ], k) = 1/2, so by Theorem 6,

n ≤
⌈

log(µx)
log(2)

⌉
+ 1 = !log2(µx)"+ 1,

since we know that the number on the right will guarantee that rn(x, k) = ([ ], k).

To summarize these simple examples: We have two different algorithms which
solve the same problem recursively by iterating splittings r and s, respectively,
on a domain (D,µ) in an effort to compute a fixed point p. If drµ(p) < dsµ(p),
then the algorithm using r is faster than the one which uses s. In the case of linear
search we have dsµ(p) = 1, while for binary search we have drµ(p) = 1/2. As we
have already mentioned, this is identical to the way one compares zero finding
methods in numerical analysis – by comparing the derivatives of mappings at
fixed points.

6 Presentation

First, we have worked with total mappings, though the derivative works just as
well on partial mappings [2]. The reason for this choice was our emphasis on
the discrete setting: In it, the partial maps encountered in practice tend to have
domains which are µ closed as well as µ open (hence domains in their own right).

Another issue concerns the very definition of dfµ itself. Theorem 3 is crucial
in that it characterizes differentiability independent of its continuous component.
Taking only this result as motivation for the definition of derivative leaves a few
distinct possibilities. For instance, if we had called the derivative the interval
[d−fµ(p), d+fµ(p)], we might notice more clearly (as in probability theory) the
tendency of continuous information to collapse at a point. Another possibility is
to say that the derivative is d−fµ(p). The author chose d+fµ because it makes the
most sense from an applied perspective. As an illustration, consider the intuitions
we have established about it in this paper: Algorithms r with drµ(p) = 0 belong
to O(1), those with 0 < drµ(p) < 1 belong to O(log n), while drµ(p) = 1 indicates
a process is in O(n).
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7 Conclusion

At first glance, an extension of the informatic derivative to the case of discrete
data (compact elements) seems like an absurd idea. To begin, we have to confront
the issue of essentially defining unique limits at isolated points. But even if we
assume we have this, we need the new formulation to extend the previous, which
means spotting a relationship between limits in the continuous world versus finite
sequences of discrete objects. But what we are taught is that the continuous and
discrete are ‘fundamentally different,’ and that the essence of this distinction
is to be found in the sensibility of the limit concept for continuous objects, as
compared to the discrete case where ‘limit’ has no meaning.

The existence of a derivative in the discrete case means much more than it
does in the continuous case. Most results on discrete derivatives do not hold
in the continuous case. Just consider a quick example: Let r : D → D be any
continuous map with p = r(p) ∈ K(D) and drµ(p) = 0. If x � p, then r(x) = p.
Now compare this to the continuous case (like calculus on the real line), where
one can only conclude that there is an a 	 p such that rn(x) → p for all x
with a 	 x � p. Again, this sharp contrast is due to the fact that discrete
derivatives make use of global information, while continuous derivatives use only
local information. Nevertheless, each is an instance of a common theme.

Finally, let us put this work in its proper perspective. It is evidence that
the idea of an “informatic rate of change” is real – it is equally meaningful
for understanding processes which manipulate information, the nature of the
information is irrelevant (continuous/discrete) in this regard. We hope to inspire
others to take a closer look at the idea. One feels certain that better approaches
are possible, that much more can be said, and that many new and exciting
applications await us.
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