
Bounded MSC Communication�

Markus Lohrey�� and Anca Muscholl

LIAFA, Université Paris VII
2, place Jussieu, case 7014

75251 Paris cedex 05, France
{lohrey,muscholl}@liafa.jussieu.fr

Abstract. Message sequence charts (MSCs) and high-level message se-
quence charts (HMSCs) are popular formalisms for the specification of
communication protocols between asynchronous processes. An impor-
tant concept in this context is the size of the communication buffers
used between processes. Since real systems impose limitations on the ca-
pacity (or speed) of communication links, we ask whether a given HMSC
can be implemented with respect to a given buffer size imposed by the
environment. We introduce four different measures for buffer sizes and
investigate for each of these measures the complexity of deciding whether
a given MSC (or HMSC, or hierarchical MSC) satisfies a given bound
on the buffer size. The complexity of these problems varies between the
classes P, NP, and coNP.

1 Introduction

Message sequence charts (MSC) and high-level message sequence charts (HMSC)
are popular visual formalisms for the specification of communication of asyn-
chronous processes, where most of the details (variables, timing constraints, etc)
are abstracted away. An important aspect for implementing such specifications
is the size of the channel buffers used by the communicating processes. Since real
systems impose limitations on the capacity (or speed) of communication links, it
is natural to ask whether an HMSC can be implemented with respect to a given
buffer size imposed by the environment.

In this paper we introduce four different measures for buffer sizes of (H)MSCs.
These measures result from two orthogonal dimensions: In the first dimension
we distinguish whether all linearizations of an MSC M satisfy a certain buffer
bound (∀-boundedness), respectively whether at least one linearization of M
respects the bound (∃-boundedness). Universal boundedness is a kind of safety
requirement, expressing that any interleaving of the MSC execution is possible
within the constraints imposed by the environment. Existential boundedness is
important for instance when we want to simulate a given specification, e.g. for
determining the reachable nodes of an HMSC. In this case it suffices to consider
one interleaving for each MSC execution.
� Research supported by the INRIA cooperative research action FISC.
�� Current address: IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France.

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 295–309, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

296 Markus Lohrey and Anca Muscholl

In the second dimension we distinguish between measuring the channel size
as the number of undelivered messages over all channels (global boundedness),
respectively as the maximum of the number of undelivered messages in a given
communication channel, where the maximum is taken over all channels (local
boundedness). The local notion of boundedness is important for implementing
an MSC specification in a distributed process environment. Global bounded-
ness arises naturally when one simulates MSC executions on a single-processor
environment, for instance for test purposes.

By combining both dimensions we say for instance that an MSC M is ∃bglob-
bounded (existentially, globally) for some b ∈ N, if there exists a linearization
of M such that for each prefix of this linearization the total number of unde-
livered messages is at most b. The notions of ∀bglob-boundedness (universally,
globally), ∃bloc-boundedness (existentially, locally), and ∀bloc-boundedness (uni-
versally, locally) for MSCs are defined similarly. All these notions can be ex-
tended to HMSCs, by referring to all executions of an HMSC. We also consider
the channel boundedness problem for MSCs using references, i.e., already defined
MSCs (nested MSCs, [1]).

We note that the notion of universal-local-boundedness corresponds to the
notion of channel-boundedness used in [2,3,5,6] in the context of regular MSC-
languages. For each of our four measures we investigate the complexity of decid-
ing whether a given (H)MSC or nMSC satisfies a given bound on the buffer size.
The complexity of these problems varies between the classes P, NP, and coNP,
see Table 1 in Section 7 for a summary of our results.

2 Preliminaries

For complexity results we will use standard classes like non-deterministic log-
arithmic space (NL), polynomial time (P), non-deterministic polynomial time
(NP) and co-NP (complements of NP-problems), see [8] for definitions.

A linearization of a partially ordered set (A,≺) is a total order on A that
extends the partial order ≺. The transitive closure of a binary relation E is the
least transitive relation E+ containing E. The transitive reduction of E is a
minimal relation F ⊆ E such that E+ = F+. For any alphabets A ⊆ B and any
word w ∈ B∗ we define |w|A as the number of symbols from A in w.

2.1 Message Sequence Charts

Following the ITU norm Z.120 a message sequence chart (MSC) M is a tuple
(E , P, λ, t,m,≺), where:

– E is a finite set of events.
– P is a finite set of processes.
– λ : E → P associates with each event e a process λ(e) on which e is located.
– t : E → {S,R} associates with each event a type. Events in t−1(S) (resp.

t−1(R)) are called send (resp. receive) events.

Bounded MSC Communication 297

– m : t−1(S) → t−1(R) is a bijection. A pair (s,m(s)) with s a send event
is also called a message from process p = λ(s) to process q = λ(m(s)).
The channel type of s (resp. m(s)) is defined as S(p, q) (resp. R(p, q)). The
channel type of e ∈ E is denoted ch(e).

– ≺ is a partial order on E , also called the visual order of M . We require that
the set of events λ−1(p) is totally ordered by ≺, for every p ∈ P , and that
≺ equals the transitive closure of the acyclic relation

⋃

p∈P
≺|λ−1(p) ∪ {(s,m(s)) | t(s) = S} .

The size of the MSC M is the number of events in M . Often MSCs are further
restricted to satisfy the FIFO-condition, which means that whenever there are
two send events s1 and s2 with ch(s1) = ch(s2) and s1 ≺ s2 then also m(s1) ≺
m(s2), i.e, message overtaking on any channel is disallowed. A channel is a
pair (p, q) of distinct processes. The MSC definition may also include message
contents or local actions, however this is not important in the present setting.
The complexity results in this paper mostly hold independently of the FIFO-
restriction (respectively whether message names are allowed or not). This is due
to the fact that all lower bound proofs in this paper hold under the FIFO-
restriction, whereas all upper bound proofs (excepting those for nMSCs) hold
without the FIFO-restriction.

Let M = (E , P, λ, t,m,≺) be an MSC. A linearization of M is a linearization
of the visual order (E ,≺). Let L be a linearization of M and let b ∈ N. We
say that L is globally-bounded by b if |K|t−1(S) − |K|t−1(R) ≤ b for every prefix
K of L. We say that L is locally-bounded by b if for all channels (p, q) and
every prefix K of L it holds |K|ch−1(S(p,q)) − |K|ch−1(R(p,q)) ≤ b. We say that
M is ∃bglob-bounded (resp. ∃bloc-bounded) if there exists a linearization of M

which is globally-bounded (resp. locally-bounded) by b. We say that M is ∀bglob-
bounded (resp. ∀bloc-bounded) if every linearization of M is globally-bounded
(resp. locally-bounded) by b. Of course for Q ∈ {∃,∀}, if M is Qb

glob-bounded,
then M is also Qb

loc-bounded. Vice versa, if M is Qb
loc-bounded, then M is Qc

glob-
bounded, where c = |P |2 · b.

For Q ∈ {∃,∀} and Y ∈ {loc, glob}, we define QY -MSC-BOUNDED as the
following decision problem.
INPUT: MSC M and positive integer b.
QUESTION: Is M Qb

Y –bounded?
Instead of speaking about prefixes of linearizations of MSCs, it is sometimes
more convenient to consider configurations of MSCs. A configuration C of M
is a downward-closed subset C ⊆ E , i.e., if e ≺ f ∈ C then also e ∈ C. A
prefix of a linearization of M defines in the obvious way a unique configuration
of M . Vice versa, for every configuration C of M there exists at least one prefix
K of a linearization of M such that K defines C. Let C be a configuration of
M . The number of messages (s, r) in M with s ∈ C and r �∈ C is denote by
gs(C,M) (globally unmatched sends). The maximum over all channels (p, q) of
the number of messages (s, r) in M with ch(s) = S(p, q), ch(r) = R(p, q), s ∈ C,

298 Markus Lohrey and Anca Muscholl

and r �∈ C is denote by ls(C,M) (locally unmatched sends). Note that M is
∀bglob-bounded (resp. ∀bloc-bounded) if and only if for every configuration C of M
it holds gs(C,M) ≤ b (resp. ls(C,M) ≤ b).

Let Mi = (Ei, P, λi, ti,mi,≺i), i = 1, 2, be two MSCs over the same set P
of processes, where furthermore E1 ∩ E2 = ∅. Then the concatenation of M1 and
M2 is the MSC M1M2 = (E1 ∪ E2, P, λ1 ∪ λ2, t1 ∪ t2, m1 ∪m2, ≺), where

≺ = (≺1 ∪ ≺2 ∪{(e1, e2) | e1 ∈ E1, e2 ∈ E2 : λ1(e1) = λ2(e2)})+.

The standard ITU definition Z.120 defines also a high-level message sequence
chart (HMSC) as a finite transition system with nodes labeled by finite MSCs.
Formally, let an HMSC H be given as H = (V,→, P, µ, v), where (V,→) is a
finite transition system with initial node v, P is the set of processes and µ maps
every node u ∈ V to a finite MSC µ(u) over the set of processes P . The MSC-
language L(H) defined by H is the set of all MSCs µ(u1)µ(u2) · · · , where u1 = v
and u1 → u2 → · · · is a (finite or infinite) maximal path in (V,→). (Formally,
for infinite paths we have to define the limit of (µ(u1 · · ·uk)k≥1). We impose the
restriction that every node u is accessible from the initial node v. Let Q ∈ {∃,∀}
and Y ∈ {loc, glob}. We say that an HMSC H is Qb

Y -bounded, where b ∈ N,
if all M ∈ L(H) are Qb

Y -bounded. Finally, we define QY -HMSC-BOUNDED as
the following decision problem.
INPUT: HMSC H and positive integer b.
QUESTION: Is H Qb

Y –bounded?

2.2 Pebble Games

As we will see in Section 3 there is a tight connection between the existential-
global boundedness problem and pebble games on directed graphs. In this section
we recall the definition of pebble games and related results.

Let G = (V,E) be a finite directed acyclic graph (dag) with node set V
and edges E ⊆ V × V . A game-configuration is a subset of V . For two game-
configurations C1, C2 ⊆ V and a node v ∈ V we write C2 = C1∪̇{v} whenever
C2 = C1 ∪ {v} and v /∈ C1, i.e., C2 is the disjoint union of C1 and v. A move in
G is a pair (C1, C2) of game-configurations such that one of the following three
cases holds:

(1) There exists a node w ∈ C1 with C2 = C1\{w}.
(2) There exists a node v ∈ C2 such that C2 = C1∪̇{v} and for all u ∈ V with

(u, v) ∈ E it holds u ∈ C1.
(3) There exist nodes w ∈ C1, v ∈ C2 such that (w, v) ∈ E, C2 = (C1\{w})∪̇{v},

and for all u ∈ V with (u, v) ∈ E it holds u ∈ C1.

More precisely we say that (C1, C2) is an i-move, i ∈ {1, 2, 3}, if case (i) in the
enumeration above holds. Let b ∈ N. We say that the graph G can be b-pebbled
if there exists a sequence C1, C2, . . . , Cn ⊆ V of game-configurations such that
the following holds:

(a) C1 = Cn = ∅, |Ci| ≤ b for 1 ≤ i ≤ n,

Bounded MSC Communication 299

(b) For every node v ∈ V there exists exactly one i ∈ {1, . . . , n − 1} such that
v �∈ Ci and v ∈ Ci+1.

(c) (Ci, Ci+1) is a move for 1 ≤ i < n.

If instead of (c) we require that (Ci, Ci+1) is a 1-move or a 2-move for 1 ≤ i < n,
then we say that the graph G can be b-pebbled without the move rule.

Theorem 1 ([9]). The following problem is NP-complete:
INPUT: Finite dag G with only one node of outdegree 0, positive integer b.
QUESTION: Can G be b-pebbled?

It is not hard to see that a dag with exactly one node of outdegree 0 can be
b-pebbled if and only if it can be (b + 1)-pebbled without the move rule. Hence
we obtain

Corollary 1. The following problem is NP-complete:
INPUT: Finite dag G, positive integer b.
QUESTION: Can G be b-pebbled without the move rule?

For a finite dag (V,E) let V = {v | v ∈ V } be a disjoint copy of the node set V
and let Ẽ = {(u, v), (v, u) | (u, v) ∈ E} ∪ {(u, u) | u ∈ V }. Note that the graph
(V ∪ V , Ẽ) is again a finite dag. The following lemma is easy to prove.

Lemma 1. A finite dag (V,E) can be b-pebbled without the move rule if and
only if there exists a linearization & of the partial order (V ∪ V , Ẽ+) such that
for every prefix k of & we have |k|V − |k|V ≤ b.

3 Bounded Communication in Finite MSCs

For the local boundedness problems we can argue by considering some additional
ordering on events. Let us fix a bound b and an MSC M = (E , P, λ, t,m,≺). We
define a binary relation � on E as follows. We let r � s whenever for some
channel (p, q) and some i ≥ 1 we have that s is the (i + b)-th send of channel
type S(p, q), whereas r is the i-th receive of channel type R(p, q). The following
lemma is easy to prove.

Lemma 2. An MSC is ∃bloc-bounded if and only if the relation ≺ ∪� is acyclic,
where ≺ is the visual order of M and � is the relation associated with M, b.

Since it can be checked in linear time whether a directed graph is acyclic, the
previous lemma immediately yields the following result:

Proposition 1. ∃loc-MSC-BOUNDED can be solved in linear time.

Surprisingly, if we consider the global boundedness instead of the local one,
the existential variant of the problem becomes more difficult, more exactly it is
NP-complete:

Theorem 2. ∃glob-MSC-BOUNDED is NP-complete.

300 Markus Lohrey and Anca Muscholl

Proof. Membership in NP is obvious. In order to prove NP-hardness, we will
construct for a finite dag G = (V,E) a finite MSC M(G) = (E , P, λ, t,m,≺)
such that G can be b-pebbled without the move rule if and only if M(G) is
∃(b+1)
glob -bounded. With each node v ∈ V we associate the set of processes Pv =
{pin(v), p(v), pout(v)} ∪ {p(v, w) | (v, w) ∈ E}, the set of all processes is then
P =

⋃
v∈V Pv. The set E of events consists of V ∪V plus some additional events

(see Figure 1). We have λ(v) = pin(v) and λ(v) = pout(v). For each node v there
is a message (v, v) from process pin(v) to process pout(v). This messages crosses
the chain of the two messages from pin(v) to p(v) and from p(v) to pout(v).
Furthermore for each edge (u, v) ∈ E we have exactly one message from process
p(u, v) to pin(v) and back from pin(v) to p(u, v). Finally if (v, w1), . . . , (v, wn) are
all outgoing edges of node v (listed in an arbitrary order) then there is exactly
one message from process pout(v) to p(v, w1) and back and exactly one message
from process p(v, wi) to p(v, wi+1) and back (1 ≤ i ≤ n − 1). The order of the
events on the processes in Pv is shown in Figure 1, where we show an example
where (u1, v), (u2, v), (v, w1), (v, w2), and (v, w3) are the adjacent edges of v. The
process names labeling message arrows specify the source, resp. target process
of the message. Note that ≺ is indeed acyclic, for instance the sends of the
messages from process p(u, v) to pin(v) must precede the sends of the messages
from process p(v, w) to pin(w), with (u, v), (v, w) edges of the dag. Moreover, it
is easy to check that M(G) respects the FIFO-restriction, in fact this was the
only reason for introducing process p(v). The crucial point of our construction is
that the restriction ≺|V ∪V of the visual order ≺ of M(G) to the set V ∪ V ⊆ E
is precisely the transitive closure of the relation Ẽ from Lemma 1.
Claim 1: If G can be b-pebbled without the move rule then M(G) is ∃(b+1)

glob -
bounded.

Assume that G can be b-pebbled without the move rule by a sequence of
moves. We translate each move into a sequence of events, such that the resulting
sequence of events is a linearization of M which is globally-bounded by b + 1.
Consider a move (C1, C2). If C2 = C1∪̇{v}, i.e., node v is pebbled in the move,
then we execute the following sequence of events:

(1) Send and immediately receive the message from process p(ui, v) to pin(v) for
1 ≤ i ≤ k, where (u1, v), . . . , (uk, v) are all incoming edges of node v.

(2) Execute send event v on process pin(v).
(3) Send and immediately receive the message from process pin(v) to p(ui, v) for

1 ≤ i ≤ k.
(4) Send and immediately receive the message from process pin(v) to p(v), fol-

lowed by the message from p(v) to pout(v).
(5) Send and immediately receive the message from process pout(v) to p(v, w1)

followed by the messages from p(v, wi) to p(v, wi+1) for 1 ≤ i < n, where
(v, w1), . . . , (v, wn) are all outgoing edges of node v.

Of course if v has indegree 0 (resp. outdegree 0) then (1) and (3) (resp. (5))
disappear. On the other hand if C2 = C1\{v}, i.e., a pebble is taken from node v
in the move, then we execute the following sequence of events:

Bounded MSC Communication 301

pin(v) p(v, w3)
p(u1, v)

p(u2, v)

p(u1, v)

p(u2, v)

pin(w1)

pin(w1)

pin(w2)

pin(w2)

pin(w3)

pin(w3)

v

p(v, w1) p(v, w2)

v

pout(v)p(v)

Fig. 1. Communication between the processes in Pv in the MSC M(G)

(1) Send and immediately receive the message from process p(v, wi+1) to p(v, wi)
for n > i ≥ 1, where (v, w1), . . . , (v, wn) are all outgoing edges of node v.

(2) Send and immediately receive the message from process p(v, w1) to pout(v).
(3) Execute the receive event v on process pout(v).

Claim 2: If M(G) is ∃(b+1)
glob -bounded then G can be b-pebbled without the move

rule.
Let L be a linearization of M(G), which is globally-bounded by b+1, such that

furthermore the number of prefixes K of L that satisfy |K|t−1(S) − |K|t−1(R) =
b + 1 is minimal among all linearizations of M(G) that are globally-bounded by
b + 1. Clearly such an L exists. Let π(L) be the projection of the word L onto
V ∪ V ⊆ E . Since of course π(L) is a linearization of ≺ |V ∪V , by Lemma 1 it
suffices to prove the following claim:
Claim 3: For every prefix k of π(L) it holds |k|V − |k|V ≤ b.

302 Markus Lohrey and Anca Muscholl

Clearly we have |k|V −|k|V ≤ b+1 for every prefix k of π(L). In order to prove
the claim let us assume that |π(L1v)|V −|π(L1v)|V = b+1, where v ∈ V and L =
L1vL2. Let L2 = eL3, where e ∈ E (note that we must have L2 �= ε). If e would be
a send event then |L1ve|t−1(S)−|L1ve|t−1(R) ≥ b+2, a contradiction. Thus e must
be a receive event. If e �∈ V then we would have |L1v|t−1(S)− |L1v|t−1(R) ≥ b+ 2
(note that already |π(L1v)|t−1(S)− |π(L1v)|t−1(R) = b+ 1). Thus e = u for some
u ∈ V . We cannot have v ≺ u, since if by the construction of M(G) this implies
that several events occur between v and u. It follows that L′ = L1uvL3 is also a
linearization of M(G) that is globally-bounded by b + 1. Since furthermore the
number of prefixes K of L′ such that |K|t−1(S) − |K|t−1(R) = b + 1 is smaller
then for L, we have a contradiction. This proves claim 3 and the theorem. ��
If we consider universal-boundedness instead of the existential one, then by the
following simple lemma we will obtain again a polynomial algorithm in the local
setting of the problem.

Lemma 3. An MSC is ∀bloc-bounded if and only if � is contained in ≺.

Proposition 2. ∀loc-MSC-BOUNDED can be solved in time O(|M |2).

For universal-global-boundedness we can also obtain a polynomial time solution
using flow theory:

Theorem 3. ∀glob-MSC-BOUNDED can be solved in time O(|M |2 log(|M |)).
Proof. In order to check universal-global-boundedness we consider the comple-
mentary problem, namely whether given a finite MSC M and b ∈ N there exists a
configuration C of M such that gs(C,M) > b. This question can be answered in
polynomial time using the min-flow max-cut theorem, see e.g. [4]. More precisely
we construct from M a dag as follows: View M as a dag, where the nodes are the
events of M , and the edges are the messages of M plus pairs of events (e, f) such
that e immediately precedes f on some process. To this dag we add two nodes
σ and τ . We add an edge from σ to each minimal event of M , and similarly
we add an edge from each maximal event of M to τ . Let us call the resulting
dag G(M). To each edge (v, w) of G(M) we assign an upper capacity cv,w and
a lower capacity &v,w as follows: All edges receive the upper capacity ∞. For all
messages (s,m(s)) of M we let &s,m(s) = 1, whereas for all other edges (v, w) of
G(M) we let &v,w = 0. By the min-flow max-cut theorem the minimum value of a
(σ, τ)-flow of G(M) is equal to the maximum of

∑
v∈S,w∈T &v,w−

∑
v∈S,w∈T cw,v,

where the maximum is taken over all partitions {S, T} of the nodes of G(M)
with σ ∈ S and τ ∈ T . By the choice of the capacities this is precisely the
maximum over all configurations C of M of gs(C,M). We note also that before
computing the minimal flow we may reduce the graph G(M) as follows: If two
nodes v and w are such that v immediately precedes w on some process and
either v has outdegree one, or w has indegree one (initially this holds for all
immediate successors on some process), then the edge (v, w) can be contracted
to a single node. This reduction step can be iterated as long as possible. Call

Bounded MSC Communication 303

the resulting graph G(M)red. Note that G(M)red may be considerably smaller
than G(M). Finally, since all upper capacities are ∞, we can use [10] in order
to compute max(

∑
v∈S,w∈T &v,w −

∑
v∈S,w∈T cw,v) in time O(n log(n)r), where

n is the number of nodes of G(M)red and r ∈ O(n) is the number of edges in a
transitive reduction of G(M)red. ��

4 Bounded Communication in HMSCs

The following result follows easily from Theorem 4.

Theorem 4. ∃glob-HMSC-BOUNDED is NP-complete.

Proof. The lower bound follows directly from Theorem 2. For the upper bound
note that an HMSC H = (V,→, P, µ, v) is ∃bglob-bounded if for every node u ∈ V

the MSC µ(u) is ∃bglob-bounded. ��
Analogously to Theorem 4 it follows that ∃loc-HMSC-BOUNDED can be solved
in linear time.

For the universal-boundedness question for HMSCs we need the concept of
the communication graph G(M) of a finite MSC M = (E , P, λ, t,m,≺). It is
defined as G(M) = (P, �→), where p1 �→ p2 if and only if there exists a message
(s,m(s)) in M with λ(s) = p1 and λ(m(s)) = p2. We say that G(M) is locally
strongly connected if every connected component of G(M) is strongly connected.
We say that M is locally strongly connected if G(M) is locally strongly connected.
Finally an HMSC H = (V,→, P, µ, v) is locally strongly connected if for every
cycle v1 → v2 → · · · → vn → v1 of (V,→) the MSC µ(v1)µ(v2) · · ·µ(vn) is locally
strongly connected. It is easy to see that H is locally strongly connected if and
only if for all simple cycles v1 → v2 → · · · → vn → v1 (i.e, vi �= vj for i �= j) the
MSC µ(v1)µ(v2) · · ·µ(vn) is locally strongly connected. For this just note that
if we have some cycle v1 → · · · → vi = w1 → · · · → wm → vi → · · · → vn → v1
then G = G(µ(v1) · · ·µ(vi)µ(w2) · · ·µ(wm)µ(vi) · · ·µ(vn)) is the union of the two
communication graphs G(µ(v1) · · ·µ(vn)) and G(µ(w1) · · ·µ(wm)). Thus if both
of them are locally strongly connected then the same holds for G. Recently it
was shown in [5] that an HMSC H is ∀bloc-bounded for some b if and only if H
is locally strongly connected. The fact that H is locally strongly connected if H
is ∀bloc-bounded by some b is quite easy to see. Lemma 4 below will allow us to
present a simpler proof of the other direction of the result of [5], together with
a sharper bound on the buffer size, which we need later.

Lemma 4. Let the HMSC H = (V,→, P, µ, v) be locally strongly connected. Let
u1 → u2 → · · · → um be a path in (V,→) with m > |P | · |V | and let C be a
configuration of the MSC M = µ(u1) · · ·µ(um). Then there exists a path v1 →
v2 → · · · → vn in (V,→) and a configuration D of the MSC N = µ(v1) · · ·µ(vn)
such that n < m, gs(C,M) = gs(D,N), and ls(C,M) = ls(D,N).

Proof (sketch). The basic idea is the following: Mark on each process line the
cut-point, where C cuts this line. Since m > |P | · |V | we can find a loop ui →

304 Markus Lohrey and Anca Muscholl

ui+1 → · · · → uj = ui inside our path u1 → · · · → um such that none of the
resulting |P | cut-points is located in the factor M ′ = µ(ui) · · ·µ(uj) of M . Since
H is locally strongly connected, none of the messages of M ′ can go from C to
its complement, and we may omit the loop ui → · · · → uj from the original
path. ��
For a finite MSC M = (E , P, λ, t,m,≺) let S(M) = |t−1(S)|. For an HMSC
H = (V,→, P, µ, v) let S(H) = max{S(µ(u)) | u ∈ V }.
Lemma 5. Let the HMSC H = (V,→, P, µ, v) be locally strongly connected.
Then H is ∀bglob-bounded (and hence also ∀bloc-bounded) for some b ≤ |P | · |V | ·
S(H). Furthermore if b ∈ N is minimal such that H is ∀bglob-bounded (resp. ∀bloc-
bounded) then there exists a path v1 → v2 → · · · → vn in (V,→) and a configura-
tion C of the MSC M = µ(v1) · · ·µ(vn) such that n ≤ |P | · |V | and gs(C,M) = b
(resp. ls(C,M) = b).

We should remark that Theorem 2.8 of [5], which corresponds to the first state-
ment of Lemma 5, is formulated in terms of regular MSC-expressions instead of
HMSCs. Using the notation of [5], we can prove the following statement in the
same fashion as Lemma 5.

Lemma 6. Let L be a set of finite MSCs over some fixed set of processes P . As-
sume that eachM ∈ L is locally strongly connected and ∀bglob-bounded (resp. ∀bloc-
bounded). Then every MSC in L∗ is ∀|P |·bglob -bounded (resp. ∀|P |·bloc -bounded).

Theorem 5. ∀glob-HMSC-BOUNDED is coNP-complete.

Proof. We show that the complementary problem is NP-complete:
INPUT: HMSC H and positive integer b.
QUESTION: Is there an MSC M ∈ L(H) which is not ∀bglob-bounded?

An NP-algorithm that solves this problem proceeds as follows: Fix an HMSC
H = (V,→, P, µ, v). First we guess in (V,→) a simple cycle u1 → u2 → · · · →
um → u1 and a path v1 → v2 → · · · → vn with n ≤ |P | · |V | together with a con-
figuration C in the MSC M = µ(v1) · · ·µ(vn). Then the algorithm outputs “yes”
if and only if either the communication graph of the MSC µ(u1)µ(u2) · · ·µ(um)
is not locally strongly connected or gs(C,M) ≥ b + 1. We claim that this NP-
algorithm is correct. Clearly if the algorithm outputs “yes” then there exists
an MSC in L(H) which is not ∀bglob-bounded. On the other hand assume that
there exists an MSC in L(H) which is not ∀bglob-bounded. Either H is not locally
strongly connected, which can be detected by the algorithm, or there exists
some b′ such that H is ∀b′glob-bounded. Let b′ be minimal with this property.
Then b < b′ and by Lemma 5 there exists a path v1 → v2 → · · · → vn with
n ≤ |P | · |V | together with a configuration C in the MSC M = µ(v1) · · ·µ(vn)
such that gs(C,M) = b′ ≥ b+ 1. Again both this path and the configuration can
be detected by the algorithm.

In order to prove NP-hardness, we reduce SAT to our problem. A construction
similar to the following one was also used in [7]. Let {x1, . . . , xn} be a set of

Bounded MSC Communication 305

propositional variables, and let C = {C1, . . . , Cm} be a set of clauses, where each
clause Ci consists of variables and negated variables. We construct an HMSC
H = (V,→, P, µ, v) such that C is satisfiable if and only if there exists M ∈
L(H) which is not ∀m−1glob -bounded. Let V = {v, v1, v1, . . . , vn, vn} and → =
{(v, v1), (v, v1)} ∪ {(vi, vi+1), (vi, vi+1), (vi, vi+1), (vi, vi+1) | 1 ≤ i < n}. The set
of processes is P = {ci, c′i | 1 ≤ i ≤ m}. It remains to define the MSCs µ(u)
for u ∈ V . The MSC µ(v) is empty. The MSC µ(vi) contains a message from
process cj to process c′j and back from c′j to cj if xi ∈ Cj . Similarly the MSC
µ(vi) contains a message from process cj to process c′j and back from c′j to cj if
xi ∈ Cj . No other messages are present. It follows that C is satisfiable if and only
if there exists an MSC M ∈ L(H) such that for every 1 ≤ j ≤ m the projection
of M onto the processes cj and c′j is a non-empty iteration of the MSC that
sends a message from cj to c′j and back. This holds if and only if there exists an
MSC M ∈ L(H) that is not ∀m−1glob -bounded. ��
It should be noted that Theorem 5 holds no matter whether the buffer bound
b ∈ N is represented unary or binary. Our lower bound proof holds also for
the unary representation, whereas the upper bound proof holds for the binary
representation. Furthermore note that the HMSC H used for the lower-bound
proof is based on an acyclic graph (V,→), thus H defines a finite set of MSCs.

Theorem 6. ∀loc-HMSC-BOUNDED is coNP-complete. Furthermore this prob-
lem is coNP-complete even if the input parameter b is fixed to b = 2.

Proof. Membership in coNP follows in exactly the same way as in Theorem 5.
In order to show coNP-hardness we will reduce NAE-SAT (not-all-equal-SAT)
to the complement of our problem. We consider a collection of m clauses C =
{C1, . . . , Cm} each of length three, over variables {x1, . . . , xn} and we want to
find out whether there is a variable assignment such that for each clause Ci, the
literals of Ci do not have the same value. We will construct an HMSC H such
that for a given channel (A,B) of H there is an execution with more than 2
sends in the corresponding buffer if and only if there is an assignment as above
for C. For every channel different from (A,B) each execution of H will contain
at most one message for that buffer, so channels different from (A,B) will be
universally bounded by 1.

The graph underlying H is similar to the one from Theorem 5. The node
set is V = {v, v1, v1, . . . , vn, vn, v′}, and → = {(v, v1), (v, v1), (vn, v′), (vn, v′)} ∪
{(vi, vi+1), (vi, vi+1), (vi, vi+1), (vi, vi+1) | 1 ≤ i < n}. Again, vertex vi stands
for xi true, whereas vi stands for xi false. The HMSC H uses processes A,B
and processes Pj,1, Pj,2, Pj,3, Pj,4, Nj,1, Nj,2, Nj,3, Nj,4 for j ∈ {1, . . . ,m} ranging
over the clauses. We denote as Pj-group the processes in Pj,1, Pj,2, Pj,3, Pj,4, and
as Nj-group the processes in Nj,1, Nj,2, Nj,3, Nj,4. The initial node v contains
two messages from A to B, followed by one message from B to each of Pj,1 and
Nj,1. Each node vi contains a message in the Pj-group for every clause Cj where
xi occurs positively, and a message in the Nj-group for every clause Cj where
xi occurs negatively. Precisely, vi contains a message from Pj,k to Pj,k+1, if xi
is the k-th literal of Cj , k ∈ {1, 2, 3}. Here, the ordering of the literals in each

306 Markus Lohrey and Anca Muscholl

clause has to respect the order x1, . . . , xn of the variables. We define analogously
the messages from Nj,� to Nj,�+1 in vi, for each Cj containing xi. Finally for the
messages in vi we switch the roles of Pj and Nj . The final node v′ is labeled by
messages from each of Pj,4, Nj,4 to A, followed by a message from A to B.

Note that paths from v to v′ correspond precisely to variable assignments.
Moreover, for a given path, the second receive of type R(A,B) precedes in the
visual order the third send of type S(A,B) if and only if there is some j and a
≺-path either from Pj,1 to Pj,4, or from Nj,1 to Nj,4. But this holds if and only
if there is a clause Cj in which all literals have the same value under the variable
assignment corresponding to the chosen path from v to v′. But this is exactly
the case where C is not satisfied as an NAE-SAT instance. ��
Let us remark that a simple extension of the construction from the previous proof
also shows that it is coNP-complete, whether a given HMSC is ∀bloc-bounded for
some b, i.e., whether it is locally strongly connected. For this we have to add
an edge from the final node v′ back to the initial node v. Furthermore we have
to add confirm messages that ensure that only the buffer (A,B) may contain
an arbitrary number of undelivered messages. For this we simply confirm each
message from a process p to q where (p, q) �= (A,B) directly by a message from
q back to p.

5 Local Boundedness and Nested MSCs

A nested MSC (nMSC) is a sequence M = (Mk)1≤k≤m of modules Mk. Each
module Mk is defined as an MSC to which we add references to modules Mi

with k < i ≤ m, by specifying the start and end of each reference to Mi on the
process lines belonging to Mi. We use the definition of [1], where messages are
restricted to be matched on the same hierarchy level (in particular, we don’t
consider ports), but they can cross submodules, see the following figure.

M1

M2

M2

The definition above is analogous to the notion of straight-line expressions, where
any expression may use in its definition sub-expressions that were previously
defined. Each module Mk of M can be expanded to a finite MSC flat(Mk) by

Bounded MSC Communication 307

replacing inductively in Mk each reference to a module Mj (j > k) by the
MSC flat(Mj). Finally we define flat(M) = flat(M1). Let P (Mk) be the set
of processes of flat(Mk). Note that if an occurrence of flat(Mi) appears within
flat(Mk) then P (Mi) ⊆ P (Mk). Thus, if Mk contains a message (s, r) from p
to q that crosses a reference Mi, i > k, (i.e., p, q are processes of Mi and s
precedes the beginning of Mi on p, whereas r succeeds the end of Mi on q),
then Mi cannot contain any message from p to q, unless the FIFO-restriction is
violated. We show in this section that both versions (existential and universal)
of the local-boundedness problem for nMSCs can be solved in polynomial time,
provided that the nMSC M satisfies the FIFO-restriction, i.e., flat(M) satisfies
the FIFO-restriction. Of course, the algorithms must exploit the hierarchy, since
nMSCs can be exponentially more succinct than the MSCs they define (i.e., a
module Mk of M may have exponentially many copies in the MSC flat(M)).

For the further consideration let us fix an nMSC M = (Mk)1≤k≤m. For
1 ≤ k ≤ m let �k (resp. ≺k) be the �-relation (resp. visual order) associated
with flat(Mk) (recall the definition of � in Section 3). Furthermore let ≺=≺1,
�=�1, and P = P (M1).

Lemma 7. Let M satisfy the FIFO-restriction. Let E be the set of events of
some occurrence of flat(Mk) in flat(M), 1 ≤ k ≤ m. Then � ∩ (E × E) =�k.

Note that Lemma 7 does not hold for the case where the nMSC violates the
FIFO-restriction. In this case different occurrences of the MSC flat(Mk) in
flat(M) may have different local �-relations depending on their context.

Lemma 8. Suppose that the relation � ∪ ≺ contains a cycle. Then for some
k ≤ |P | there exists a cycle of the form r1 � s1 ≺ r2 � s2 ≺ · · · ≺ rk � sk ≺ r1.

In the following we call an event e of the MSC flat(M) a top level event if it
belongs to the events of the module M1 (but not to the events of some module
Mk with k > 1).

Theorem 7. Let Q ∈ {∀,∃}. The following problem can be solved in polynomial
time:

INPUT: nMSC M satisfying the FIFO-restriction and positive integer b.
QUESTION: Is flat(M) Qb

loc-bounded?

Proof. We will only consider existential-local boundedness. For universal-local
boundedness we can argue similarly. By Lemma 2 it suffices to verify that the
transitive closure of the relation ≺ ∪ � associated with the MSC flat(M) is
acyclic. Of course, we cannot explicitly generate the �-edges, since there can
be exponentially many �-edges leading out of a copy of Mi within Mk, or vice
versa. By Lemma 8 it suffices to look for a cycle containing at most |P | new
�-edges.

Let us first describe how we can compute the set Succ≺(e) = {f | e ≺ f}
of ≺-successors of e for any given event e of flat(M), described by the position
on its process. Since this set may be of exponential size, we describe it by a
tuple (kp)p∈P of positions, one for each process p. The position kp corresponds

308 Markus Lohrey and Anca Muscholl

to the first event f ∈ λ−1(p) with e ≺ f . Note that if e ≺ f then there exists a
chain e = e1 � f1 ≺ e2 ≺ f2 ≺ · · · ≺ ft ≺ et+1 � ft+1 = f with λ(ei) = λ(fi),
m(fi) = ei+1, and t < |P |. Here � denotes the reflexive closure of the visual order
≺. The computation of Succ≺(e) can be performed by induction on t. We start
by setting kλ(e) to the direct successor of e on process λ(e) and kλ(m(e)) = m(e) if
e is a send, all kp that are not defined in this way are set to∞ For the inductive
step we determine for all kp <∞ and all processes q �= p the first send s of type
S(p, q) with s � kp, and we compute the minimum between its matching receive
and kq. This step can be performed in time O(|P |3|M |).

A similar argument applies when we want to determine whether there is a
cycle in � ∪ ≺. Of course we cannot check for every event e of flat(M) whether
e ∈ Succ(≺∪�)+(e), since there might be exponentially many such events. But in
fact it suffices to show that it can be checked in polynomial time whether� ∪ ≺
contains a cycle that visits some top level event of flat(M), because then we
may apply this polynomial time algorithm to each of the nMSCs (Mk)i≤k≤n for
1 ≤ i ≤ n. For the correctness of the resulting algorithm we have to use Lemma 7
which ensures that ≺ ∪� contains a cycle which is completely contained in some
occurrence of flat(Mk) within flat(M) if and only if ≺k ∪�k contains a cycle.

Thus, let e be some top level event of flat(M). We will compute Succ(≺∪�)+(e)
and test whether e ∈ Succ(≺∪�)+(e). We start with Succ(≺∪�)+(e) = Succ≺(e),
represented by the tuple of positions (kp)p∈P . For the inductive step we deter-
mine for all kq < ∞ and all processes p �= q the first receive r of type R(p, q)
with r � kq, and we compute the send s of type S(p, q) with r � s. Then we
compute for each such s the set Succ≺(s) and we build the minima with (kp)p∈P
on every process. The overall running time is of order O(|P |4|M |2). ��

6 Fixed Number of Processes

In practice, the set of processes of an MSC can be much smaller than the number
of messages. Hence we are interested in the complexity of our problem when the
number of processes is fixed. The main result of this section states that for a
fixed number of processes all the variants of the channel boundedness problem
can be solved in polynomial time (more precisely in nondeterministic logspace).

Theorem 8. Let Q ∈ {∀,∃} and Y ∈ {glob, loc}. Let P be a fixed set of pro-
cesses. The following problem is solvable in polynomial time (precisely, it is NL-
complete):

INPUT: HMSC M over the set of processes P and positive integer b.
QUESTION: Is M Qb

Y -bounded?

7 Summary and Open Problems

Table 1 summarizes our results for boundedness problems for finite MSCs and
HMSCs, for which we precisely determined the tractable boundedness prob-
lems. Concerning nMSCs we have shown that the two local-boundedness prob-
lems can be decided in polynomial time. The precise complexity of the two

Bounded MSC Communication 309

global-boundedness problems remains open for nMSCs. An NP-lower bound
for existential-global-boundedness follows trivially from the NP-lower bound for
finite MSCs. Concerning the upper bound we can only prove membership in
PSPACE. For universal-global-boundedness we can prove membership in coNP
for nMSCs, but the existence of a polynomial time algorithm remains open. An-
other interesting problem might be to investigate the complexity of boundedness
problems for a fixed buffer-bound b, which means that b does not contribute to
the input size. One might expect that the complexity of boundedness problems
decreases under this restriction.

Table 1. Complexity results for finite MSCs and HMSCs

finite MSCs ∃ ∀

global
NP-

complete
P

local P P

local
(nMSC)

P P

HMSCs ∃ ∀

global
NP-

complete
coNP-

complete

local P
coNP-

complete

References

1. B. Genest, and A. Muscholl. Pattern Matching and Membership for Hierarchical
Message Sequence Charts. To appear in Proc. of LATIN 2002.

2. J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. On mes-
sage sequence graphs and finitely generated regular MSC languages. In Proc. of
ICALP’00, LNCS 1853, pp. 675–686, 2000.

3. J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. Regular collec-
tions of message sequence charts. In Proc. of MFCS’00, LNCS 1893, pp. 675–686,
2000.

4. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

5. R. Morin. On regular message sequence chart languages and relationships to
Mazurkiewicz trace theory. In Proc. of FoSSaCS’01, LNCS 2030, pp. 332–346,
2001.

6. M. Mukund, K. N. Kumar, and M. A. Sohoni. Synthesizing distributed finite-state
systems from MSCs. In Proc. of CONCUR’00, LNCS 1877, pp. 521–535, 2000.

7. A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence charts.
In Proc. of FoSSaCS’98, LNCS 1378, pp. 226–242, 1998.

8. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
9. R. Sethi. Complete register allocation problems. SIAM Journal on Computing,

4(3):226–248, 1975.
10. K. Simon. On minimum flow and transitive reduction. In Proc. of ICALP’88,

LNCS 317, pp. 535–546, 1988.

	Bounded MSC Communication
	1 Introduction
	2 Preliminaries
	2.1 Message Sequence Charts
	2.2 Pebble Games

	3 Bounded Communication in Finite MSCs
	4 Bounded Communication in HMSCs
	5 Local Boundedness and Nested MSCs
	6 Fixed Number of Processes
	7 Summary and Open Problems
	References

