Drawing Graphs Symmetrically in Three
Dimensions*

Seok-Hee Hong

Basser Department of Computer Science, University of Sydney, Australia.
shhong@cs.usyd.edu.au

Abstract. In this paper, we investigate symmetric graph drawing in
three dimensions. We show that the problem of drawing a graph with a
maximum number of symmetries in three dimensions is NP-hard. Then
we present a polynomial time algorithm for finding maximum number of
three dimensional symmetries in planar graphs.

1 Introduction

Symmetry is one of the most important aesthetic criteria for Graph Drawing.
It clearly reveals the structure of a graph. Symmetric graph drawing has been
investigated by a number of authors [2I45I6/7/8IOITOIT3IT6II7/18]. However, most
of previous work on symmetric graph drawing has mainly focused on two dimen-
sions PIAIBEZIRITITEITITR].

Symmetry in three dimensions is much richer than that in two dimensions.
For example, a maximal symmetric drawing of the icosahedron in two dimensions
shows 6 symmetries. However, the maximal symmetric drawing of the icosahe-
dron in three dimensions shows 120 symmetries.

In this paper, we investigate symmetric graph drawing in three dimensions.
First, we show that the problem of drawing a graph with a maximum number
of symmetries in three dimensions is NP-hard. Then we present a polynomial
time algorithm for finding maximum number of three dimensional symmetries
in planar graphs.

To draw a graph symmetrically in three dimensions, there are two steps: first
find the three dimensional symmetries, then construct a drawing which displays
these symmetries. The first step is the more difficult one. This paper concentrates
on the first step.

This paper is organized as follows. In the next section, we explain necessary
background. We show that the problem of drawing a graph with a maximum
number of symmetries in three dimensions is NP-hard in Section Bl In Section ]
Section Bl Section[Bl and Section [[] we present an algorithm for finding maximum
number of three dimensional symmetries of planar graphs. Section [§ concludes.

* In this extended abstract, many proofs are omitted. This research has been supported
by a grant from the Australian Research Council. Three dimensional drawings are
available from http://www.cs.usyd.edu.au/ shhong/research?7.htm.

P. Mutzel, M. Jiinger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 189-204], 2002.
(© Springer-Verlag Berlin Heidelberg 2002



190 S.-H. Hong
2  Symmetric Graph Drawing in Three Dimensions

In this section, we explain the types of three dimensional symmetry and describe
our model for drawing graphs symmetrically in three dimensions.

2.1 Symmetries in Three Dimensions

Symmetry in three dimensions is richer and more complex than symmetry in
two dimensions. The types of symmetry in three dimensions can be classified as
rotation, reflection, inversion and rotary reflection [19]. A rotational symmetry
in three dimensions is a rotation about an azis and a reflectional symmetry in
three dimensions is a reflection in a plane. Inversion is a reflection in a point.
Rotary reflection is a composition of a rotation and a reflection.

A finite rotation group in three dimensions is one of following three types: a
cyclic group (Cy), a dihedral group (D, ) and the rotation group of one of the
Platonic solids [19]. There are only five regular Platonic solids, the tetrahedron,
the cube, the octahedron, the dodecahedron and the icosahedron.

The full symmetry group of a finite object in three dimensions is much more
complex than the rotation group. The complete list of all possible symmetry
groups in three dimensions can be found in [19].

2.2 Symmetric Drawing in Three Dimensions

For the purpose of drawing graphs in three dimensions, we require three non-
degeneracy conditions: no two vertices are located at the same point, no two
edges overlap, and no vertex lies on an edge with which it is not incident.

A symmetry of a three dimensional drawing D of a graph G induces a permu-
tation of the vertices, which is an automorphism of the graph; this automorphism
is displayed by the symmetry. We say that the automorphism is a three dimen-
sional symmetry of a graph G.

The symmetry group of a three dimensional graph drawing D of a graph
G induces a subgroup of the automorphism group of G. The subgroup P is a
three dimensional symmetry group if there is a three dimensional drawing D of
G which displays every element of P as a symmetry of the drawing.

3 General Graphs

In this section, we show that the problem of drawing a graph with a maximum
number of symmetries in three dimensions is NP-hard.

The aim of this paper is to investigate graph drawings in three dimensions
that show a maximum number of symmetries. For this purpose, we need to find
a three dimensional symmetry group which has maximum size. We now define
our main problem.



Drawing Graphs Symmetrically in Three Dimensions 191

Three Dimensional Symmetry Group Problem (3DSGP)

Input: A graph G.

Output: A three dimensional symmetry group P of G which has maxi-
mum size.

In general, 3DSGP is NP-hard; the following subproblem is NP-complete.

Three Dimensional Size 3 Symmetry Group Problem (3D3SGP)

Input: A graph G.

Question: Does G have a three dimensional symmetry group of size at
least 37

Theorem 1. The problem 3D3SGP is NP-complete, and the problem 3DSGP
is NP-hard.

To show that 3D3SGP is NP-complete, we consider the following problems.
A vertex is fized by a given three dimensional symmetry if it is mapped onto
itself by that symmetry.

1. 3DROT: Does G have a drawing D in three dimensions which shows any
nontrivial rotational symmetry?

2. 3DROTy: Does G have a drawing D in three dimensions which shows any
nontrivial rotational symmetry with no fixed vertex?

3. 3DREF': Does G have a drawing D in three dimensions which shows any
reflectional symmetry?

4. 3BDREF,: Does G have a drawing D in three dimensions which shows any
reflectional symmetry with no fixed vertex?

5. 3DINV: Does G have a drawing D in three dimensions which shows an
inversion?

6. 3DINVy: Does G have a drawing D in three dimensions which shows an
inversion with no fixed vertex?

7. 3DINV;: Does G have a drawing D in three dimensions which shows an
inversion with one fixed vertex?

We now show that each of these problems, except 3DRFEF is NP-complete.
For 3DREF, note that any drawing of a graph in a plane displays reflectional
symmetry in three dimensions.

First we consider a three dimensional symmetry with no fixed vertex.

Theorem 2. 3DREF,, 3DINVy and 3DROTy are NP-complete.

Proof. This immediately follows from [14] that the detection of fized point free
automorphism is NP-complete.

We now consider the problem of three dimensional symmetry with fixed
vertex.

Theorem 3. 3DINV, 3DINV; and 3DROT are NP-complete.



192 S.-H. Hong

Proof. We can reduce these problems to the corresponding problem in two di-
mensions, which is NP-complete [1§].

To prove the general complexity results in Theorem [ note that any sym-
metry group of size greater than 2 must include a symmetry that is either a
rotation or an inversion. Thus Theorem [I] follows from Theorem Bl

However, if we restrict the problem into subclasses of planar graphs such
as trees and series-parallel digraphs, then 3D.SGP is solvable in linear time [9]
10]. For drawings of planar graphs in three dimensions, we require two further
properties. First, two nonadjacent edges should not intersect, that is, we do
not allow edge crossings. Second, the drawing should be linkless, that is, no
two undirected cycles form a nontrivial link. In the next section, we show that
3DSGP is solvable in polynomial time for planar graphs.

4 Planar Graphs

In this section, we present an algorithm for finding three dimensional symmetries
in planar graphs. We use connectivity to divide the problem into cases.

1. G is triconnected.
2. (G is biconnected.
3. G is one-connected.

Each case relies on the result of the previous case. The following theorem
summarizes the result of this section.

Theorem 4. There is a polynomial time algorithm which computes a maximum
size three dimensional symmetry group of planar graphs.

The proof of this theorem is outlined in the remainder of this paper. The first
case is the simplest and described in Section [B} The biconnected case and the
one-connected case are more difficult and described in Section [6] and Section [7]
respectively.

5 The Triconnected Case

If G is a triconnected planar graph, then we simply use automorphism to find
three dimensional symmetry. This is based on the following theorem.

Theorem 5. [I75] Every triconnected planar graph G can be realized as the
1-skeleton of a convex polytope P in R3 such that all automorphisms of G are
induced by isometries of P.

From Theorem Bl we can compute three dimensional symmetry group of
triconnected planar graph G from the automorphism group of G. Automorphism
of triconnected planar graphs can be computed in linear time [I2]. However we
need O(n?) space to represent the automorphism group.



Drawing Graphs Symmetrically in Three Dimensions 193

6 The Biconnected Case

If the input graph G is biconnected, then we break it into triconnected compo-
nents in a way that is suitable for the task. The overall algorithm is composed
of three steps.

Algorithm 3DBiconnected_Planar
1. Construct the SPQR-tree 77 of G, and root 17 at its center.
2. Reduction: For each level i of T1 (from the lowest level to the root level)
a) For each leaf node on level ¢, compute labels.
b) For each leaf node on level 4, label the corresponding virtual edge of the
parent node with the labels.
¢) Remove the leaf nodes on level i.
3. Compute a maximum size three dimensional symmetry group at the labeled
center.

We briefly sketch the idea of the algorithm. The algorithm begins by con-
structing the SPQR-tree for the input biconnected planar graph. Then we use a
kind of “reduction” [I1]. The operation traverses the SPQR-tree from the leaf
nodes to the center level by level. First it computes the labels for the leaf nodes.
The labels are a pair of integers, a list of integers and boolean values that cap-
ture some information of the symmetry of the leaf nodes. Then it labels the
corresponding virtual edge in the parent node and delete each leaf node. This
reduction process stops at the root (the center of the SPQR-tree). The center
may be a node or an edge. Using the information encoded on the labels, we
compute a maximum size three dimensional symmetry group at the center.

We now explain each step of the algorithm.

6.1 SPQR-Tree

We briefly review the definition of the SPQR-tree. For details, see [3].

The SPQR-tree represents a decomposition of a biconnected planar graph
into triconnected components. There are four types of nodes in the SPQR-tree
Ty and each node v in T} is associated with a graph which is called as the skeleton
of v (skeleton(v)). The node types and their skeletons are:

1. @-node: The skeleton consists of two vertices which are connected by two
multiple edges.

2. S-node: The skeleton is a simple cycle with at least 3 vertices.

. P-node: The skeleton consists of two vertices connected by at least 3 edges.

4. R-node: The skeleton is a triconnected graph with at least 4 vertices.

w

In fact, we use slightly different version of the SPQR-tree. We use the SPQR-
tree without @ nodes. Also we root the SPQR-tree T} at its center. The SPQR-
tree is unique for each biconnected planar graph. Let v be a node in 77 and u
is a parent node of v. The graph skeleton(u) has one common virtual edge with
skeleton(v), which is called as a virtual edge of v.



194 S.-H. Hong

6.2 Reduction Process

The reduction process takes the SPQR-tree of a biconnected graph. The SPQR-
tree T3 is rooted at the center, based on the following theorem.

Theorem 6. The center of the SPQR-tree is fixed by a three dimensional sym-
metry group of a biconnected planar graph.

Reduction proceeds from the nodes of maximum level toward the center,
deleting each leaf node v at the lowest level at each iteration.

The reduction process clearly does not decrease the three dimensional sym-
metry group of the original graph. This is not enough; we need to also ensure
that the three dimensional symmetry group is not increased by reduction. This is
the role of the labels. As a leaf v is deleted, the algorithm labels the virtual edge
e of v in skeleton(u) where u is a parent of v. Roughly speaking, they encode
information about the deleted leaf to ensure that every three dimensional sym-
metry of the labeled reduced graph extends to a three dimensional symmetry of
the original graph.

The reduction process stops when it reaches the root.

6.3 The Labels and Labeling Algorithms

We now define the labels which play very important role in the reduction process.
Our aim is to label the virtual edges so that we can compute a maximum

size three dimensional symmetry group of the original graph by computing a

maximum size three dimensional symmetry group of the labeled center.

At each stage of the reduction process, labels for the deleted leaf nodes are
needed. This is because the reduced graph overestimates a three dimensional
symmetry group of the original graph. By checking labels whether they preserve
the three dimensional symmetry or not, we can compute a three dimensional
symmetry group of the original graph exactly from the reduced graph.

Let v be an internal node of T;. We say that a virtual edge e of skeleton(v)
is a parent (child) virtual edge if e corresponds to a virtual edge of u which is a
parent (child) node of v. We define a parent separation pair s = (s1,$2) of v as
the two endpoints of a parent virtual edge e.

When we compute the labels of v, we need to delete the parent virtual edge
e from skeleton(v). We denote the resulting graph by skeleton™ (v).

Suppose that nodes vy, vs,...v; of the SPQR-tree T} are deleted at one
iteration of the reduction process. These nodes correspond to virtual edges
e1,€2,... ¢ in the level above the current level. For each e;, we need to compute
the following labels.

1. isomorphism code: a pair Iso(e;) of integers.

2. rotation code: a list L., indicating the size of possible rotation groups of
skeleton™ (v;) that fixes the parent separation pair.

3. reflection code:



Drawing Graphs Symmetrically in Three Dimensions 195

a) Refswap(ei): a boolean label indicating whether skeleton™ (v;) has a re-
flectional symmetry that swaps the parent separation pair.
b) Refriz(e;): a boolean label indicating whether skeleton™ (v;) has a re-
flectional symmetry that fizes the parent separation pair.
4. inversion code: a boolean label Inv(e;) indicating whether skeleton™ (v;) has
an inversion that swaps the parent separation pair.

Note that we need these labels when the virtual edge is fixed by a three
dimensional symmetry of the parent node. We now describe each labeling algo-
rithm.

Computation of an Isomorphism Code. The isomorphism code Iso(e) con-
sists of a pair of integers. This is because the skeleton(v) has an orientation with
respect to the parent separation pair [11]. The isomorphism code can be com-
puted in linear time using a planar graph isomorphism algorithm [12].

Computation of a Rotation Code. In addition to the isomorphism code, we
attach further information about a rotational symmetry of skeleton™(v) which
fixes the parent separation pair. The algorithm computes a list L., the size of
the possible rotation groups. In fact, each element of L. consists of a pair of
integers: one which indicates the size of the rotation group and the other which
indicates whether the rotational symmetry has a fixed edge.

Note that the rotational symmetry should respect the isomorphism code of
the child virtual edge. Further, if the rotational symmetry fixes a child virtual
edge, then we need to compute the intersection of the rotation groups. We now
state the algorithm.

Algorithm Compute_Rotation_Code
1. Compute the list L, of rotation groups of skeleton™ (v) which fixes the parent
separation pair and respects the isomorphism codes of child virtual edges.
2. For each element p of L., if there is a child virtual edge e; in skeleton™ (v)
which is fixed by p, then compute the intersection of the rotation groups of
L and L.

Stepl uses the triconnected case in Section Blif skeleton™ (v) is triconnected.
Otherwise it uses 3DBiconnected_Planar recursively. Step 2 can be computed
in linear time using a bit array representation [A].

Computation of a Reflection Code. Further, we need information about
a reflectional symmetry. This can be divided into two cases: swaps the parent
separation pair or fizes the parent separation pair. First we describe an algorithm
for Refswap(€).

Note that the reflectional symmetry should respect the isomorphism code of
the child virtual edge. Further, if the reflectional symmetry fixes a child virtual
edge, then we need to test its label. We now state the algorithm.



196 S.-H. Hong

Algorithm Compute_Reflection_Code_Swap
1. Test skeleton™ (v) whether it has a reflectional symmetry o which swaps the
parent separation pair and respects the isomorphism codes of child virtual
edges.
2. If o exists, then
a) For each child virtual edge e; that is fixed by «, check followings:
i. if o fixes the endpoints of e;, then Refyi.(e;) = true.
ii. if o swaps the endpoints of e;, then Refqap(e;) = true.
b) If one of these properties fails,
then Refswap(e) := false; else Refsyap(e) = true.
else Refswap(e) := false.

An algorithm for computing Refy,(e) is very similar to the algorithm for
computing Refsyap(€). We omit this algorithm from this extended abstract.

Computation of an Inversion Code. Further, we need information about
an inversion which swaps the parent separation pair. The algorithm is similar to
the case of reflectional symmetry.

Algorithm Compute_Inversion_Code
1. Test skeleton™ (v) whether it has an inversion § which swaps the parent
separation pair and respects the isomorphism codes of child virtual edges.
2. If 3 exists, then
If for each child virtual edge e; that is fixed by 3, Inv(e;) = true,
then Inv(e) := true; else Inv(e) := false.
else Inv(e) := false.

Note that these labeling algorithms are for R-nodes. When v is a P-node,
then we use similar algorithms to the case of parallel compositions in series
parallel digraphs [I0]. When v is an S-node, then we use similar algorithms to
the case of series compositions in series parallel digraphs [10]. We omit these
algorithms from this extended abstract.

Based on each labeling algorithm, now we are ready to find three dimensional
symmetry at the center.

6.4 Finding Three Dimensional Symmetry at the Center

In this section, we briefly describe how to compute a maximum size three di-
mensional symmetry group at the labeled center.

Note that the center of the SPQR-tree may be a node ¢ or an edge e. If the
center is a node ¢, then we can further divide into three cases by its type. If ¢
is a R-node, then we use the triconnected case in Section Blto compute a three
dimensional symmetry group. See Figure[Il (a) for example. We construct a three
dimensional drawing of skeleton(c) and then replace each child virtual edge e;
by a drawing of skeleton™ (v;). We repeat this process recursively. Note that we
place a drawing of skeleton™ (v;) on a plane to maximize symmetry.



Drawing Graphs Symmetrically in Three Dimensions 197

(b)

Fig.1. Ezample of (a) R-node and (b) S-node.

If ¢ is a P-node, then we use similar algorithm to the case of a parallel
composition in series parallel digraphs [10]. See Figure 2 (a) for example. If ¢
is an S-node, then we use similar algorithm to the case of labeled cycle. See
Figure [l (b). We omit this algorithm from this extended abstract.

€Y (b)

Fig. 2. Ezample of (a) P-node and (b) Special case.

However, there may exist some other node v which is fixed by a three dimen-
sional symmetry group. See Figure 2] (b). We call this special case as enclosing
case. Thus to find a maximum size three dimensional symmetry group at the
center ¢, we compute these two cases and then find the maximum.

If the center is an edge, then we find the maximum among three cases: parallel
composition, reduction composition and enclosing composition. Parallel compo-
sition means that we construct a drawing with two labeled edges such as a parallel



198 S.-H. Hong

composition in series parallel digraphs. Reduction composition means that we
compute labels of one node u and then delete u by labeling the corresponding
virtual edge e of the other node v. Then we compute a three dimensional sym-
metry group at v. Enclosing composition means that we construct a drawing
such as the special case.

We conclude this section by analyzing the time complexity.

Theorem 7. 3DBiconnected Planar takes O(n?) time.

7 The One-Connected Case

In this section, we give a symmetry finding algorithm for one-connected planar
graph G. The algorithm is similar to the biconnected case: we use reduction
approach. We also use algorithm 3DBiconnected Planar as a subroutine.

The method proceeds from the leaves of the block-cut vertex tree (BC-tree)
to the center; we may regard the BC-tree as rooted at the center. The overall
algorithm is thus composed of three steps.

Algorithm 3DOneconnected_Planar
1. Construct the BC-tree Ty of GG, and root 15 at its center.
2. Reduction: For each level i of Ty (from the lowest level to the root level)
a) For each leaf node (block or cut vertex) on level i, compute labels.
b) Remove all the leaf nodes on level .
3. Compute a maximum size three dimensional symmetry group at the labeled
center.

The reduction process is similar to the biconnected case. In this case we take
the BC-tree and then compute labels at each leaf node (block or cut vertex).
However, the labels are different. We now define the labels.

7.1 The Labels and Labeling Algorithms

We need three types of labels: isomorphism code, rotation code and reflection
code. However, these are further divided into the case of a cut vertex or a block.
Let B; represent a block and ¢; represent a cut vertex.

1. isomorphism code : an integer Isog(B;) (or Isoc(c;)).

2. rotation code : a list Lp, (or L.,) indicating the size of possible rotation
groups of B; (or ¢;) which fixes the parent node.

3. reflection code : an integer Refp(B;) (or Refc(c;)) indicating whether B;
(or ¢;) has a reflectional symmetry which fixes the parent node.

Note that we need these labels when the block or cut vertex is fixed by a
three dimensional symmetry of the parent node. We now describe each labeling
algorithm.



Drawing Graphs Symmetrically in Three Dimensions 199

Computation of an Isomorphism Code of a Block. Suppose that
Bq,Bs,...,B,, are the blocks on the lowest level and py,ps,...,p, are the
parent cut vertices for the blocks. We compute isomorphism code Isop(B;) for
each B; using a planar graph isomorphism algorithm which takes linear time [L1]
12]. Note that the isomorphism should respect the isomorphism code of the child
cut vertex. We now describe the algorithm.

Algorithm Compute_Iso_B
for each B;,i =1,2,... ,m,
if there is an isomorphism a between B; and B; such that,
a) a(pi) = p;-
b) for each cut vertex ¢ of By,
i. a(eg) is a cut vertex.
il. Isoc(ck) = Isoc(a(ck)).
then assign isomorphism code such that I'sog(B;) = Isog(B;).

Computation of a Rotation Code of a Block. A rotation code of a block
B consists of a list L which represents the size of possible rotation groups of
B which fixes the parent cut vertex p of B. In fact, each element of Lg consists
of a pair of integers: one which indicates the size of the rotation group and the
other which indicates whether the rotational symmetry has a fixed edge which is
adjacent to p. We need this information when the block is fixed by a rotational
symmetry of the parent node. Thus we compute the list of the size of possible
rotation groups which fixes the parent cut vertex p of B.

Note that the rotational symmetry should respect the isomorphism code of
the child virtual edge. Further, if the rotational symmetry has a fixed child cut
vertex c;, then we need to compute the intersection of the rotation group of B
and the rotation group of ¢;. Let c1, ¢, ... , ci be the child cut vertices of B. We
now describe the algorithm.

Algorithm Compute_Rot_B

1. Compute the list L of the size of the rotation groups of B which fixes the
parent cut vertex p and respect the isomorphism code of child cut vertex,
together with information about the fixed edge which is adjacent to p.

2. For each element p of Lp, if there is a child cut vertex ¢; of B whose p(c;) =
cj, then
a) Let f be the number of fixed edges in B which is adjacent to c;.
b) Compute Lf:j from the list L., of the size of rotation groups of ¢; which

has at most 2 — f fixed child blocks with a fixed edge adjacent to c;.

c¢) Compute the intersection of L and Ly .

At step 1, we use algorithm 3DBiconnected Planar in Section [B]to compute
the rotation group of B.



200 S.-H. Hong

Computation of a Reflection Code of a Block. The label Refp(B) rep-
resents whether the block B has a reflectional symmetry which fixes the parent
cut vertex p. Let c1,ca,...,c be the child cut vertices of B.

In fact, the algorithm computes a ternary value for Refg(B). The interpre-
tation of Refp(B) is:

1. Refp(B) = -1: B has no reflectional symmetry which fixes p.

2. Refp(B) = 1: B has a reflectional symmetry which has a fixed edge adjacent
to p.

3. Refp(B) = 0: B has a reflectional symmetry which has no fixed edge adja-
cent to p.

First we find a reflectional symmetry « of B which fixes the parent cut
vertex using 3DBiconnected Planar. Then we check whether each fixed child
cut vertex c; preserves the reflectional symmetry. For this purpose, we need some
information about the reflection code Refc(c;). The interpretation of values of

Refc(cy) is:

1. Refc(cj) = 0: ¢j does not preserve c.
2. Refc(cj) = 1: ¢; preserves a.

Finally we assign the value, depending on the fixed edge which is adjacent
to p. We now state the algorithm.

Algorithm Compute_Ref_B
1. Test B whether it has a reflectional symmetry « such that
a) a(p) = p.
b) for each child cut vertex ¢; of B,
i. a(cj) is a child cut vertex.
ii. If a(c;) = ek, then I'soc(c;) = Isoc(a(ck)).
ili. If a(cj) = ¢j, then Refo(cj) = 1.
2. If « exists, then
If there is a fixed edge which is adjacent to p,
then Refp(B) := 1; else Refp(B) := 0.
else Refp(B) := -1.

Computation of an Isomorphism Code of a Cut Vertex. Suppose that
1,Ca, ... ,Cx are the cut vertices on the lowest level. We compute Isoc(c;) for
each ¢;, i =1,2,... ,k, which represents an isomorphism code of ¢;. More specif-
ically, I'soc(c;) = Isoc(c;) if and only if the subgraph which is rooted at ¢; is
isomorphic to the subgraph which is rooted at c¢;. We now state the algorithm.

Algorithm Compute_Iso_C

1. For each ¢;:
a) Let B;1, Bia, ..., Bim be the child blocks of ¢;.
b) S(Cl) = (ISOB(Bﬂ),ISOB(BiQ), N ,ISOB(Bim)).
¢) Sort s(¢;).



Drawing Graphs Symmetrically in Three Dimensions 201

2. Let @ be the list of s(¢;), i =1,2,... k.

Sort @ lexicographically.

4. For each ¢;, compute Isoc(c;) as follows: Assign the integer 1 to ¢; whose
s(c¢;) is the first distinct tuple of the sorted sequence Q. Assign the integer
2 to ¢; whose s(c;) is the second distinct tuple, and so on.

@

Computation of a Rotation Code of a Cut Vertex. The rotation code
consists of a list L. which represents the size of the possible rotation groups of
the cut vertex c. In fact, each element of L. consists of a pair of integers: one
which indicates the size of the rotation group and the other which indicates the
number of fixed child blocks which has a fixed edge adjacent to c.

Let B, be the parent block of c. We use L. when c is fixed by a rotational
symmetry of B,. When we compute Lp,, we need to compute the intersection
of two rotation groups.

Suppose that p is the rotational symmetry of B, which fixes c. In B, ¢ may
have 0, 1, or 2 fixed edges. Thus, we compute the rotation group of ¢ with three
cases: 0, 1, or 2 fixed blocks which has a fixed edge adjacent to c.

Let By, Bs,..., B, be the child blocks of ¢. To compute L., we need to
compute the intersection with the rotation group of the fixed child block B;. We
use Lp, for this purpose. The list Lp, represents the size of the possible rotation
groups of B; that fixes ¢, with some information about the fixed edge which is
adjacent to c.

The algorithm is an adaptation of the pyramid case of the tree algorithm in
three dimensions [9]. Note that at most two blocks with a fixed edge adjacent
to ¢ can be fixed by the rotational symmetry. Further we can fix more blocks
outside the fixed block if it does not have a fixed edge which is adjacent to c.
For each fixed block, we need to compute the intersection of the rotation groups.
We can compute the intersection of the rotation groups in linear time using the
method in [9]. We omit this algorithm from this extended abstract.

Computation of a Reflection Code of a Cut Vertex. The label Refc(c)
represents whether a cut vertex ¢ preserves a reflectional symmetry which fixes
the parent block. Let B, be the parent block of ¢ and By, Ba, ..., By, be the
child blocks of c. Suppose that a is a reflectional symmetry which fixes B,.
We use Refc(c) to decide whether ¢ preserves o of By,. More specifically, this
indicates that whether By, Bo, ... , B,, can be attached to ¢, preserving a.

In fact, we assign an integer to represent whether it preserves a. Refc(c) =
1 if ¢ preserves . Otherwise Refc(c) = 0.

To compute Refc(c), we use Refp(B;). The label Refp(B;) indicates that
whether B; has a reflectional symmetry which fixes c. Further, it indicates that
whether there is a fixed edge adjacent to c. We now state the algorithm.

Algorithm Compute_Ref C
1. Partition Bi, Bs,... , By, into isomorphism classes X; using Isog(B;).
2. Let y; := | Xy].



202 S.-H. Hong

3. If all y; are even, then Refc(c) := 1.

4. If there is an y; which is odd and Refg(B;) = -1 for B; € X,
then Refe(c) := 0.
else Refo(c) :== 1.

7.2 Finding Three Dimensional Symmetry at the Center

In this section, we briefly describe how to compute a maximum size three dimen-
sional symmetry group at the center. We can compute a maximum size three
dimensional symmetry group of the whole graph by computing a maximum size
three dimensional symmetry group at the labeled center. This is based on the
following theorem.

Theorem 8. The center of the BC-tree is fized by a three dimensional symmetry
group of an one-connected planar graph.

The center may be a block or a cut vertex. If the center is a block B, then we
use algorithm 3DBiconnected_Planar in Section[f If there is a fixed cut vertex
¢, then we need to check the labels of c. See Figure Bl (a) for example.

@ (b)

Fig. 3. Ezample of (a) B-center and (b) c-center.

If the center is a cut vertex ¢, then we use a similar method that was used in
the case of trees [9]. If there is a fixed block B, then we need to check the labels
of B. See Figure[3 (b). We omit this algorithm from this extended abstract.

We conclude this section by analyzing the time complexity.

Theorem 9. 3DOneconnected Planar takes O(n?) time.



8

Drawing Graphs Symmetrically in Three Dimensions 203

Conclusion

In this paper, we show that the problem of drawing a graph with a maximum
number of symmetries in three dimensions is NP-hard. Then we present a poly-
nomial time algorithm for finding maximum number of three dimensional sym-
metries in planar graphs. As a further work, we would like draw general graphs
symmetrically in three dimensions.

References

1.

10.

11.

12.

13.

14.

15.

L. Babai, Automorphism Groups, Isomorphism, and Reconstruction, Chapter 27
of Handbook of Combinatorics, Volume 2, (Ed. Graham, Groetschel and Lovasz),
Elsevier Science, 1995.

. S. Bachl, Isomorphic Subgraphs, Graph Drawing, Lecture Notes in Computer Sci-

ence 1731, (Ed. J. Kratochvil), pp. 286-296, Springer Verlag, 1999.

G. Di Battista and R. Tamassia, On-Line Maintenance of Triconnected Compo-
nents with SPQR-Trees, Algorithmica 15, pp. 302-318, 1996.

H. Chen, H. Lu and H. Yen, On Maximum Symmetric Subgraphs, Graph Drawing,
Lecture Notes in Computer Science 1984, (Ed. J. Marks), pp. 372-383, Springer
Verlag, 2001.

P. Eades and X. Lin, Spring Algorithms and Symmetry, Theoretical Computer
Science, Vol. 240 No.2, pp. 379-405, 2000.

H. Fraysseix, An Heuristic for Graph Symmetry Detection, Graph Drawing, Lecture
Notes in Computer Science 1731, (Ed. J. Kratochvil), pp. 276-285, Springer Verlag,
1999.

S. Hong, P. Eades and S. Lee, Drawing Series Parallel Digraphs Symmetri-
cally, Computational Geometry: Theory and Applicatons Vol. 17, Issue 3-4, pp. 165-
188, 2000.

S. Hong, P. Eades and S. Lee, An Algorithm for Finding Geometric Automorphisms
in Planar Graphs, Algorithms and Computation, Lecture Notes in Computer Sci-
ence 1533, (Ed. Chwa and Ibarra), pp. 277-286, Springer Verlag, 1998.

S. Hong and P. Eades, An Algorithms for Finding Three Dimensional Symmetry in
Trees, Graph Drawing, Lecture Notes in Computer Science 1984, (Ed. J. Marks),
pp- 360-371, Springer Verlag, 2001.

S. Hong and P. Eades, An Algorithms for Finding Three Dimensional Symmetry in
Series Parallel Digraphs, Algorithms and Computation, Lecture Notes in Computer
Science 1969, (Ed. D. T. Lee and S. Teng), pp. 266-277, Springer Verlag, 2000.

J. E. Hopcroft and R. E. Tarjan, Isomorphism of Planar Graphs, Complezity of
Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press,
New York, pp. 131-151, 1972.

J. E. Hopcroft and J. K. Wong, Linear Time Algorithm for Isomorphism of Planar
Graphs, Proceedings of the Sizth Annual ACM Symposium on Theory of Comput-
ing, pp. 172-184, 1974.

R. J. Lipton, S. C. North and J. S. Sandberg, A Method for Drawing Graphs, In
Proc. ACM Symposium on Computational Geometry, pp. 153-160, ACM, 1985.
A. Lubiw, Some NP-Complete Problems similar to Graph Isomorphism, STAM
Journal on Computing 10(1), pp. 11-21, 1981.

P. Mani, Automorphismen von Polyedrischen Graphen, Math. Annalen, 192, pp.
279-303, 1971.



204 S.-H. Hong

16

17

18
19

. J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Trees,
Congressus Numerantium 64, pp. 159-169, 1988.

. J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Outer-
planar Graphs, Discrete Applied Mathematics 39, pp. 13-35, 1992.

. J. Manning, Geometric Symmetry in Graphs, Ph.D. Thesis, Purdue Univ., 1990.

. G. E. Martin, Transformation Geometry, an Introduction to Symmetry, Springer,
New York, 1982.



	Drawing Graphs Symmetrically in Three Dimensions
	Introduction
	Symmetric Graph Drawing in Three Dimensions
	Symmetries in Three Dimensions
	Symmetric Drawing in Three Dimensions

	General Graphs
	Planar Graphs
	The Triconnected Case
	The Biconnected Case
	SPQR-Tree
	Reduction Process
	The Labels and Labeling Algorithms
	Finding Three Dimensional Symmetry at the Center

	The One-Connected Case
	The Labels and Labeling Algorithms
	Finding Three Dimensional Symmetry at the Center

	Conclusion
	References


