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Abstract. Functional programs are referentially transparent in the
sense that the order of evaluation of subexpressions in an expression
does not matter. Any order of evaluation leads to the same result. In
the context of a compilation strategy for eager functional languages, we
discuss an optimization problem, which we call the Optimal Call Order-
ing Problem. We shaow that the problem is NP-complete and discuss
heuristics to solve this problem.
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1 Introduction

Functional programs are referentially transparent [3]. This means, the value of
an expression never changes throughout its computational context. As a con-
sequence, we can evaluate an expression in any order. Consider the expression
f(z,y) + g(z,y). If it is an expression in a functional program, the values of
and y remain the same throughout the computation of the expression. So, we
can do any of the following to get the final result: (i) first make the call to f,
then make the call to g and add their results, or alternatively, (ii) first evaluate
the call to g, then the call to f and add their results.

So far as evaluation order is concerned, functional languages are divided
into eager functional languages and the lazy functional languages. In an eager
functional language, the arguments of a function are evaluated before the call
to the function is made, whereas, in a lazy functional language, an argument
of a function is evaluated only if it is needed. If two operands are present in
machine registers, operations like additions and subtraction usually take one
machine cycle. On the other hand, if the operands are present in memory, they
are first brought to registers, and then the addition or the subtraction operation
is performed. Thus memory operations are usually far more costlier than the
register operations. So it is always preferable that, as much operations as possible
should be done in registers. But it is not always possible since the number of
registers is small, and the number of values which are live at a given point of
time could be high [2]. Further, function calls and programming constructs like
recursion complicate the matter. When we cannot accommodate a live value in
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a register, we need to store it in memory. Storing a register value in memory and
retrieving it later to a register constitute a register spill or simply a spill. It is
desired that a program should be computed with minimum number of spills.

In this paper, we will discuss an optimization problem which aims at mini-
mizing the number of register spills in the context of a compilation strategy for
eager functional programs. Section 2 introduces the problem. Section 3 discusses
the context of the problem. Section 4 shows that the problem is NP-complete.
In Section 5, we discus about heuristics for this problem. Section 6 concludes
the paper.

2 Our Problem

We make the following assumptions: (i) The language is an eager functional
language, and (ii) a function call may destroy the contents of the live registers.
The later assumption is necessary because we shall have to deal with recursion.
We now illustrate our problem through an example.

Example 1: Figure [l shows the directed acyclic graph (DAG) for the following
expression. The arguments of calls F; and F, share subexpressions.

Fl+ (@ (2= (yx2)+F((rx2-y*2)+(2-y*z)+ (y*2/3)))

We can evaluate calls F; and F5 in any order. For evaluating F;, we need to
evaluate the argument of I} and hence the expression DAG enclosed within
LP2. Similarly, before making the call to F», we have to evaluate the argument
of Fy which is the expression DAG enclosed within LP3. LP2 and LP3 have
many shared subexpressions between them. Now let us see the relative merits
and demerits of the two possible orders of evaluation. Note that we are only
considering the number of spills which result due to the shared nodes between
the argument DAGs of F} and F5.

LP1

Fig. 1. Sharing between the arguments of two calls F; and F»
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— Fwvaluation of Fy is followed by F: We have to first evaluate LP,. Then the
call to F} will be made. Next, L P3 will be evaluated and it will be followed by
the call to F». Observe that, during the evaluation of the DAG within LPs,
it will evaluate three shared computations, marked by circled 1, 2 and 3 in
the figure. Immediately after the evaluation of LP», they are in registers. But
following our assumptions, the call to F» may destroy them. So when LPj
will be evaluated they may not in the registers in which they got evaluated.
So we need to store them in memory. In conclusion, we need to make 3 spills.

— FEvaluation of Fy is followed by Fy: We have to first evaluate LP;. Then
the call to F» will be made. After that LP, will be evaluated and it will be
followed by the call to F;. Observe that, during the course of L Pjs evaluation,
it will evaluate only one shared computations, marked by circled 1 in the
figure, which will be needed by LP,. So in memory we need to store its value
and retrieve it when LP, needs it. In conclusion, we will make 1 spill.

We observed that the second approach is more efficient than the first approach
since we need to make lesser number of spills. Note that we are not just saving
two or three spills. Such calls may occur in a recursive environment. In such
a case the number of spills that we save by choosing a better evaluation order
could be very very large. So, choosing the better evaluation order is important.

3 The Problem Context

For computing an arithmetic expression, it is usually represented as a DAG [2].
Such a DAG is simple in the sense that the interior nodes are machine opera-
tors and the leaf-nodes are either literals or memory locations. The problem of
computing a simple expression DAG with minimum number of instructions (or
minimum number of registers such that no spill occurs) is N P-complete [I].
Aho, Johnsson and Ullman have discussed various heuristics for computing an
expression DAG. One such heuristic is called the top down greedy and we will re-
fer it as the AJU algorithm in our discussion. Satpathy et al. [§] have extended
the AJU algorithm to generate code for an expression in an eager functional
language. The DAG that can represent a generalized expression in a functional
language may have function calls or if-expressions as interior nodes. Figure
shows one such DAG. A node representing a function call or an if-expression is
termed as a non-linear node. The strategy as mentioned in [8] partitions a gen-
eralized expression DAG into linear regions. The linear regions are the maximal
regions of a DAG such that its interior nodes are all machine operators, and
their leaves could be non-linear nodes. Figure 21 shows the linear regions as the
regions in dashed lines.

A strategy for evaluating a generalized expression DAG could be as follows.
Here, for simplicity, let us assume that the DAG has function calls as the only
non-linear nodes. Our analysis remains valid in presence of if-expressions but
their presence will make the analysis look complicated.

Step 1: Partition the DAG into linear regions. [8] discusses such a partitioning
algorithm.
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Step 2: Select any linear region that lies at the leaf-level of the DAG (such a
linear region do not have any non-linear node at any of its leaves). Evaluate
this non-linear region using the AJU algorithm and store its result in mem-
ory. Now replace this non-linear region in the DAG by a leaf node labeled
with the above memory location.

Step 3: Evaluate all function calls whose arguments are available in memory
locations. Replace the calls in the DAG by their results in memory locations.

Step 4: Continue steps 2 and 3 till the result of the original DAG is available
in a single memory location.

Alternatively, we can express the above strategy as follows:

— First evaluate all the nonlinear nodes lying at the leaves of a linear region one
by one and spill their results. Then evaluate rest of the linear region using
the AJU algorithm assuming that the results of all the nonlinear nodes at
the leaves are in memory.

Note that when all the non-linear nodes of a linear region are already eval-
uated, their results are in memory. So, at this point of time, the linear region
under evaluation is a simple expression DAG and so it could be evaluated using
the AJU algorithm. Further notice that, this is a bottom-up strategy. We elab-
orate it through the evaluation of the DAG in figure[2. In the figure, the linear
regions LR1 till LR4 are shown as the regions in dotted lines. For evaluating
such a DAG, evaluation always starts with a linear region such that none of its
leaf-level nodes is a non-linear node. In the present figure, LR2 and LR4 are the
only candidates for evaluation. We can evaluate any of them first. Let us choose
to evaluate LR4 (the argument of function J). After evaluation of LR4 (its result
is in memory), a call to J is made since it satisfies the step 3 of the evaluation
strategy. Let the result of J be stored in memory location ms. Now LR3 is one
linear region whose only non-linear node is available in memory. So LR3 could
be evaluated by using AJU algorithm. After the evaluation of LR3, a call to
H is made and let us store its result in mg. Next the linear region which is a
candidate for evaluation is LR2. It is evaluated and a call to G is made. Let the
result of this call be stored in my. At this stage, LR1 could be evaluated using
AJU algorithm since the results of all of its non-linear nodes are in memory. Let
us store the result of LR1 in location mg. And this the desired result.

3.1 Our Problem in General Form

In Figure[3 function calls Fy, Fy, ..., F, lie at the leaf-levels of the linear region
LP. DAGy,..., DAG,, respectively represent the arguments of such calls. For sim-
plicity, we have assumed that all such functions are single argument functions.
Further, we can assume that there are no non-linear nodes present in such ar-
gument DAGs (if they are present, they will have already been evaluated and
their results will be residing in memory). So, all such argument DAGs are simple
expression DAGs and they could be evaluated using the AJU algorithm in any
order.
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Fig. 2. Evaluation of a generalized DAG through a bottom-up strategy

Fy, Fs, ..., F, will induce, due to the sharing between the argument DAGs,
certain number of spills which are as discussed in the previous section. So now
the problem is: how to choose an evaluation order of the calls to Fi, ..., F}, such
that the number of spills due to the sharing among argument DAGs is minimum.
From now on we will refer to this problem as the optimal evaluation ordering
problem (OEOP). Formally, OEOP can be defined as follows:

Instance : A linear region whose leaves have function calls F, Fs, ..., F, at its

Fig. 3. Sharing between arguments of n calls Fi, Fa,..., F,

leaf-level, and the calls respectively have DAGy, ..., DAG,, as argument DAGs.
All such DAGs are simple expression DAGs (refer to Figure [).

Solution : A permutation 7 = (my,ma,...,m,) of (1,2,...,n).

Cost : w(m) = number of shared nodes to be spilled to evaluate n function calls
(due to sharing between the argument DAGs) in the order Fr,, Fr,, ..., Fr .
Goal: Minimize the cost function.



Optimizing Register Spills for Eager Functional Languages 133

3.2 Assumptions and Problem Formulation
To analyse the OEOP, we will make the following simplifying assumptions.

— All the functions are of one arguments: This is to make the analysis simpler.

— Assumption of simple-sharing: An expression is shared between at most two
function DAGs. Further, if a subexpression is shared by two calls F; and Fj
then no subexpression of it is shared by any function Fy (k # i, j).

@ DJF +\4
A

Fig.4. DAGs of A, B and C not satisfying the assumption of simple sharing

In Figure d] the node marked 1 is shared by the three functions A, B and C. Let
B be evaluated before C'. Now, whether B will spill node 1 for C' depends on
whether A has been evaluated already or not (i.e. whether A has spilled the node
1 or not). In other words, the spilling decisions between B and C' depends on the
context in which they are evaluated. To make such spilling decision between any
two function calls independent of the context in which they are evaluated, we
have introduced the assumption of simple sharing. We shall denote the OEOP
satisfying above assumptions as OEOP(S). Obviously, OEOP(S) is in class NP.

4 NP-Completeness of OEOP

Let Figure Blrepresent an instance of OEOP(S). Given n calls as in the figure, we
can obtain a weighted symmetric digraph G = (V,,, A, w) which will preserve all
the sharing information. In the digraph, the node set V,, = {1,2,...,n}, where
node ¢ corresponds to the function F;. There will be a directed edge from node
i to node j with weight w;; if the argument DAG of F; cuts the argument DAG
of F; at w;; points. What it means is that if the call to F; is evaluated ahead
of the call to F}, then w;; shared nodes will have to be spilled to memory. Note
that the weight of the edge from i to j may be different from the weight of the
edge from j to 4. For instance, if we construct a digraph for the functions A and
B in the figure [l then there will be an edge from node A to B with weight 3
and the reverse edge will have weight 1.

Let us evaluate the calls F1, ... F), in the figure in the order Fr,, Fr, ... Fr |
where © = (71, ...7m,) is a permutation of (1,2,...n). Then the number of spills
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we will have to make immediately after the evaluation of F}, is the sum of the
weights of all the out-going edges from 7. The number of spills we will make
immediately after the evaluation of F, is the sum of weights of the out-going
edges from 7y to all nodes excepting 7. This is because Fy, has already been
evaluated, and 72 should not bother about Fy,. Continuing in this manner,
the number of spills we will make after the evaluation of Fy, is the sum of
weights of all outgoing edges from 7; other than the edges to w1, m2,...mj_1.
Let us call the number of spills that are made after the evaluation of F}, be
SPILL;. So the evaluation order Fy,, Fr,, ... Fy will make it necessary to make
SPILL(Fy,, Fr,,...Fr, ) = SPILLm; 4+ SPILL7y + ... + SPILLm, spills. Note
that the value of SPILL7,, will be zero since after its evaluation we need not
make any spill. To find out the minimum number of spills we shall have to
find out the value of SPILL(Fr,, Fr,,..., Fy,) for all possible evaluation order
Fr  Fr,,...,Fr and take the minimum of these values.

Fig. 5. Graph showing sharing information of an instance of OEOP(S).

Example: Let A, B, C' and D be functions satisfying the simple sharing assump-
tion (Figure [). Let the evaluation order be B, D, C, and A. Then:

SPILL(B, C, D, A) = SPILLp + SPILL¢ + SPILLp + SPILL4 = 13.

We shall convert this arc weighted symmetric digraph GG to a nonnegative arc
weighted complete digraph G,, = (V,,, A, w) by adding new arcs to G with zero
arc weights.

Lemma 1. The number of spills in the complete graph G,, due to the evaluation
order Fr,, Fry, ..., Fy is same as the number of spills in G (the n function calls
with sharing as represented by G) under the same evaluation order. ad

For computing the total number of spills for the order Fr,, Fr,,..., Fr, ; the
weights of the arcs of the form (m;,7;) with j > ¢ are considered in deciding
on the number of spills. It is easy to see that these arcs corresponding to the
above evaluation order form an acyclic tournament on V,, in G,, [7]. This we
shall refer to as the acyclic tournament T, = {(m;,7;)|¢ < j} on V,, in G,
represented by the permutation 7. A permutation of nodes of V,, defines a unique
acyclic tournament on V,, and vice versa. In conclusion, for obtaining the optimal
evaluation order in relation to the graph G, it would be enough if we obtain an



Optimizing Register Spills for Eager Functional Languages 135

acyclic tournament on V,, in G,, = (V,,, Ay, w) with minimum total arc weight.
This problem is known as MINLOP and it is known to be NP-complete [6].
MINLOP;5 is same as MINLOP with only difference that weight of an arc is
either 1 or 2. We will show that MINLOP 5 is NP-complete by reducing it from
MINFAS. In MINFAS, for a given digraph G = (V;,, A) we are asked to find
a subset B of A with minimum cardinality such that (V,,,A — B) is acyclic.
MINFAS is known to be NP-complete [5].

Lemma 2. Let G = (V,,, A) be a digraph and B C A be a FAS (feedback arc
set) of G. Then there exists a C C B such that (V,,,C) is acyclic and C is a
FAS of G.

Proof If (V,, B) is acyclic then C = B. Otherwise, (V,,, B) has at least one
directed cycle. Since B is a FAS, (V,,, A— B) is acyclic. Now construct an acyclic
tournament (V,,,T) of G, with (A — B) C T. We define C = T° N B where
T = {(4,1)|(i,j) € T}. C is FAS of G because A —C = ANT and ANT is
acyclic (see Figure [). O

Fig.6. CCBCAand TUT = A,

Given an FAS B of G the set C' in the Lemma[2 can be constructed in polynomial
time as follows. Let (v1,ve,...,v,) be a permutation of V,, for which v; is a node
in (V,, A — B) with zero indegree, v is a node with zero indegree in the acyclic
subdigraph of (V,,, A — B) induced by the node set V,, — {v1} and so on. Note
that vq1,v2,...,v, can be chosen in polynomial time. Let T = {(v;,v;)]i < j}.
Clearly A — B C T and T is an acyclic tournament on V,,. C' = T¢N B can be
constructed in polynomial time. In conclusion, every FAS induces another FAS
which is acyclic. From now on, by FAS we will mean this induced acyclic FAS.

Lemma 3. The no. of arcs in an acyclic tournament on V,, in G, is %n(n— 1).

Theorem 1. MINLOP;5 is NP-complete.

Proof - MINLOP;5 is in NP since MINLOP is. To show that MINLOP, is
NP-hard we shall reduce MINFAS to MINLOP;5.

Let G = (V,,, A) be an instance of MINFAS. From this we shall construct an
instance G, = (V,,, A, w) of MINLOP5 with w(e) =1 if e ¢ A and w(e) = 2 if
e € A. Let (V,,,T) be an acyclic tournament of G,,. From the proof of Lemma
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Bl it can be easily seen that TN A is a FAS of G. By Lemma [3] and from the
definition of the weight function w it follows that w(T) = In(n — 1) + [T'N A|.

Next we shall show that, B is a FAS of G with |B| < k if and only if there
exists an acyclic tournament (V;,, Tg) of G,, with w(T) < 3n(n — 1) + k.
«<: Let (V,,,Tp) be an acyclic tournament of G, with w(Ts) < gn(n — 1) + k.

1 1
w(Tg) = §n(n -1+ TpNnAl < in(n - +k
te. |[TgNA| <k

Choose B =Tg N A. Since B is an FAS of G we are done.

=: Let B be a FAS with |B| < k. By Lemma[2] (V;,, B) is acyclic. From definition
of feedback arc set, (V,,, A — B) is acyclic. Let (V,,,T) be an acyclic tournament
with (A— B) C T This arc set T’ can be constructed in polynomial time. Define
T =T¢ Clearly TsNBC Band (TgNB) = (TN A).

1
ie. w(Tg)= in(n —1)+|Ts NA|

1 1
:in(n71)+\TBﬂB| < in(n71)+k‘.

Theorem 2. OEOP(S) is NP-hard.

Proof sketch: We will reduce MINLOP;5 to OEOP(S). Let G,, = (V,,, An, w)
be an instance (call it X) of MINLOP;5, where A, = {(i,7)|i # jand i,j €
Vi}. Let V,, = {1,2,...,n}. Construct an instance of OEOP(S) from X. The
subdigraph induced by any pair of nodes ¢ and j will into one of:

Case 1: w(i,j) = w(j,i) = 1; Case 2: w(i,j) = w(j,7) = 2 and

Case 3: either w(i,j) = 1 and w(j,i) = 2 or w(s,j) = 2 and w(j,i) = 1.

For Case 1, we include the subexpressions t;. = ap*(bg+ck) and t2 = (bg+ck)+dy
in the functions F; and F} respectively. It can be seen easily that if we evaluate
t; and ¢ in any order only one memory spill will be required and it fits with
the arc weights. Similarly the expressions ¢; and ¢ are chosen for Case 2 and
Case 3. The idea is that the weights between nodes ¢ and j in X fall into one of
the three cases. The corresponding expressions will be linked to the arguments
of the function calls F; and Fj such that the simple sharing assumption is not
violated. Doing this for all pair of nodes in the instance X, we can obtain Y, the
instance of OEOP(S). Y will have function calls F till F,, and their arguments
will be shared. And then it can be established that for any permutation = =
(71,79, .. on) Of (1,2,...n), S0 > imiy1 W(Fr;, Fr)) is same as the number
of spills that will be made if the functions of Y are evaluated according to the
same permutation. O

5 Heuristics for OEOP

The amount of sharing between the arguments of functions in user programs
is usually not high. However, such programs, for optimization purposes, are
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transformed into equivalent programs. Function unfolding is one such important
transformation technique, and this technique introduces sharing [4]. Our obser-
vation is that the number of function call nodes at the leaf-level of an expression
DAG (after unfolding) does not go beyond 8 or 9, and further, the number of
shared nodes between the argument DAGs of two functions also hardly goes
beyond 8 or 9. So, the graph that we will construct will not have nodes more
than 9 and further the weights of the edges in it will be within 0 to 9. With such
restrictions, the following greedy heuristic will give satisfactory results.
Construct the weighted graph from the DAG of the linear region. Then find
the node such that the sum of the outgoing arc weights for this node is minimum.
Evaluate the corresponding call. Then the call is removed from the linear region
and it is replaced with a memory location. Get the new weighted graph, and
repeat the process till a single call remains. This is the last call to be evaluated.

6 Conclusion

We have discussed an optimization problem that occurs while following a compi-
lation technique for eager functional languages. We have shown that the problem
is NP-Complete. The context in which problem arises, keeps the dimension of the
problem small. Our experiments show that greedy heuristics provide satisfactory
results.

Acknowledgements: The authors would like to thank A. Sanyal, A. Diwan
and C.R. Subramanian for useful discussions.
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