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Abstract. Today, parallel programming is dominated by message pass-
ing libraries such as MPI. Algorithmic skeletons intend to simplify par-
allel programming by increasing the expressive power. The idea is to
offer typical parallel programming patterns as polymorphic higher-order
functions which are efficiently implemented in parallel. The approach
presented here integrates the main features of existing skeleton systems.
Moreover, it does not come along with a new programming language or
language extension, which parallel programmers may hesitate to learn,
but it is offered in form of a library, which can easily be used by e.g. C
and C++ programmers. A major technical difficulty is to simulate the
main requirements for a skeleton implementation, namely higher-order
functions, partial applications, and polymorphism as efficiently as possi-
ble in an imperative programming language. Experimental results based
on a draft implementation of the suggested skeleton library show that
this can be achieved without a significant performance penalty.

1 Introduction

Today, parallel programming of MIMD machines with distributed memory is
typically based on message passing. Owing to the availability of standard mes-
sage passing libraries such as MPI 1 [GLS99], the resulting software is platform
independent and efficient. Typically, the SPMD (single program multiple data)
style is applied, where all processors run the same code on different data. Con-
ceptually, the programmer often has one or more distributed data structures in
mind, which are manipulated in parallel. Unfortunately, the mentioned message
passing approach does not support this view of the computation. The program-
mer rather has to split the conceptually global data structure into pieces, such
that every processor receives one (or more) of them and cares about all compu-
tations which correspond to the locally available share of data. In the syntax of
the final program, there is no indication that all these pieces belong together.
The combined distributed data structure only exists in the programmer’s mind.
Thus, the programming level is much lower than the conceptual view of the pro-
grammer. This causes several disadvantages. First, the programmer often has to
fight against low-level communication problems such as deadlocks and starva-
tion which could be substantially reduced and often eliminated by using a more
1 We assume some familiarity with MPI and C++.
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expressive approach. Moreover, the local view of the computation makes global
optimizations very difficult. One reason is that such optimizations require a cost
model of the computation which is hard to provide for general message passing
based computations.

Many approaches try to increase the level of parallel programming and to
overcome the mentioned disadvantages. Few of them could gain significant ac-
ceptance by parallel programmers. It is impossible to mention all high-level ap-
proaches to parallel programming here. Let us just focus on a few particularly
interesting ones.

Bulk synchronous parallel processing (BSP) [SHM97] is a restrictive model
where a computation consists of a sequence of supersteps, i.e. independent par-
allel computations followed by a global communication and a barrier synchro-
nization. BSP has been successfully applied to several data-parallel application
problems, but owing to its restrictive model it cannot easily be used for irregu-
larly structured problems.

An even higher programming level than BSP is provided by algorithmic
skeletons, i.e. typical parallel programming patterns which are efficiently im-
plemented on the available parallel machine and usually offered to the user as
higher-order functions, which get the details of the specific application problem
as argument functions. Thus, a parallel computation consists of a sequence of
calls to such skeletons, possibly interleaved by some local computations. The
computation is now seen from a global perspective. Several implementations of
algorithmic skeletons are available. They differ in the kind of host language
used and in the particular set of skeletons offered. Since higher-order func-
tions are taken from functional languages, many approaches use such a lan-
guage as host language [Da93,KPS94,Sk94]. In order to increase the efficiency,
imperative languages such as C and C++ have been extended by skeletons, too
[BK96,BK98,DPP97,FOT92].

Depending on the kind of parallelism used, skeletons can be classified into
task parallel and data parallel ones. In the first case, a skeleton (dynamically)
creates a system of communicating processes. Some examples are pipe, farm
and divide&conquer [DPP97,Co89,Da93]. In the second case, a skeleton works
on a distributed data structure, performing the same operations on some or all
elements of this structure. Data parallel skeletons, such as map, fold or rotate
are used in [BK96,BK98,Da93,Da95,DPP97,KPS94].

Although skeletons have many advantages, they are rarely used to solve prac-
tical application problems. One of the reasons is that there is not a common sys-
tem of skeletons. Each research group has its own approach. The present paper
is the result of a lively discussion within the skeleton community on a standard
set of skeletons. By agreeing on some common set of skeletons, the acceptance of
skeletons shall be increased. Moreover, this will facilitate the exchange of tools
such as cost analyzers, optimizers, debuggers and so on, and it will boost the
development of new tools.

The approach described in the sequel incorporates the main concepts sug-
gested in the discussion and found in existing skeleton implementations. In par-
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ticular, it provides task as well as data parallel skeletons, which can be combined
based on the two-tier model taken from P3L [DPP97]. In general, a computation
consists of nested task parallel constructs where an atomic task parallel compu-
tation maybe sequential or data parallel. Purely data parallel and purely task
parallel computations are special cases of this model.

Apart from the lack of standardization, another reason for the missing ac-
ceptance of algorithmic skeletons is the fact that they typically are provided in
form of a new programming language. However, parallel programmers typically
know and use Fortran, C, or C++, and they hesitate to learn new languages
in order to try skeletons. Thus, an important aspect of the presented approach
is that skeletons are provided in form of a library. Language bindings for the
mentioned, frequently used languages will be provided. The C++ binding is par-
ticularly elegant, and the present paper will focus on this binding. The reason
is that the three important features needed for skeletons, namely higher-order
functions (i.e. functions having functions as arguments), partial applications (i.e.
the possibility to apply a function to less arguments than it needs and to supply
the missing arguments later), and polymorphism, can be implemented elegantly
and efficiently in C++ using operator overloading and templates, respectively
[St00]. Thus, the C++ binding does not cause the skeleton library to have a
significant disadvantage compared to a corresponding language extension. For
a C binding, the type system needs to be bypassed using questionable features
like void pointers in order to simulate polymorphism (just as the C binding of
MPI).The price is a loss of type safety.

The skeleton library can be implemented in various ways. The implemen-
tation considered in the present paper is based on MPI and inherits hence its
platform independence.

This paper is organized as follows. In Section 2, we present the main concepts
of the skeleton library. Section 3 contains experimental results. In Section 4 we
conclude.

2 The Skeleton Library

2.1 Data Parallel Skeletons

Data parallelism is based on a distributed data structure (or several of them).
This data structure is manipulated by operations (like map and fold, explained
below) which process it as a whole and which happen to be implemented in
parallel internally. These operations can be interleaved with sequential com-
putations working on non-distributed data. In fact, the programmer views the
computation as a sequence of parallel operations. Conceptually, this is almost as
easy as sequential programming. Communication problems like deadlocks and
starvation cannot occur. Currently, two distributed data structures are offered
by the library, namely:

template <class E> class DistributedArray{...}
template <class E> class DistributedMatrix{...}
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where E is the type of the elements of the distributed data structure. Other
distributed data structures such as distributed lists may be added in the fu-
ture. By instantiating the template parameter E, arbitrary element types can be
generated. This shows one of the major features of distributed data structures
and their operations. They are polymorphic. A distributed data structure is split
into several partitions, each of which is assigned to one processor participating in
the data parallel computation. Currently, only block partitioning is supported.
Other schemes like cyclic partitioning may be added later.

Two classes of data parallel skeletons can be distinguished: computation
skeletons and communication skeletons. Computation skeletons process the el-
ements of a distributed data structure in parallel. Typical examples are the
following methods in class DistributedArray<E>:

void mapIndexInPlace(E (*f)(int,E))
E fold(E (*f)(E,E))

A.mapIndexInPlace(g) applies a binary function g to each index position i and
the corresponding array element Ai of a distributed array A and replaces Ai by
g(i,Ai). A.fold(h) combines all the elements of A successively by an associative
binary function h. E.g. A.fold(plus) computes the sum of all elements of A
(provided that E plus(E,E) adds two elements). The full list of computation
skeletons including other variants of map and fold as well as different versions
of zip and scan (parallel prefix) can be found in [Ku02a,Ku02b].

Communication consists of the exchange of the partitions of a distributed
data structure between all processors participating in the data parallel compu-
tation. In order to avoid inefficiency, there is no implicit communication e.g. by
accessing elements of remote partitions like in HPF [HPF93] or Pooma [Ka98].
Since there are no individual messages but only coordinated exchanges of par-
titions, deadlocks and starvation cannot occur. The most frequently used com-
munication skeleton is

void permutePartition(int (*f)(int))

A.permutePartition(f) sends every partition A[i] (located at processor i) to
processor f(i). f needs to be bijective. This is checked at runtime. Some other
communication skeletons correspond to MPI collective operations, e.g. allToAll,
broadcastPartition, and gather. For instance A.broadcastPartition(i) re-
places every partition of A by the one found at processor i.

Moreover, there are operations which allow to access attributes of the local
partition of a distributed data structure, e.g. get, getFirstCol, and getFirstRow
(see Fig. 1) fetch an element of the local partition and the index of the first locally
available row and column, respectively. These operations are no skeletons but
frequently used when implementing an argument function of a skeleton.

At first, skeletons like fold and scan might seem equivalent to the corre-
sponding MPI collective operations MPI Reduce and MPI Scan. However, they
are more powerful due to the fact that the argument functions of all skeletons
can be partial applications rather than just C++ functions. A skeleton essen-
tially defines some parallel algorithmic structure, where the details can be fixed
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1 inline int negate(const int a){return -a;}
2
3 template <class C, int n>
4 C sprod(const DistributedMatrix<C,n,n>& A,
5 const DistributedMatrix<C,n,n>& B, int i, int j, C Cij){
6 C sum = Cij;
7 for (int k=0; k<A.getLocalRows(); k++)
8 sum += A.get(i,k+A.getFirstCol()) * B.get(k+B.getFirstRow(),j);
9 return sum;}
10
11 template <class C, int n>
12 DistributedMatrix<C,n,n> matmult(DistributedMatrix<C,n,n> A,
13 DistributedMatrix<C,n,n> B){
14 A.rotateRows(negate);
15 B.rotateCols(negate);
16 DistributedMatrix<C,n,n> R(0,A.getBlocksInCol(),A.getBlocksInRow());
17 for (int i=0; i< A.getBlocksInRow(); i++){
18 R.mapIndexInPlace(curry(sprod<C,n>)(A)(B));
19 A.rotateRows(-1);
20 B.rotateCols(-1);}
21 return R;}

Fig. 1. Gentleman’s algorithm with skeletons.

by appropriate argument functions. With partial applications as argument func-
tions, these details can depend themselves on parameters, which are computed at
runtime. Consider the code fragment in Fig. 1 taken from [Ku02b]. It is the core
of Gentleman’s algorithm for matrix multiplication (see e.g. [Qu94]). The idea is
that two n×n matrices A and B are split into a matrix of m×m partitions (where
m = n/

√
p and p is the number of processors). Initially, the partitions of A and

B are shifted cyclically in horizontal and vertical direction, respectively. More
precisely, a partition in row i (column j) is shifted i (j) positions to the left (up)
(lines 14,15). Then, the result matrix is initialized with zeros (line 16). The core
of the algorithm is the repeated local matrix multiplication at each processor
(line 18) followed by a cyclic shift of A and B by one position in horizontal and
vertical direction, respectively. Note that the local multiplication at each proces-
sor (line 18) is achieved by partially applying the scalar product function sprod
to A and B. The auxiliary function curry is used to transform the C++ function
sprod in such a way that it can be partially applied, i.e. applied to less argu-
ments than it actually needs. Note that sprod requires five arguments; two of
them are provided by the partial application resulting in a function which needs
three more arguments, and such a function is exactly what mapIndexInPlace
expects as an argument. R.mapIndexInPlace(curry(sprod<C,n>)(A)(B)) will
apply curry(sprod<C,n>)(A)(B) to every row index i, column index j, and the
corresponding element of Ri,j at position (i, j), i.e. it will provide the three miss-
ing arguments of sprod. Partial applications are frequently used in the example
applications used in section 3. The “magic” curry function has been taken from
the C++ template library Fact [St00].
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2.2 Task Parallel Skeletons

Most parallel applications are data parallel, and they can be handled with data
parallel skeletons alone. However, in some cases more structure is required. Con-
sider for instance an image processing application where a picture is first im-
proved by applying several filters, then edges are detected, and finally objects
formed by these edges are identified possibly by comparing them with a data
base of known objects. Here, the mentioned stages could be connected by a
pipeline where each stage processes a sequence of pieces of the picture and deliv-
ers its results to the next stage. Each stage could internally use data parallelism
resulting in a two tier model, where the computation is first structured by task
parallel skeletons like the mentioned pipeline and where atomic task parallel
computations can be data parallel.

Besides pipelines, the skeleton library offers farms and parallel composition.
In a farm, a farmer process accepts a sequence of inputs and assigns each of
them to one of several workers. Farms are convenient for applications which
require some load balancing such as divide & conquer algorithms. The parallel
composition works similar to the farm. However, each input is forwarded to every
worker.

Each task parallel skeleton has the same property as an atomic process,
namely it accepts a sequence of inputs and produces a sequence of outputs. This
allows the task parallel skeletons to be arbitrarily nested. Task parallel skeletons
like pipeline and farm are provided by many skeleton systems. The two-tier
model and the concrete formulation of the pipeline and farm skeletons in our
library have been taken from P3L [DPP97].

In the example in Fig. 2, a pipeline of an initial atomic process, a farm of two
atomic workers, and a final atomic process is constructed. In the C++ binding,
there is a class for every task parallel skeleton. All these classes are subclasses
of the abstract class Process. A task parallel application proceeds in two steps.
First, a process topology is created by using the constructors of the mentioned
class. This process topology reflects the actual nesting of skeletons. Then, this
system of processes is started by applying method start() to the outermost
skeleton. Internally, every atomic process will be assigned to a processor. For an
implementation on top of SPMD, this means that every processor will dispatch
depending on its rank to the code of its assigned process. When constructing an
atomic process, the argument function of the constructor tells how each input
is transformed into an output value. Again, such a function can be either a
C++ function or a partial application. In Fig. 2, worker i multiplies all inputs
by i + 1. The initial and final atomic processes are special, since they do not
consume inputs and produce outputs, respectively.

2.3 Global vs. Local View

The matrix multiplication example (see Fig. 1) demonstrates that the program-
mer has a global view of the computation. Distributed data structures are ma-
nipulated as a whole. If you compare this to a corresponding program which
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Initial FinalFarmer

Atomic

Worker

Atomic

Worker#include ‘‘Skeleton.h"

static int current = 0;
static const int numworkers = 2;

int* init(){if (current++ < 99) return &current;
else return NULL;}

int times(int x, int y){return x * y;}

void fin(int n){cout << ‘‘result: ‘‘ << n << endl;}

int main(int argc, char **argv){
InitSkeletons(argc,argv);

// step 1: create a process topology (using C++ constructors)
Initial<int> p1(init);
Process* p2[numworkers];
for (int i=0; i<numworkers; i++)

p2[i] = new Atomic<int,int>(curry(times)(i+1),1);
Farm<int,int> p3(p2,numworkers);
Final<int> p4(fin);
Pipe p5(p1,p3,p4);

// step 2: start the system of processes
p5.start();

TerminateSkeletons();}

Fig. 2. Task parallel example application.

uses MPI directly (see [Ku02b]), you will note that the latter is based on a local
view of the computation. A typical piece of code is the following:

int A[m][m], B[m][m], R[m][m];
...
for (r=0; r<sqrtp; r++)
for (k=0;k<m;k++)
for (l=0;l<m;l++)
for (q=0;q<m;q++)
R[k][l] += A[k][q] * B[q][l];

It implements the multiplication of the local matrices. There are no global ma-
trices here. A, B, R are just the locally available partitions of the global data
structures, which only exist in the programmer’s mind. This has several conse-
quences. First, the index computations are different. In the above piece of code,
all array indices start at 0, while the indices are usually global when using skele-
tons. For partition (i, j), they start at (i ∗ m, j ∗ m) (where m is the number
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of rows and columns in each partition). If the actual computation depends on
the global index, the global view is more convenient and typically more efficient.
Otherwise the local view is preferable. Without skeletons, there is no choice: only
the local view is possible. However for skeletons, we can provide the best of both
worlds. We just have to add access operations, which support the local view or
a combination of global and local view in order to provide the most convenient
operations. In the matrix multiplication example, we could replace the code for
the scalar product for instance by:

template <class C, int n>
C sprod(const DistributedMatrix<C,n,n>& A,

const DistributedMatrix<C,n,n>& B, int i, int j, C Cij){
C sum = Cij;
for (int k=0; k<A.getLocalRows(); k++)

sum += A.getGlobalLocal(i,k) * B.getLocalGlobal(k,j);
return sum;}

Here, i and j are global indices, while k is a local one.
In general, the local view has the advantage that the computation may be

more easily optimized to the special needs at each processor. Consider Gaussian
elimination (see e.g. [Ku02a,Ku02b]). From a global perspective, one would have
to apply the pivot operation to every element of the matrix. For the columns to
the left of the pivot column this computation would be redundant, and it could
be easily avoided based on a local perspective. For such situations, the skeleton
library provides specialized versions of the corresponding skeletons, which do
not refer to single elements of a distributed data structure but to every partition
as a whole. This allows similar optimizations than the local view at the price of
lesser elegance. In the above situation the skeleton mapPartitionInPlace could
be used instead of mapIndexInPlace in order to process a partition as a whole.

3 Experimental Results

Since the skeleton library has been implemented on top of MPI, it will hardly
be possible to outperform hand-written C++/MPI code. Thus, the question is
whether the implementation of the skeletons causes some loss of performance
and how large this will be. In order to investigate this, we have implemented a
couple of example programs in both ways, with skeletons and using MPI directly.
In particular, we have considered the following kernels of parallel applications:

Matrix Multiplication based on the algorithm of Gentleman [Qu94]:
this example uses distributed matrices and the skeletons mapIndexInPlace,
rotateRows, and rotateCols.

All Pairs Shortest Paths based on matrix computations:
this uses essentially the same skeletons as matrix multiplication.

Gaussian Elimination: The matrix is split horizontally into partitions of sev-
eral rows. Repeatedly, the pivot row is broadcasted to every processor and
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Table 1. Runtimes for different benchmarks with and without skeletons.

p = 4 p = 16
example n skel. MPI quotient skel. MPI quotient
matrix multiplication 256 0.459 0.413 1.11 0.131 0.124 1.06

512 4.149 3.488 1.19 1.057 0.807 1.31
1024 35.203 29.772 1.18 8.624 6.962 1.24

shortest paths 1024 393.769 197.979 1.99 93.825 44.761 2.10
Gaussian elimination 1024 13.816 9.574 1.44 7.401 4.045 1.83
FFT 218 2.127 1.295 1.64 0.636 0.403 1.58
samplesort 218 1.599 † - 0.774 † -

the pivot operation is executed everywhere. This example mainly uses
mapPartitionInPlace and broadcastPartition.

FFT: This example is a variant of the FFT algorithm shown in [Qu94]. It uses
mapIndexInPlace and permutePartition.

Samplesort: (see [Qu94]) This well-known sorting algorithm uses the skeletons
mapPartition, gather, and allToAll.

It is important to note that our implementation of the skeleton library only uses
MPI Send and MPI Recv, respectively, but refrains from collective operations,
since we want to keep the implementation as portable as possible. In particu-
lar, we are able to port the library to any other message passing platform by
changing only a few lines, even if this platform does not provide collective oper-
ations. Interestingly, this is the reason why the skeleton-based implementation
of samplesort also works for large problem sizes, while the direct MPI imple-
mentation based on the rich set of collective operations happened to crash for
medium problem sizes already (probably due to buffering problems). Table 1
shows the results for the above benchmarks on a Siemens hpcLine running Red-
Hat Linux 7.2 [PC2]. Columns 4, 5, 7, and 8 contain the runtimes (in seconds)
with and without skeletons (i.e. using MPI directly), respectively. p is the num-
ber of processors, n is the problem size (#rows, #elements). Columns 5 and
8 show that the skeleton-based versions are between 1.1 and 2.1 times slower
than their MPI-based counterparts. This is mainly caused by the overhead for
parameter passing introduced by the higher-order functions. This overhead can
be reduced by extensive inlining. Moreover, the mentioned global optimizations
for skeletons have not yet been implemented. The scalability of the skeletons is
similar to that of MPI.

4 Conclusions and Future Work

We have shown that it is possible to provide algorithmic skeletons in form of
a library rather than within a new programming language. This will facilitate
their use for typical parallel programmers. The library smoothly combines the
main features of existing skeletons. In particular, it provides task parallel skele-
tons generating a system of communicating processes as well as data parallel
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skeletons working in parallel on a distributed data structure. Task and data
parallelism are combined based on the two-tier model. The C++ binding of
the skeleton library has been presented. Moreover, experimental results for some
draft implementation based on MPI show that the higher programming level can
be gained without a significant performance penalty. Communication problems
like deadlocks and starvation are avoided since there are no individual messages
but coordinated systems of messages for each skeleton.

As future work, tools like cost analyzers, optimizers, and debuggers will have
to be developed for the standard skeleton library.
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