
Client/Server Tradeoffs for Online Elections

Ivan Damg̊ard and Mads Jurik

Aarhus University, Dept. of Computer Science, BRICS�

Abstract. We present various trade offs for voting schemes which, com-
pared to known solutions, allow voters to do less work at the expense of
more work done by the tallying servers running the election. One such
scheme produces ballots of essentially minimal size while keeping the
work load on the tally servers on a practical level. Another type of trade
off leads to a voting scheme that remains secure, even if an adversary can
monitor all client machines used by voters to participate. This comes at
the price of introducing an additional party who is trusted to carry out
registration of voters correctly.

1 Introduction

Voting schemes is one of the most important examples of advanced cryptographic
protocols with immediate potential for practical applications. The most impor-
tant goals for such protocols are

– Privacy: only the final result is made public, no additional information about
votes will leak

– Robustness: the result correcly reflects all submitted and well-formed ballots,
even if some voters and/or possibly some of the entities running the election
cheat.

– Verifiability: after the election, the result can be verified by anyone.

Other properties may be considered as well, such as receipt-freeness, i.e, voters
are not able to prove after the fact that they voted for a particular candidate,
thereby discouraging vote-buying or coercing.

Various fundamentally different approaches to voting are known in the lit-
erature: one may use blind signatures and anonymous channels[6], where the
channels can be implemented using MIX nets (see [2,1] for instance) or based
some physical assumption. Another approach is to use several servers to count
the votes and have voters verifiably secret share votes among the servers [8,7].
Finally, one may use homomorphic encryption, where a voter simply publishes
an encryption of his vote. Encryptions can be combined into an encryption of
the result, and finally a number of decryption servers can cooperate to decrypt
the result [4], assuming the private key needed for this is secret-shared among
them.
� Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

D. Naccache and P. Paillier (Eds.): PKC 2002, LNCS 2274, pp. 125–140, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

126 Ivan Damg̊ard and Mads Jurik

Since anonymous channels are quite difficult to implement in practice and
verifiable secret sharing requires communication between a voter and all servers,
the third method seems the most practical, and this paper deals only with vari-
ants of this approach.

In the following, we let L be the number of candidates, M the number of
voters, w the number of decryption servers, and k the security parameter for the
cryptosystem used. We assume for simplicity that each voter can vote for one
candidate. In [4], a solution was given that may be based on any homomorphic
threshold encryption scheme if the scheme comes with certain associated efficient
protocols. One example of this is El Gamal encryption. The ballot size in this
scheme is O(logM + b) where b is the block size that the encryption scheme
is set up to handle. The scheme was designed for the case of L = 2, and the
generalization to general L given in [4] has complexity exponential in L for the
decryption of the final result. Even for L = 2, an exhaustive search over all
possible election results is required to compute the final result. Therefore, this
scheme does not scale well to large elections with many candidates.

In [5,3], solutions were given using a variant of the approach from [4], but
based on Paillier’s cryptosystem. These are the first solutions that scale reason-
ably well to large elections, still the most efficient of these protocols produce
ballots of size O((logL)max(k, L logM)). As long as k > L logM , this is loga-
rithmic in L, but for larger values of L and M it becomes linear in L, and each
voter has to do Ω(logL) exponentiations using a modulus of length L logM bits.
In a real application, one must assume that voters typically have only rather
limited computing power available, so that the computation and communication
needed for each voter is a rather critical parameter. On the other hand, decryp-
tion servers can be expected to be high-end machines connected by high-speed
networks.

Thus for a large scale election, it is reasonable to consider the possibility of
moving work away from voters at the expense of increased load on the servers.
The central issue here is how much we can expect to reduce the size of bal-
lots, since both communication and computational complexity for the voter is
directly linked to this parameter. A moments reflection will show that there is
no fundamental reason why the size of a ballot should depend on M or be linear
in L. Of course, a ballot must be at least logL bits long, since otherwise we
cannot distinguish between the L candidates. Also, it would be unreasonable to
expect the encryption to be secure if the size of an encryption (a ballot) did
not increase with the security parameter k. Thus a ballot size of O(k + logL)
bits would be essentially optimal. In principle, this is easy to achieve: each voter
Vi publishes an encryption of vi (the id of the candidate he votes for), and the
decryption servers use generic multiparty computation [13] to produce securely
the result. This is always possible because the encryptions and the decryption
key which is shared among the servers together determine the result and could
be used to compute it efficiently if they were public. Such a solution, however,
would be much too inefficient to have any practical value. It would increase the

Client/Server Tradeoffs for Online Elections 127

complexity for the servers by a factor corresponding to at least the size of a
Boolean circuit computing the decryption.

In this paper, we present a solution that achieves ballot size O(k + logL)
bits and where each server needs to broadcast O(ML(k + L logM)) bits. Most
of this work can be done in a preprocessing phase, and only O(M(k+L logM))
bits need to be sent while the election is running. We assume the random oracle
model and that a static adversary corrupts less than w/2 servers and any number
of voters. Then the protocol can be proved to be private, robust and verifiable,
based on semantic security of Paillier’s public key system and the strong RSA
assumption. We also present a variant with somewhat larger voter load, where
the ballot size is logL(k + L) bits. This is still less than previous Paillier-based
solutions, the communication per server is O(M logM(k + L logM)) bits. Also
here, preprocessing is possible, leading to the same on-line cost as before. This
variants can be proved secure in the random oracle model in the same sense as
the previous variant, but assuming only semantic security of Paillier’s public key
system. Both variants can be executed in constant-round. None of the variants
are receipt-free as they stand, but under an appropriate physical assumption,
they can be made receipt-free using the techniques of [14].

Previous solutions based on the same assumption require each server to read
each voters encrypted vote, process this, and broadcast a single piece of data.
This amounts to communication that is linear in M , like in the systems we
propose here. Thus the extra cost for servers in our solution is that more rounds
of interaction are required and that the amount of communication is increased
by a factor of L or logM .

The main new technique we use is to have voters work with a cryptosystem
with block sizemax(k, logL). The servers then securely transform this to encryp-
tions in a related cryptosystem with block size max(k, L logM), and compute
the result using this second system. On top of this, we borrow some techniques
from [9].

We note that optimal ballot size can also be achieved using the approach
mentioned above based on anonymous channels, where the channels can be im-
plemented using a MIX network. This is because the MIX net hides the origin of
a ballot, therefore all ballots can decrypted after mixing and vote counting be-
comes trivial. For some MIX implementations we get communication complexity
for the servers comparable to what we achieve here. However, all known efficient
implementations of MIX networks are based on El Gamal encryption, so that
the alternative of basing the protocol on Paillier encryption is not available un-
der the MIX approach. Moreover, and perhaps more importantly, it seems to be
inherent in the MIX approach that MIX servers do their work sequentially, i.e.,
each MIX server can only act after the previous one has completed (part of) its
work. By contrast, the threshold cryptography approach we use allows servers to
complete the protocol in a constant number of rounds. Finally, using a MIX net,
it is not clear that one can push most of the server work into a preprocessing
phase, as we do here.

128 Ivan Damg̊ard and Mads Jurik

The final tradeoff we present is of a completely different type, that relates
more to practical security of elections: one of the worst potential weaknesses of
electronic voting in practice is that voters are likely to be non-expert computer
users, and most likely will use their own machines, home PCs, to cast votes, say
over the Internet. Whereas tools such as SSL plus signed applets can be used to
give reasonable assurance that the client software used for this is genuine, it is
very difficult (some would say impossible) to make sure that the user’s machine
is not infected by a virus that would monitor key strokes etc., and later transmit
these to an adversary who could then easily find out who the voter voted for.
By contrast, it seems like a more reasonable assumption that for instance a
high-security server placed at some neutral site is not corrupted.

Motivated by this, we propose a solution with the following properties: pri-
vacy for the voter is ensured, even if his machine is completely monitored by an
adversary, who can follow key strokes, screen image, mouse events, etc. Correct-
ness of the result is ensured, assuming that a particular trusted party, who takes
part in registering voters, behaves correctly (cheating will not allow him to break
the privacy, however). Whereas this party can in principle be held accountable
and can be caught if he cheats, such verification is rather cumbersome. Hence,
in practice, this solution trades trust in client machines against some amount of
trust in a designated party. We note that a natural candidate for such a player
often exists anyway in traditional manual voting schemes, and so in fact no
“new” trust is needed - we discuss this in more detail later.

The basic idea of this solution is quite general. It can be combined with
our first tradeoff without significant loss of efficiency, but can also be applied
to a very simple multicandiate election protocol, that can be based on Paillier
encryption or on El-Gamal, and requires the servers to do only L decryptions.

2 The Minimal Vote System

In this section we introduce a scheme in which ballots are of essentially minimal
size. This requires that a transformation of the votes are performed by the tally
servers to a larger representation of the vote. From the transformed vote the
result of the election can be found using the homomorphic properties as usual
([5], [4]).

2.1 Needed Properties

In the reduction of the voter load we need a pair of public-key cryptosys-
tems CS1 and CS2 with their respective encryption and decryption functions
E1, E2, D1, D2 . An encryption of m in CSi under public key pk using random
input r will be denoted Ei(pk,m, r), but we will suppress the public keys from
the notation as they are kept fixed at all times once generated. We will also often
suppress r from the notation for simplicity. N1 and N2 will denote the size of
the plaintext space for CS1 and CS2. The 2 cryptosystems should satisfy:

– Semantically secure: Both CS1 and CS2 are semantically secure.

Client/Server Tradeoffs for Online Elections 129

– CS2 is a threshold system: The private key in CS2 can be shared among
w decryption servers, such that any minority of servers have no information
on the key, whereas any majority of servers can cooperate to decrypt a
ciphertext while revealing no information other than the plaintext.

– CS2 is homomorphic: There exists an efficiently computable operation
denoted ⊗ that when applied to two ciphertexts yield an encryption of the
sum of the two plaintexts, that is, we have: E2(m1 mod N2) ⊗ E2(m2 mod
N2) = E2(m1 +m2 mod N2). Furthermore, given α ∈ ZN2 , E2(m) it is easy
to compute an encryption E2(αm mod N2).

– CS2 supports MPC multiplication: There exists an interactive proto-
col, denoted MPC multiplication, that the decryption servers can execute
on input two encryptions. The protocol produces securely a random en-
cryption containing the product of the corresponding plaintexts, in other
words, we can produce E2(m1m2 mod N2, r3) from E2(m1 mod N2, r1) and
E2(m2 mod N2, r2) without revealing information about m1 or m2.

– Interval proofs: There exists a zero-knowledge proof of knowledge (that
can be made non-interactive in the random oracle model) such that having
produced Ei(m), a player can prove in zero-knowledge that m is in some
given interval I. For optimal efficiency we will need that the length of the
proof corresponds to a constant number of encryptions. For the special case
of I = 0..Ni (i = 1, 2), this just amounts to proving that you know the
plaintext corresponding to a given ciphertext.

– Transformable: There exists a number B ≤ N1 such given an encryption
E1(m, r) where it is guaranteed that m ≤ B, there is an interactive protocol
for the decryption severs producing as output E2(m, r), without revealing
any extra information.

– Random value generation: The decryption servers can cooperate to gen-
erate an encryption E2(R) where R is a random value unknown to all servers.

– Vote size: L ≤ B ≤ N1 so that votes for different candidates can be distin-
guished and encryptions be transformed.

– Election size: Let j = �log2 M�. We need that (2j)L < N2 to ensure that
we do not get a overflow when the final result is computed.

– Factorization of N2: All prime factors of N2 are super-polynomially large
in the security parameter.

We do not want to give the impression this set-up is more general that it really
is. We know only one efficient example of systems with the above properties,
this example is described below. But we stick to above abstract description to
shield the reader from unnecessary details, and to emphasize what the essential
properties are that we use.

Example 1. We present a pair of cryptosystems that satisfy the above require-
ments. This is based on the Damg̊ard-Jurik generalization of Paillier’s cryptosys-
tem presented in [5]. A short definition of the basic scheme without going into
details about threshold decryption (which can be found in [5]):

130 Ivan Damg̊ard and Mads Jurik

DJ (n,s):

– Public Key: (n, s), where n = pq, p, q primes.
– Private Key: d, where d = 0 mod λ (λ = lcm(p − 1, q − 1)) and d =
1 mod ns.

– Plaintext space: Zns
– Ciphertext space: Z∗ns+1

– Encryption: E(m) = (n+ 1)mrn
s

mod ns+1, where r ∈ Z∗n is random.
– Decryption: L(cd mod ns+1), where L(x) = x−1

n .

Given a n we can choose CS1 = DJ(n, s) and CS2 = DJ(n, s′) where s ≤
s′. To satisfy the semantic security condition we need the decisional composite
residuosity assumption (DCRA), which was introduced by Paillier in [15]:

Conjecture 1. Let A be any probabilistic polynomial time algorithm, and assume
A gets n, x as input. Here n has k bits, and is chosen as described above, and x
is either random in Z∗n2 or it is a random n’th power in Z∗n2 . A outputs a bit b.
Let p0(A, k) be the probability that b = 1 if x is random in Z∗n2 and p1(A, k) the
probability that b = 1 if x is a random n’th power. Then | p0(A, k)− p1(A, k) |
is negligible in k.

Given the conjecture and the transformation shown below, we have all the prop-
erties satisfied:

– Semantically secure: Under the DCRA both CS1 and CS2 are semantically
secure.

– CS2 Homomorphic: TheDamg̊ard-Jurik cryptosystem is homomorphic, where
the ⊗ operation is multiplication modulo ns

′
. Also we have E(m)α mod

ns
′+1 = E(αm mod ns

′
).

– CS2 supports MPC multiplication: An efficient protocol is shown in [9],
requiring each server to broadcast a constant number of encryptions.

– Interval proofs: The proof construction in Appendix A constructs the re-
quired proof using communication equivalent to a constant number of en-
cryptions.

– Random value generation: The decryption servers do the following: each
server 0 < i ≤ w chooses at random Ri ∈ ZN2 . The values E2(Ri) are
published followed by zero-knowledge proofs that Ri is known by server i.
These proofs can be done using the Multiparty Σ-protocol technique from
section 6 of [9] allowing the zero-knowledge proofs to be done concurrently
in a non malleable way.
We then form E2(R) = E2(R1) ⊗ ... ⊗ E2(Rw). Thus R is random and
unknown to all servers.

– Transformable: An encryption in CS1 can be transformed to encryption in
CS2 by using the method described below. This method requires that the
bound B on the input message satisfies log(B) ≤ log(N1)− k1 − log(w)− 2,
where k1 is a secondary security parameter (k1 = 128 for instance).

– Vote size: we need L ≤ B which as mentioned above means log(L) ≤
log(N1)− k1− log(w)− 2. For most realistic values of k, k1, L, w this will be
satisfied even with s = 1, but otherwise s can always be increased.

Client/Server Tradeoffs for Online Elections 131

– Election size: ML < N2 = ns
′
can be satisfied by choosing s′ large enough.

– Factorization of N2: we have N2 = ns
′
= (pq)s

′
and p, q must of course be

large to have any security at all.

We now show how to transform the ciphertext E1(m) from CS1 to CS2,
where it is known that 0 ≤ m ≤ B. Our transformation will work if log(B) ≤
log(N1)− k1 − log(w)− 2.

The crucial observation is that a ciphertext E1(m) in CS1 can always be
regarded as a ciphertext in CS2, simply by thinking of it as a number modulo
ns
′+1. It is not hard to see that as a CS2 encryption, it is an encryption of a

number m′ ∈ Zns′ with m′ = m mod ns. This is not good enough since we want
m = m′ mod ns

′
. All we know is thatm′ = m+tns mod ns

′
for some t we cannot

directly compute. To get around this, we mask m with some random bits so that
we can find t by decryption, as detailed below.

The masking can be done in 2 ways:

– Trusted Third Party: A trusted third party generates a random value R
of size log(B) + k1. The 3rd party reveals the value E2(R).

– MPC approach: The servers each generate a value Ri of length log(B)+k1
bits, reveal E2(Ri) and prove they have done so using an interval proof. This
should be done using the Multiparty Σ-protocol technique of [9]. All encryp-
tions with correct proofs are combined using the homomorphic property to
get (I is the set of servers which supplied a correct proof):

E2(R) = Πi∈IE(Ri) = E(Σi∈IRi)

This means that R is at most w2log(B)+k1 .

Note that the condition on B and R ensures that m+R < N1.

1. We consider the encryption e = E1(m) as a ciphertext e in CS2. As noted
above, this will be the encryption E2(m+ tns mod ns

′
, r) for unknown t and

r.
2. Now let e′ = e⊗ E2(R).
3. The servers decrypt e′ to get a message m+R+ tns mod ns

′
. Since we have

m+R < N1, we can find m+R and t just by integer division. And if at least
one server has chosen its Ri at random, information onm will be statistically
hidden from the servers, since R is at least k1 bits longer than m.

4. We now set e′′ = e ⊗ E2(−tns, 1). Due to the homomorphic properties this
is equal to E2(m).

2.2 Preparation

The preparation phase requires the generation of the 2 cryptosystems with key
distribution for threshold decryption in CS2. We also need a publicly known
polynomial of degree L− 1 which satisfies the equation:

f(i) =M i mod N2 ∀i : 0 ≤ i < L

132 Ivan Damg̊ard and Mads Jurik

By assumption N2 has only very large prime factors. Hence any difference of
form i − j where 0 ≤ i, j < L is invertible modulo N2 and this is sufficient to
ensure that f can be constructed using standard Lagrange interpolation.

The next and last part of the preparation has to be done once for each
election. For each voter, the severs generate a random encryption E2(R) as
described earlier. Then we execute L−2 MPC multiplications to get encryptions
E2(Rj) for j = 1, ..., L− 1.

2.3 Voting

The voter generates a vote for candidate i by making an encryption E1(i) and
an interval proof that it is the encryption of a value in the interval {0, ..., L−1}.

2.4 Transformation

When the servers receive the vote as a ciphertext in CS1 they have to transform it
into a corresponding vote in CS2, that can be added together to give a meaningful
result. This is done by transforming E1(i) to E2(M i). This has to be done for
each vote and can be done in the following way:

1. We transform E1(i) into E2(i).
2. The servers decrypt E2(i)⊗E2(R) to get z = i+R. It follows that ij = (z−

R)j , and this can be rewritten using the standard binomial expansion. The
result is that ij = α0+α1R+ ...+αjR

j for publicly known values α0, ..., αj .
Hence encryptions E2(ij) can be computed without interaction from the
encryptions E2(Rj) from the preparation phase, using the homomorphic
property. From these encryptions, we can, using the polynomial f computed
in the preparation, construct an encryption E2(f(i)), still with no further
interaction. The result of this satisfies E2(f(i) mod N2, r) = E2(M i mod
N2, r)

2.5 Calculating Result

Now we can combine all the transformed votes using the homomorphic property
of CS2 and decrypt the result. This will give a value of the form:

∑
viM

i ∀i : 0 ≤ vi < M

Since M is the number of voters an overflow of vi modM cannot have occurred
and since ML < N2 we get that the number of votes on the i’th candidate will
be vi.

2.6 Complexity

From the voters point of view the computational (modular multiplications) and
communicational complexity (bits) of this protocol will be O(log(L) + k). This
is within a constant of the smallest possible.

Client/Server Tradeoffs for Online Elections 133

The decryption servers’ work depends on the cryptosystems used, and can
only really be compared in the number of usages of the primitives: transforma-
tions (from CS1 to CS2), decryptions, MPC multiplications, and random value
generations.

In the preparation, we generate M random values and do M(L − 2) MPC
Multiplications. During election we doM transformations from CS1 to CS2 and
M decryptions, plus 1 to get the result. To calculate the powers of R in the pre-
processing, O(L) rounds of communication are needed. Constant round solutions
can also be devised using techniques from [16], but the total communication will
be larger. The protocol for the election itself is constant round.

3 An Alternative System

Here we look at an alternative scheme that requires more work for the voter,
but the work required by the tallying servers can be reduced compared to the
previous scheme for some parameter values.

3.1 Needed Properties

In this trade off scheme we also need a pair of cryptosystems CS1 and CS2 with
properties as described earlier, except for two changes:

– Zero-knowledge proofs: Interval proofs are not needed for this scheme.
Instead we need that a player can generate an encryption E1(v) and prove
in zero-knowledge that v ∈ {20, ..., 2L−1}. For the example of Paillier based
encryption, a protocol for this purpose is given in [5].

– Vote Size: In this scheme, we need 2L ≤ B ≤ N1 instead of log2 L ≤ B.

3.2 Preparation

The cryptosystems must be set up as for the previous scheme.
In preparation of each election a pair of values have to be generated for each

voter (recall that we defined j to be minimal, such that 2j > M):

– An encryption of some random R: E2(R mod N2).
– The inverse of R raised to the j’th power: E2(R−j mod N2).

These values are generated before the election so that the result of the election
is more efficiently computed when the votes start to arrive. The values can be
generated with one of these 2 methods:

– Trusted third party: The trusted third party generates the 2 encryptions.
– O(log(j)) MPC multiplications: The servers cooperate on generating a
random encryption E2(R). Using the inversion method from [16] the value

134 Ivan Damg̊ard and Mads Jurik

E2(R−1) is generated 1. Then the servers use the MPC multiplication
O(log(j)) times to get E2(R−j).

3.3 Voting

The voter generates a vote for candidate i by setting v = 2i, making E1(v) and
a proof that it is the encryption of a message from the set {20, ..., 2L−1}.

3.4 Transformation

The goal of the transformation is to compute E2((v)j) from E1(v) and can be
done as follows:

1. The encryption of the vote v is transformed to e = E2(v) in CS2
2. The servers perform a MPC multiplication of e = E2(v) and E2(R) to get

e′ = E2(vR mod N2)
3. The servers decrypt e′ to get vR mod N2 which reveals no information of v
since R is chosen at random (note that by assumption on N2, both v and R
are prime to N2 except with negligible probability).

4. The servers raises vR to the j’th power in public and make an encryption of
this, e′′ = E2((vR)j mod N2, 1) (we use a default value of 1 for the random
input to encryption, no randomness is needed here).

5. The servers make a MPC multiplication of e′′ and E2(R−j mod N2) to get
the transformed encryption of the vote

E2(vj mod N2, r) = E2((2j)i mod N2, r).

3.5 Calculating Result

To calculate the result the transformed votes are combined using the homomor-
phic property of CS2, and the resulting ciphertext is decrypted. The plaintext
from the decryption will have the form:

∑
vi(2j)i ∀i : 0 ≤ vi < 2j

Since 2j > M , whereM is the number of voters an overflow cannot have occurred
for a single candidate and the whole election cannot have caused a overflow since
(2j)L < N2. The number of votes on the i’th candidate is vi.

1 This is done by generating another encryption of a random value R′ in the same
way as the first. Then compute the MPC multiplication of the 2 and decrypt it to
get RR′ mod N2. This is inverted and encrypted again. Then this is MPC multiplied
with E2(R′) again to get E2((RR′)−1R′ mod N2) = E2(R−1 mod N2)

Client/Server Tradeoffs for Online Elections 135

3.6 Complexity

The communication needed from the voter is now O(L+ k), plus the size of the
proof of correctness for the encryption (which in the Damg̊ard-Jurik scheme will
have size O(log(L)) encryptions using the techniques from [5]).

If a trusted third party is used then there is no precomputation for the tally
servers, but otherwise they have to generate the pair of values: to generate the
inverses we need 1 random value generation, 2 MPC multiplications and 1 de-
cryption, and for calculating the j’th power we need at most 2 log2(M) multipli-
cations which means that we use a total ofM(log2(M)+2) MPC multiplications
and M decryptions and random values.

For the election itself, the number of transformations we need from CS1 to
CS2 is M . In the protocol we use a decryption when raising each vote to the
j’th power, so we need M + 1 decryptions. And finally we need a total of 2M
MPC multiplications.

The preparation can be done in O(log(M)) rounds, while the protocol after
preparation is constant round.

In comparison with the first scheme, we see that the voters do more work here,
and the complexity of the election after preparation is comparable, but slightly
lower in the first scheme. The main difference is that the complexity of the prepa-
ration is O(ML) MPC multiplications in the first scheme and O(M logM) in
the second. Another difference is that the first scheme requires ML encryptions
to be stored between preparation and election, while the second scheme requires
only 2M encryptions.

Thus the second scheme may have an advantage if logM is less than L. Even
for large scale elections, this may well happen, since even if 106 ≤ M ≤ 109

logM is only between 20 and 30.

4 Protecting Clients against Hackers

How can a voter be protected against a curious person that has full access to
his computer during an election? In this section we look at a way to trade trust
in the security of the client computer against trust in a third party. We first
describe the basic idea on a high level and then give two ways to implement the
idea.

We assume that we have a trusted party T (we discuss later in which sense
he has to be trusted). T will for each voter choose a random permutation π
permuting the set 0, 1, ..., L−1. He then privately (and possibly by non-electronic
means) sends a list containing, for each candidate number i, the candidate’s name
and π(i). When using his own (or any) client machine to cast his vote, the voter
decides on a candidate - say candidate number i, finds his name on the list,
and tells the client software that he votes for candidate π(i). The client software
could simply present a list of numbers from 0 to L1 to choose from, without
any corresponding names. The client software sends an encryption of π(i) to the
tally servers.

136 Ivan Damg̊ard and Mads Jurik

At the same time as π is generated, T also sends to the tally servers an
encryption of π. Using this encryption, the servers can transform the encryption
of π(i) into an encryption of i, and the election result can then computed using
the homomorphic properties as usual.

As for security of this, consider first correctness: as we have described the
system, we clearly have to trust that T encrypts for the servers the correct per-
mutation for each voter. If not, the result will be incorrect. Note, however, that T
cannot decrypt the encryption of π(i) sent from the client machine, so it cannot
manipulate the permutation and be certain to favor a particular candidate. If
T was suspected of foul play against a particular voter, the information held by
the voter could be verified against the encryption of π, and then cheating would
always be caught. But since this is a rather cumbersome procedure, it is unlikely
to happen very often, and so some amount of trust has to be invested in T .

As for privacy, clearly an attacker monitoring the client machine gets no
information on who the voter voted for, by the random choice of π. Furthermore,
even if T pools its information with a minority of the severs, they cannot break
the privacy of the voter unless they break the encryption. A breach of privacy
would require both that T is corrupt and that it participates in an attack where
client machines are infected.

In practice, who might play the role of T? As an example, in many countries,
there is an authority which, prior to elections and referendums, sends by private
paper mail a card to every eligible voter, and this card must be used when casting
a vote. Such an authority could naturally play the role of T , and simply print
the information about π on the card sent out. In other countries voters must
contact a government office to get registered, in this case the permutation could
be generated on the fly and the information handed directly to the voter.

For the first implementation of this idea we use a cryptosystem CS with
encryption and decryption functions E,D and plaintext space of size N .

4.1 Needed Properties

Here we need less assumptions because we do not need to transform the votes
between different cryptosystems.

– CS is homomorphic: as defined earlier
– CS supports MPC multiplication: as defined earlier
– Zero-Knowledge proofs: we need that a player can generate an encryption

E(v) and prove in zero-knowledge that v ∈ {M0, ...,ML−1}. For the example
of Paillier based encryption, a protocol for this purpose is given in [5].

– Election size: To ensure that the final result is correct we need ML < N .
– Factorization of N : We assume that N has only very large prime factors
so that factoring N is infeasible.

4.2 Preparation

T picks a random permutation π for each voter and gives the π(i) values to the
voter as described above. Then T generates a polynomial of degree L − 1 for

Client/Server Tradeoffs for Online Elections 137

each of the voters with the property that

f(M i) =Mπ−1(i) mod N ∀i : 0 ≤ i < L

If doing this by Lagrange interpolation fails, this can only be because some
number less than N was found to be non-invertible modulo N , which implies N
can be factored. Since this was assumed infeasible, the construction fails with
negligible probability. The L coefficients of the polynomial are then encrypted
to produce encryptions c0, ..., cL−1 and these are given to the tallying servers.

The tally servers for each voter generates a random encryption E(R) and
compute encryptions of the powers E(R2), ..., E(RL1).

4.3 Voting

To make a vote for candidate i the voter gives π(i) to the client machine
who makes an encryption E(Mπ(i)) and appends a zero-knowledge that one
of M0, ...,ML−1 was encrypted.

4.4 Transformation

We need to transform the vote E(Mπ(i)). First we use the encryptions of powers
of R from the preparation to compute encryptions E(M2π(i)), ..., E(M (L−1)π(i)).
This is done the same way as in the minimal vote scheme and requires only one
decryption and local computation. From this and c0, ..., cL−1, the servers can
clearly use the homomorphic property and O(L) MPC multiplication to make
an encryption E(f(Mπ(i))). If T participates, it can be done much more effi-
ciently: since T knows the coefficients of f , he can produce E(f(Mπ(i))) from
E((M2π(i)), ..., E(M (L−1)π(i)) by only local computation, and prove in zero-
knowledge to the servers that this was correctly done. The proof is straight-
forward to construct using techniques from [9]2.

We then have

E(f(Mπ(i))) = E(Mπ−1(π(i))) = E(M i)

which is what we wanted.

4.5 Combination

The result can then be found using the homomorphic addition of the transformed
votes to get a number of the form:

∑
viM

i ∀i : 0 ≤ vi < M

since M is the number of voters and ML < N an overflow cannot have occurred
and the number of votes on the i’th candidate will be vi.
2 In [9], a zero-knowledge protocol was given by which a player can prove that a
committed constant was correctly “multiplied into” a given encryption, and this is
exactly what we need here

138 Ivan Damg̊ard and Mads Jurik

4.6 Complexity

Since we don’t have any reduction in the size of the cryptosystem the voters the
communication and computational complexities are O(L logM+k) plus the size
of the proof that the vote has the right form.

For the tallying servers the complexity of both preparation and election is
comparable to the minimal scheme in case T participates also in the election.
Otherwise we will need O(ML) MPC multiplications during the election itself.

4.7 Combination with Minimal Votes

Since the scheme we just presented is similar to the minimal vote scheme it is
straightforward to combine the two. This only adds the cost of transforming the
vote from CS1 to CS2. The polynomial must now have the form

f(i) =Mπ−1(i) mod N

and the voter send an encryption of form E1(π(i)) as his encrypted vote.

4.8 An Alternative Implementation

A very simple way to implement multicandidate elections from homomorphic
encryption is as follows: the voter produces encryptions e1, ..., eL, where ei =
E(1) if he votes for candidate i and all other encryptions contain 0. He proves in
zero-knowledge that each ej encrypts 0 or 1, and opens e1 ⊗ ...⊗ eL to reveal 1,
in order to prove he voted for one candidate. The tally servers can then combine
all 0/1 votes for each candidate separately using the homomorphic property and
decrypt. This method places a quite large workload on voters, but on the other
hand it can be based on El-Gamal encryption as well as on Paillier, and it is
the only known way in which elections with large L can be efficiently based on
El-Gamal encryption (the method from[4] is exponential in L).

It is straightforward to apply the client protection method to this voting
scheme: the trusted party T generates and communicates a permutation to each
voter as described above. Then to encrypt a permutation π for the tally servers, T
will generate an L×L permutation matrixMπ representing π−1 in the standard
way and publish encryptions of each entry in Mπ. We let E(Mπ) denote this
(ordered) set of encryptions. The voter will now send a set of encryptions where
e1, ..., eL, where eπ(i) = E(1). Since T knows the entries of Mπ, he can by
only local computations and using the homomorphic property produce random
encryptions e′1, ..., e

′
L such that ei = E(1) and all the others contain 0. This is

done by applying Mπ to the vector of encryptions and multiplying by random
encryptions of 0. Since E(Mπ) was made public, he can then prove in zero-
knowledge to the servers that this was correctly done using techniques from [9].
Finally the computation of the final result can be completed as above.

Client/Server Tradeoffs for Online Elections 139

References

1. Abe: Universally verifiable MIX net with verification work independent of the num-
ber of MIX centers; proceedings of EuroCrypt 98, Springer Verlag LNCS.

2. Ohkubo and Abe: A Length-Invariant Hybrid Mix Proceedings of Asiacrypt 00,
Springer Verlag LNCS.

3. Baudron, Fouque, Pointcheval, Poupard and Stern: Practical Multi-Candidate Elec-
tion Scheme, manuscript, May 2000.

4. R.Cramer, R.Gennaro, B.Schoenmakers: A Secure and Optimally Efficient Multi-
Authority Election Scheme, Proceedings of EuroCrypt 97, Springer Verlag LNCS
series, pp. 103-118.

5. Damg̊ard and Jurik: A Generalisation, a Simplification and some Applications of
Paillier’s Probabilistic Public-Key System, Proc. of Public Key Cryptography 2001,
Springer Verlag LNCS series.

6. A. Fujioka, T. Okamoto & K. Otha: A practical secret voting scheme for large scale
elections., Advances in Cryptology - Auscrypt ’92, pp. 244-251.

7. B. Schoenmakers: A simple publicly verifiable secret sharing scheme and its ap-
plication to electronic voting, Advances in Cryptology - Crypto ’99, vol. 1666 of
LNCS, pp. 148-164.

8. R. Cramer, M. Franklin, B. Schoenmakers & M. Yung: Multi-authority secret ballot
elections with linear work, Advances in Cryptology - Eurocrypt ’96, vol. 1070 of
LNCS, pp. 72-83.

9. R. Cramer, I. Damg̊ard and J. Nielsen:Multiparty Computation from Threshold
Homomorphic Encryption, Proceedings of EuroCrypt 2001, Springer Verlag LNCS
series 2045, pp.280-300.

10. Boudot: Efficient Proof that a Comitted Number Lies in an Interval, Proc. of Eu-
roCrypt 2000, Springer Verlag LNCS series 1807.

11. Damg̊ard and Fujisaki: An Integer Commitment Scheme based on Groups with
Hidden Order, Manuscript, 2001, available from the Eprint archive.

12. Fujisaki and Okamoto: Statistical Zero-Knowledg Protocols to prove Modular Poly-
nomial Relations, proc. of Crypto 97, Springer Verlag LNCS series 1294.

13. Oded Goldreich, Silvio Micali, and Avi Wigderson: How to play any mental game
or a completeness theorem for protocols with honest majority, in Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, pages 218–229,
New York City, 25–27 May 1987.

14. M.Hirt and K.Sako: Efficient Receipt-Free Voting based on Homomorphic Encryp-
tion, Proceedings of EuroCrypt 2000, Springer Verlag LNCS series, pp. 539-556.

15. P.Pallier: Public-Key Cryptosystems based on Composite Degree Residue Classes,
Proceedings of EuroCrypt 99, Springer Verlag LNCS series, pp. 223-238.

16. J. Bar-Ilan, and D. Beaver: Non-Cryptographic Fault-Tolerant Computing in a Con-
stant Number of Rounds, Proceedings of the ACM Symposium on Principles of
Distributed Computation, 1989, pp. 201-209.

A Interval Proofs for Paillier Encryptions

Given a Paillier encryption E(m, r) (computed modulo N2), we sketch here an
efficient method to prove in zero-knowledge that m is in some given interval I.
In [5] a protocol for this purpose is given. However, there one needs to supply an
encryption of every bit in the binary expansion of m. We want a more efficient

140 Ivan Damg̊ard and Mads Jurik

method, where only a constant number of encryptions need to be sent. In the
following, opening an encryption E(m, r) means revealing m, r. However, for
simplicity, we will suppress r in the notation in most cases.

In [10] Baudot gives an efficient method for proving that a committed number
lies in a given interval. The protocol requires sending only a constant number of
commitments and is zero-knowledge in the random oracle model that we also use
here. It assumes that the number has been committed to using a commitment
scheme with some specific properties. The scheme proposed by Fujisaki and
Okamoto [12] will suffice, assuming the strong RSA assumption. See [10] for a
short description of the commitment scheme and associated protocols. It should
be noted that there are some technical problems with the proof of soundness
for the associated protocols given in [12], but these problems have recently been
fixed in [11]. The modulus N used for Paillier encryption can also serve as part of
the public key for the commitment scheme in Baudot’s protocol. In addition, we
need two elements g, h ∈ Z∗N of large order, such that g is in the group generated
by h. The prover must not know the discrete logarithm of g base h or vice versa.
We assume that g, h are generated as part of the procedure that sets up N and
shares the private key among the decryption servers. A commitment to m in this
scheme using random input r is Com(m, r) = gmhr mod N . We will often just
write Com(m) for simplicity.

Now, the basic idea is the following: given E(m), the prover provides a com-
mitment Com(m), proves that the commitment contains the same number as the
encryption, and then uses Baudot’s protocol to prove thatm ∈ I. The only miss-
ing link here is how to show that the same number m is contained in encryption
and commitment. This can be done as follows:
1. Let T be the maximal bit-length of m (based on the interval I). The prover
chooses at random u, an integer of length m+2k1 where k1 is the secondary
security parameter. He sends a = E(u), b = Com(u) to the verifier.

2. The verifier chooses a k-bit challenge e.
3. The prover opens the encryption a · E(m)e mod n2 and the commitment

b · Com(m)e mod N , to reveal in both cases the number z = u + em. The
verifier checks that the openings were correct.

This protocol can be made non-interactive in the standard way using a hash func-
tion and the Fiat-Shamir heuristic. It is then also statistically zero-knowledge in
the random oracle model.

What we have done is to combine two already known protocols for proving
knowledge of the contents of an encryption, respectively a commitment. Then,
when we prove soundness of this protocol using a standard rewinding argument,
the fact that we use the same challenge e and the same response z is both
cases will ensure the prover must know one single value that is inside both the
encryption and the commitment. Indeed, if the prover for given a, b could answer
two different challenges e, e′ by numbers z, z′, then this common value would be
(z − z′)/(e − e′). The strong RSA assumption is used here, to show that e − e′

must divide z− z′, except with negligible probability. Details are deferred to the
final version of the paper.

	Client/Server Tradeoffs for Online Elections
	1 Introduction
	2 The Minimal Vote System
	2.1 Needed Properties
	2.2 Preparation
	2.3 Voting
	2.4 Transformation
	2.5 Calculating Result
	2.6 Complexity

	3 An Alternative System
	3.1 Needed Properties
	3.2 Preparation
	3.3 Voting
	3.4 Transformation
	3.5 Calculating Result
	3.6 Complexity

	4 Protecting Clients against Hackers
	4.1 Needed Properties
	4.2 Preparation
	4.3 Voting
	4.4 Transformation
	4.5 Combination
	4.6 Complexity
	4.7 Combination with Minimal Votes
	4.8 An Alternative Implementation

	References
	A Interval Proofs for Paillier Encryptions

