Non-cryptographic Primitive for Pseudorandom Permutation

Tetsu Iwata¹, Tomonobu Yoshino¹, and Kaoru Kurosawa²

 Department of Communications and Integrated Systems, Tokyo Institute of Technology
 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan tez@ss.titech.ac.jp
 Department of Computer and Information Sciences, Ibaraki University
 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan kurosawa@cis.ibaraki.ac.jp

Abstract. Four round Feistel permutation (like DES) is super-pseudorandom if each round function is *random* or a *secret* universal hash function. A similar result is known for five round MISTY type permutation. It seems that each round function must be at least either *random* or *secret* in both cases.

In this paper, however, we show that the second round permutation g in five round MISTY type permutation need not be cryptographic at all, i.e., no randomness nor secrecy is required. g has only to satisfy that $g(x) \oplus x \neq g(x') \oplus x'$ for any $x \neq x'$. This is the first example such that a non-cryptographic primitive is substituted to construct the minimum round super-pseudorandom permutation. Further we show efficient constructions of super-pseudorandom permutations by using above mentioned g.

Keywords: Block cipher, pseudorandomness, MISTY type permutation.

1 Introduction

1.1 Super-Pseudorandomness

A secure block cipher should be indistinguishable from a truly random permutation. Consider an infinitely powerful distinguisher \mathcal{D} which tries to distinguish a block cipher from a truly random permutation. It outputs 0 or 1 after making at most m queries to the given encryption and/or decryption oracles. We say that a distinguisher \mathcal{D} is a pseudorandom distinguisher if it has oracle access to the encryption oracle. We also say that a distinguisher \mathcal{D} is a super-pseudorandom distinguisher if it has oracle access to both the encryption oracle and the decryption oracle. Then a block cipher E is called pseudorandom if any pseudorandom distinguisher \mathcal{D} cannot distinguish E from a truly random permutation. A block cipher E is called super-pseudorandom distinguisher \mathcal{D} cannot distinguish E from a truly random permutation.

J. Daemen and V. Rijmen (Eds.): FSE 2002, LNCS 2365, pp. 149–163, 2002.

[©] Springer-Verlag Berlin Heidelberg 2002

1.2**Previous Works**

The super-pseudorandomness of Feistel permutation (like DES) has been studied extensively so far. Let $\phi(f_1, f_2, f_3)$ denote the three round Feistel permutation such that the *i*-th round function is f_i . Similarly, let $\phi(f_1, f_2, f_3, f_4)$ denote the four round Feistel permutation.

Suppose that each f_i is a random function. Then Luby and Rackoff proved that $\phi(f_1, f_2, f_3)$ is pseudorandom and $\phi(f_1, f_2, f_3, f_4)$ is super-pseudorandom [4]. Lucks showed that the $\phi(h_1, f_2, f_3)$ is pseudorandom even if h_1 is an ϵ -XOR universal hash function [5]. Suppose that h_1 and h_4 are uniform ϵ -XOR universal hash functions. Then Naor and Reingold proved that $h_4 \circ \phi(f_2, f_3) \circ h_1$ is super-pseudorandom [8], and Ramzan and Reyzin showed that $\phi(h_1, f_2, f_3, h_4)$ is super-pseudorandom even if the distinguisher has oracle access to f_2 and f_3 [9].

On the other hand, let $\psi(p_1, p_2, p_3, p_4, p_5)$ denote the five round MISTY type permutation such that the *i*-th round permutation is p_i . Suppose that each p_i is a random permutation. Then Iwata et al. [3] and Gilbert and Minier [2] independently showed that $\psi(p_1, p_2, p_3, p_4, p_5)$ is super-pseudorandom. More than that, let h_i be a uniform ϵ -XOR universal permutation. Iwata et al. proved that

- ψ(h₁, h₂, p₃, p₄, h₅⁻¹) is super-pseudorandom even if the distinguisher has or-acle access to p₃, p₃⁻¹, p₄ and p₄⁻¹.
 ψ(h₁, p₂, p₃, p₄, h₅⁻¹) is super-pseudorandom even if the distinguisher has or-acle access to p₂, p₂⁻¹, p₃, p₃⁻¹, p₄ and p₄⁻¹.

1.3**Our Contribution**

Four round Feistel permutation (like DES) is super-pseudorandom if each round function is random or a secret universal hash function. A similar result is known for five round MISTY type permutation. It seems that each round function must be at least either *random* or *secret* in both cases.

In this paper, however, we show that the second round permutation q in five round MISTY type permutation need not be cryptographic at all, i.e., no randomness nor secrecy is required. g has only to satisfy that $g(x) \oplus x \neq g(x') \oplus x$ x' for any $x \neq x'$. This is the first example such that a non-cryptographic primitive is substituted to construct the minimum round super-pseudorandom permutation. Further we show efficient constructions of super-pseudorandom permutations by using above mentioned q.

One might wonder if five rounds can be reduced to four rounds to obtain super-pseudorandomness of MISTY. However, it is not true because Sakurai and Zheng showed that the four round MISTY type permutation $\psi(p_1, p_2, p_3, p_4)$ is not super-pseudorandom [10].

More precisely, we prove that five round MISTY is super-pseudorandom if it is $\psi(h_1, g, p, p^{-1}, h_5^{-1})$, where g is the above mentioned permutation, h_1 is an ϵ -XOR universal permutation, h_5 is a uniform ϵ -XOR universal permutation, and p is a random permutation. Further, suppose that both h_1 and h_5 are uniform ϵ -XOR universal permutations. Then we prove that it is super-pseudorandom even if the distinguisher has oracle access to p and p^{-1} .

More than that, we study the case such that the third and the fourth round permutations are both p. In this case, we show that it is not super-pseudorandom nor pseudorandom if a distinguisher has oracle access to p. More formally, we show that for any fixed and public g, $\psi(p_1, g, p, p, p_5)$ is not pseudorandom if a distinguisher has oracle access to p.

2 Preliminaries

2.1 Notation

For a bit string $x \in \{0,1\}^{2n}$, we denote the first (left) *n* bits of *x* by x_L and the last (right) *n* bits of *x* by x_R . If *S* is a probability space, then $s \stackrel{R}{\leftarrow} S$ denotes the process of picking an element from *S* according to the underlying probability distribution. The underlying distribution is assumed to be uniform (unless otherwise specified).

Denote by F_n the set of all functions from $\{0,1\}^n$ to $\{0,1\}^n$, which consists of $2^{n \cdot 2^n}$ functions in total. Similarly, denote by P_n the set of all permutations from $\{0,1\}^n$ to $\{0,1\}^n$, which consists of $(2^n)!$ permutations in total.

2.2 MISTY Type Permutation [6,7]

Definition 2.1 (The basic MISTY type permutation). Let $x \in \{0,1\}^{2n}$. For any permutation $p \in P_n$, define the basic MISTY type permutation $\psi_p \in P_{2n}$ as $\psi_p(x) \stackrel{\text{def}}{=} (x_R, p(x_L) \oplus x_R)$. Note that it is a permutation since $\psi_p^{-1}(x) = (p^{-1}(x_L \oplus x_R), x_L)$.

Definition 2.2 (The *r* **round MISTY type permutation**, ψ). Let $r \ge 1$ be an integer, $p_1, \ldots, p_r \in P_n$ be permutations. Define the *r* round MISTY type permutation $\psi(p_1, \ldots, p_r) \in P_{2n}$ as $\psi(p_1, \ldots, p_r) \stackrel{\text{def}}{=} \rho \circ \psi_{p_r} \circ \cdots \circ \psi_{p_1}$, where $\rho(x_L, x_R) = (x_R, x_L)$ for $x \in \{0, 1\}^{2n}$.

See Fig. 1 (the five round MISTY type permutation) for an illustration. Note that p_i in Fig. 1 is a permutation. For simplicity, the left and right swaps are omitted.

2.3 Uniform ϵ -XOR Universal Permutation

Our definitions follow from those given in [1,3,9,11].

Definition 2.3. Let H_n be a permutation family over $\{0,1\}^n$. Denote by $\#H_n$ the size of H_n .

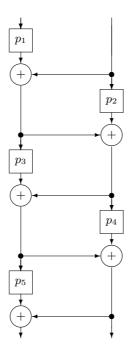


Fig. 1. MISTY type permutation

- 1. H_n is a uniform permutation family if for any element $x \in \{0, 1\}^n$ and any element $y \in \{0, 1\}^n$, there exist exactly $\frac{\#H_n}{2^n}$ permutations $h \in H_n$ such that h(x) = y.
- 2. H_n is an ϵ -XOR universal permutation family if for any two distinct elements $x, x' \in \{0, 1\}^n$ and any element $y \in \{0, 1\}^n$, there exist at most $\epsilon # H_n$ permutations $h \in H_n$ such that $h(x) \oplus h(x') = y$.

Let $f_a(x) \stackrel{\text{def}}{=} a \cdot x$ over $GF(2^n)$, where $a \neq 0$. Then $\{f_a(x)\}$ is a $\frac{1}{2^n-1}$ -XOR universal permutation family.

Let $f_{a,b}(x) \stackrel{\text{def}}{=} a \cdot x + b$ over $\operatorname{GF}(2^n)$, where $a \neq 0$. Then $\{f_{a,b}(x)\}$ is a uniform $\frac{1}{2^n-1}$ -XOR universal permutation family.

We will use the phrase "h is an ϵ -XOR universal permutation" to mean that "h is drawn uniformly from an ϵ -XOR universal permutation family". Similarly, we will use the phrase "h is a uniform ϵ -XOR universal permutation".

3 Improved Super-Pseudorandomness of MISTY Type Permutation

We say that a permutation g over $\{0,1\}^n$ is XOR-distinct if

$$g(x) \oplus x \neq g(x') \oplus x'$$

for any $x \neq x'$. Let $g(x) = a \cdot x$ over $GF(2^n)$, where $a \neq 0, 1$. Then this g is clearly XOR-distinct.

In this section, we prove that $\psi(h_1, g, p, p^{-1}, h_5^{-1})$ is super-pseudorandom even if the second round permutation q is fixed and publicly known. q has only to be XOR-distinct. This means that the five round MISTY type permutation is super-pseudorandom even if the second round permutation has no randomness nor secrecy.

Let H_n^0 be an ϵ -XOR universal permutation family over $\{0,1\}^n$, and H_n^1 be a uniform ϵ -XOR universal permutation family over $\{0,1\}^n$. Define

$$\begin{cases} \text{MISTY}_{2n}^{01} \stackrel{\text{def}}{=} \{\psi(h_1, g, p, p^{-1}, h_5^{-1}) \mid p \in P_n, h_1 \in H_n^0, h_5 \in H_n^1 \}\\ \text{MISTY}_{2n}^{11} \stackrel{\text{def}}{=} \{\psi(h_1, g, p, p^{-1}, h_5^{-1}) \mid p \in P_n, h_1, h_5 \in H_n^1 \} \end{cases}$$

Super-Pseudorandomness of $MISTY_{2n}^{01}$ 3.1

Let \mathcal{D} be a super-pseudorandom distinguisher for MISTY⁰¹_{2n} which makes at most m queries in total. We consider two experiments, experiment 0 and experiment 1. In experiment 0, \mathcal{D} has oracle access to ψ and ψ^{-1} , where ψ is randomly chosen from MISTY⁰¹_{2n}. In experiment 1, \mathcal{D} has oracle access to R and R^{-1} , where R is randomly chosen from P_{2n} .

Define the advantage of \mathcal{D} as follows.

$$\operatorname{Adv}(\mathcal{D}) \stackrel{\mathrm{def}}{=} |p_{\psi} - p_R|$$

where

$$\begin{cases} p_{\psi} \stackrel{\text{def}}{=} \Pr(\mathcal{D}^{\psi,\psi^{-1}}(1^{2n}) = 1 \mid \psi \stackrel{R}{\leftarrow} \operatorname{MISTY}_{2n}^{01}) \\ p_{R} \stackrel{\text{def}}{=} \Pr(\mathcal{D}^{R,R^{-1}}(1^{2n}) = 1 \mid R \stackrel{R}{\leftarrow} P_{2n}) \end{cases}$$

Lemma 3.1. Fix $x^{(i)} \in \{0,1\}^{2n}$ and $y^{(i)} \in \{0,1\}^{2n}$ for $1 \le i \le m$ arbitrarily in such a way that $\{x^{(i)}\}_{1 \le i \le m}$ are all distinct and $\{y^{(i)}\}_{1 \le i \le m}$ are all distinct. Then the number of $\psi \in MISTY_{2n}^{01}$ such that

$$\psi(x^{(i)}) = y^{(i)} \text{ for } 1 \le \forall i \le m$$

$$\tag{1}$$

is at least

$$(\#H_n^0)(\#H_n^1)(2^n-2m)!\left(1-2\epsilon\cdot m(m-1)-\frac{2m^2}{2^n}\right)$$

A proof is given in Appendix A.

Theorem 3.1. For any super-pseudorandom distinguisher \mathcal{D} that makes at most m queries in total.

$$\operatorname{Adv}(\mathcal{D}) \leq 2\epsilon \cdot m(m-1) + \frac{2m^2}{2^n}$$

Proof. Let $\mathcal{O} = R$ or ψ . The super-pseudorandom distinguisher \mathcal{D} has oracle access to \mathcal{O} and \mathcal{O}^{-1} .

There are two types of queries \mathcal{D} can make: either (+, x) which denotes the query "what is $\mathcal{O}(x)$?", or (-, y) which denotes the query "what is $\mathcal{O}^{-1}(y)$?" For the *i*-th query \mathcal{D} makes to \mathcal{O} or \mathcal{O}^{-1} , define the query-answer pair $(x^{(i)}, y^{(i)}) \in \{0, 1\}^{2n} \times \{0, 1\}^{2n}$, where either \mathcal{D} 's query was $(+, x^{(i)})$ and the answer it got was $y^{(i)}$ or \mathcal{D} 's query was $(-, y^{(i)})$ and the answer it got was $x^{(i)}$. Define view v of \mathcal{D} as $v = ((x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}))$.

Without loss of generality, we assume that $\{x^{(i)}\}_{1 \le i \le m}$ are all distinct, and $\{y^{(i)}\}_{1 \le i \le m}$ are all distinct.

Since \mathcal{D} has unbounded computational power, \mathcal{D} can be assumed to be deterministic. Therefore, the final output of \mathcal{D} (0 or 1) depends only on v. Hence denote by $\mathcal{C}_{\mathcal{D}}(v)$ the final output of \mathcal{D} .

Let $\boldsymbol{v}_{one} \stackrel{\text{def}}{=} \{ v \mid \mathcal{C}_{\mathcal{D}}(v) = 1 \}$ and $N_{one} \stackrel{\text{def}}{=} \# \boldsymbol{v}_{one}$. Evaluation of p_R . From the definition of p_R , we have

$$p_R = \Pr_R(\mathcal{D}^{R,R^{-1}}(1^{2n}) = 1)$$
$$= \frac{\#\{R \mid \mathcal{D}^{R,R^{-1}}(1^{2n}) = 1\}}{(2^{2n})!}$$

For each $v \in \boldsymbol{v}_{one}$, the number of R such that

$$R(x^{(i)}) = y^{(i)} \text{ for } 1 \le \forall i \le m$$
(2)

is exactly $(2^{2n} - m)!$. Therefore, we have

$$p_R = \sum_{v \in v_{one}} \frac{\#\{R \mid R \text{ satisfying } (2)\}}{(2^{2n})!}$$
$$= N_{one} \cdot \frac{(2^{2n} - m)!}{(2^{2n})!} .$$

Evaluation of p_{ψ} . From the definition of p_{ψ} , we have

$$p_{\psi} = \Pr_{h_1, p, h_5} (\mathcal{D}^{\psi, \psi^{-1}}(1^{2n}) = 1)$$
$$= \frac{\#\{(h_1, p, h_5) \mid \mathcal{D}^{\psi, \psi^{-1}}(1^{2n}) = 1\}}{(\#H_n^0)(2^n)!(\#H_n^1)}$$

Similarly to p_R , we have

$$p_{\psi} = \sum_{v \in \mathbf{v}_{one}} \frac{\#\left\{(h_1, p, h_5) \mid (h_1, p, h_5) \text{ satisfying } (1)\right\}}{(\#H_n^0)(2^n)!(\#H_n^1)}$$

Then from Lemma 3.1, we obtain that

$$p_{\psi} \ge \sum_{v \in \boldsymbol{v}_{one}} \frac{(2^n - 2m)! \left(1 - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n}\right)}{(2^n)!}$$

$$= N_{one} \frac{(2^n - 2m)!}{(2^n)!} \left(1 - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n} \right)$$
$$= p_R \frac{(2^{2n})!(2^n - 2m)!}{(2^{2n} - m)!(2^n)!} \left(1 - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n} \right)$$

Since $\frac{(2^{2n})!(2^n-2m)!}{(2^{2n}-m)!(2^n)!} \ge 1$ (This can be shown easily by an induction on m), we have

$$p_{\psi} \ge p_R \left(1 - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n} \right)$$
$$\ge p_R - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n} . \tag{3}$$

Applying the same argument to $1 - p_{\psi}$ and $1 - p_R$ yields that

$$1 - p_{\psi} \ge 1 - p_R - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n} \quad . \tag{4}$$

Finally, (3) and (4) give $|p_{\psi} - p_R| \le 2\epsilon \cdot m(m-1) + \frac{2m^2}{2^n}$.

3.2 Super-Pseudorandomness of $MISTY_{2n}^{11}$

Let \mathcal{D} be a super-pseudorandom distinguisher for MISTY_{2n}^{11} . \mathcal{D} also has oracle access to p and p^{-1} , where p and p^{-1} are the third and fourth round permutations of MISTY_{2n}^{11} respectively. \mathcal{D} makes at most m queries in total. We consider two experiments, experiment 0 and experiment 1. In experiment 0, \mathcal{D} has oracle access to not only ψ and ψ^{-1} , but also p and p^{-1} , where ψ is randomly chosen from MISTY_{2n}^{11} . In experiment 1, \mathcal{D} has oracle access to R, R^{-1} , p and p^{-1} , where R is randomly chosen from P_{2n} and p is randomly chosen from P_n .

Define the advantage of \mathcal{D} as follows.

$$\operatorname{Adv}(\mathcal{D}) \stackrel{\mathrm{def}}{=} |p_{\psi} - p_R|$$

where

$$\begin{cases} p_{\psi} \stackrel{\text{def}}{=} \Pr(\mathcal{D}^{\psi,\psi^{-1},p,p^{-1}}(1^{2n}) = 1 \mid \psi \stackrel{R}{\leftarrow} \operatorname{MISTY}_{2n}^{11}) \\ p_{R} \stackrel{\text{def}}{=} \Pr(\mathcal{D}^{R,R^{-1},p,p^{-1}}(1^{2n}) = 1 \mid R \stackrel{R}{\leftarrow} P_{2n}, p \stackrel{R}{\leftarrow} P_{n}) \end{cases}$$

Lemma 3.2. Let m_0 and m_1 be integers. Fix $x^{(i)} \in \{0,1\}^{2n}$ and $y^{(i)} \in \{0,1\}^{2n}$ for $1 \leq i \leq m_0$ arbitrarily in such a way that $\{x^{(i)}\}_{1 \leq i \leq m_0}$ are all distinct and $\{y^{(i)}\}_{1 \leq i \leq m_0}$ are all distinct. Similarly, fix $X^{(i)} \in \{0,1\}^n$ and $Y^{(i)} \in \{0,1\}^n$ for $1 \leq i \leq m_1$ arbitrarily in such a way that $\{X^{(i)}\}_{1 \leq i \leq m_1}$ are all distinct and $\{Y^{(i)}\}_{1 \leq i \leq m_1}$ are all distinct.

Then the number of $\psi \in MISTY_{2n}^{11}$ such that

$$\psi(x^{(i)}) = y^{(i)} \text{ for } 1 \le \forall i \le m_0 \text{ and } p(X^{(i)}) = Y^{(i)} \text{ for } 1 \le \forall i \le m_1$$
 (5)

is at least

$$(\#H_n^1)^2(2^n - 2m_0 - m_1)! \left(1 - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n}\right)$$

A proof is given in Appendix B.

Theorem 3.2. For any super-pseudorandom distinguisher \mathcal{D} that also has oracle access to p and p^{-1} and makes at most m queries in total,

$$\operatorname{Adv}(\mathcal{D}) \le 2\epsilon \cdot m(m-1) + \frac{6m^2}{2^n}$$

Proof. Let $\mathcal{O} = R$ or ψ . The super-pseudorandom distinguisher \mathcal{D} has oracle access to $\mathcal{O}, \mathcal{O}^{-1}, p$ and p^{-1} . Assume that \mathcal{D} makes m_0 queries to \mathcal{O} or \mathcal{O}^{-1} , and m_1 queries to p or p^{-1} , where $m = m_0 + m_1$.

There are four types of queries \mathcal{D} can make: either (+, x) which denotes the query "what is $\mathcal{O}(x)$?", (-, y) which denotes the query "what is $\mathcal{O}^{-1}(y)$?", (+, X) which denotes the query "what is p(X)?", or (-, Y) which denotes the query "what is $p^{-1}(Y)$?" For the *i*-th query \mathcal{D} makes to \mathcal{O} or \mathcal{O}^{-1} , define the query-answer pair $(x^{(i)}, y^{(i)}) \in \{0, 1\}^{2n} \times \{0, 1\}^{2n}$, where either \mathcal{D} 's query was $(+, x^{(i)})$ and the answer it got was $y^{(i)}$ or \mathcal{D} 's query was $(-, y^{(i)})$ and the answer it got was $x^{(i)}$. Similarly for the *i*-th query \mathcal{D} makes to p or p^{-1} , define the queryanswer pair $(X^{(i)}, Y^{(i)}) \in \{0, 1\}^n \times \{0, 1\}^n$, where either \mathcal{D} 's query was $(+, X^{(i)})$ and the answer it got was $Y^{(i)}$ or \mathcal{D} 's query was $(-, Y^{(i)})$ and the answer it got was $X^{(i)}$. Define view v and V of \mathcal{D} as $v = ((x^{(1)}, y^{(1)}), \dots, (x^{(m_0)}, y^{(m_0)}))$ and $V = ((X^{(1)}, Y^{(1)}), \dots, (X^{(m_1)}, Y^{(m_1)}))$. Without loss of generality, we assume that $\{x^{(i)}\}_{1 \leq i \leq m_0}$ are all distinct, $\{y^{(i)}\}_{1 \leq i \leq m_1}$ are all distinct. $X^{(i)}$

Then similarly to the proof of Theorem 3.1, denote by $\mathcal{C}_{\mathcal{D}}(v, V)$ the final output of \mathcal{D} .

Let $(\boldsymbol{v}, \boldsymbol{V})_{one} \stackrel{\text{def}}{=} \{(\boldsymbol{v}, \boldsymbol{V}) \mid \mathcal{C}_{\mathcal{D}}(\boldsymbol{v}, \boldsymbol{V}) = 1\}$ and $N_{one} \stackrel{\text{def}}{=} \#(\boldsymbol{v}, \boldsymbol{V})_{one}$. Evaluation of p_R . From the definition of p_R , we have

$$p_{R} = \Pr_{R,p}(\mathcal{D}^{R,R^{-1},p,p^{-1}}(1^{2n}) = 1)$$
$$= \frac{\#\{(R,p) \mid \mathcal{D}^{R,R^{-1},p,p^{-1}}(1^{2n}) = 1\}}{(2^{2n})!(2^{n})!}$$

For each $(v, V) \in (v, V)_{one}$, the number of (R, p) such that

$$R(x^{(i)}) = y^{(i)}$$
 for $1 \le \forall i \le m_0$ and $p(X^{(i)}) = Y^{(i)}$ for $1 \le \forall i \le m_1$ (6)

is exactly $(2^{2n} - m_0)!(2^n - m_1)!$. Therefore, we have

$$p_R = \sum_{(v,V)\in(\mathbf{v},\mathbf{V})_{one}} \frac{\#\{(R,p) \mid (R,p) \text{ satisfying } (6)\}}{(2^{2n})!(2^n)!}$$
$$= N_{one} \cdot \frac{(2^{2n} - m_0)!}{(2^{2n})!} \cdot \frac{(2^n - m_1)!}{(2^{2n})!} \cdot \frac{(2^n - m_1)!}{(2^{2n})!} \cdot \frac{(2^n - m_1)!}{(2^{2n})!}$$

Evaluation of p_{ψ} . From the definition of p_{ψ} , we have

$$p_{\psi} = \Pr_{h_1, p, h_5} (\mathcal{D}^{\psi, \psi^{-1}, p, p^{-1}} (1^{2n}) = 1)$$
$$= \frac{\#\{(h_1, p, h_5) \mid \mathcal{D}^{\psi, \psi^{-1}, p, p^{-1}} (1^{2n}) = 1\}}{(\#H_n^1)^2 (2^n)!}$$

Similarly to p_R , we have

$$p_{\psi} = \sum_{(v,V)\in(\boldsymbol{v},\boldsymbol{V})_{one}} \frac{\#\{(h_1, p, h_5) \mid (h_1, p, h_5) \text{ satisfying } (5)\}}{(\#H_n^1)^2(2^n)!}$$

Then from Lemma 3.2, we obtain that

$$p_{\psi} \ge \sum_{(v,V)\in(v,V)_{one}} \frac{(2^n - 2m_0 - m_1)! \left(1 - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n}\right)}{(2^n)!}$$
$$= N_{one} \frac{(2^n - 2m_0 - m_1)!}{(2^n)!} \left(1 - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n}\right)$$
$$= p_R \frac{(2^{2n})!(2^n - 2m_0 - m_1)!}{(2^{2n} - m_0)!(2^n - m_1)!} \left(1 - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n}\right).$$

Since $\frac{(2^{2n})!(2^n-2m_0-m_1)!}{(2^{2n}-m_0)!(2^n-m_1)!} \ge 1$ (This can be shown easily by an induction on m_0), we have

$$p_{\psi} \ge p_R \left(1 - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n} \right)$$

$$\ge p_R - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n}$$

$$\ge p_R - 2\epsilon \cdot m(m - 1) - \frac{6m^2}{2^n} .$$
(7)

Applying the same argument to $1 - p_{\psi}$ and $1 - p_R$ yields that

$$1 - p_{\psi} \ge 1 - p_R - 2\epsilon \cdot m(m-1) - \frac{6m^2}{2^n} \quad . \tag{8}$$

Finally, (7) and (8) give $|p_{\psi} - p_R| \le 2\epsilon \cdot m(m-1) + \frac{6m^2}{2^n}$.

4 Negative Result

Let g be a fixed and publicly known XOR-distinct permutation. In Theorem 3.2, we showed that $\psi(h_1, g, p, p^{-1}, h_5^{-1})$ is super-pseudorandom even if the distinguisher has oracle access to p and p^{-1} , where h_1 and h_5 are uniform ϵ -XOR universal permutations, and p is a random permutation.

One might think that $\psi(h_1, g, p, p, h_5^{-1})$ is super-pseudorandom even if the distinguisher has oracle access to p and p^{-1} . In this section, however, we show that this is not true. We can distinguish $\psi(h_1, g, p, p, h_5^{-1})$ from a random permutation with advantage very close to 1.

More generally, let $p_1, p_2, p, p_5 \in P_n$ be random permutations and $\psi = \psi(p_1, p_2, p, p, p_5)$. We prove that ψ is not pseudorandom if the distinguisher has oracle access to p_2, p_2^{-1} and p. This proof implies that for any fixed and public $g, \psi(p_1, g, p, p, p_5)$ is not super-pseudorandom nor pseudorandom if the distinguisher has oracle access to p.

Define the advantage of \mathcal{D} as follows.

$$\operatorname{Adv}(\mathcal{D}) \stackrel{\operatorname{def}}{=} |p_{\psi} - p_R|$$

where

$$\begin{cases} p_{\psi} \stackrel{\text{def}}{=} \Pr(\mathcal{D}^{\psi, p_2, p_2^{-1}, p}(1^{2n}) = 1 \mid p_1, p_2, p, p_5 \stackrel{R}{\leftarrow} P_n, \psi = \psi(p_1, p_2, p, p, p_5)) \\ p_R \stackrel{\text{def}}{=} \Pr(\mathcal{D}^{R, p_2, p_2^{-1}, p}(1^{2n}) = 1 \mid R \stackrel{R}{\leftarrow} P_{2n}, p_2, p \stackrel{R}{\leftarrow} P_n) \end{cases}$$

Theorem 4.1. There exists a pseudorandom distinguisher \mathcal{D} that has oracle access to p_2 , p_2^{-1} and p and makes 6 queries in total,

$$\operatorname{Adv}(\mathcal{D}) \geq 1 - rac{2}{2^n}$$

Proof. Let $\mathcal{O} = R$ or ψ . Our distinguisher \mathcal{D} has oracle access to \mathcal{O} , p_2, p_2^{-1} and p. Consider the following \mathcal{D} :

- 1. Ask $(0, \ldots, 0) \in \{0, 1\}^n$ to p_2^{-1} and obtain A.
- 2. Pick $X, A' \in \{0, 1\}^n$ such that $A \neq A'$ arbitrarily.
- 3. Ask (X, A) to \mathcal{O} and obtain (Y, B).
- 4. Ask $A \oplus A'$ to p_2 and obtain C.
- 5. Ask $A' \oplus B$ to p and obtain D.
- 6. Ask $A' \oplus B \oplus C$ to p and obtain E.
- 7. Ask $(X, A \oplus A')$ to \mathcal{O} and obtain (Z, F).
- 8. Output "1" if and only if $F = A' \oplus B \oplus C \oplus D \oplus E$.

If $\mathcal{O} = \psi$, then *B* is the input to *p* in both third round and fourth round at step 3 since $p_2(A) = (0, \ldots, 0)$. Therefore we have $p_1(X) \oplus A = B$. Now the input to *p* in the third round at step 7 is $p_1(X) \oplus A \oplus A'$ which is equivalent to $A' \oplus B$. Next the input to *p* in the fourth round at step 7 is $A' \oplus B \oplus C$ since $p_2(A \oplus A') = C$. Then we always have $F = A' \oplus B \oplus C \oplus D \oplus E$ at step 8. Hence we have $p_{\psi} = 1$.

If $\mathcal{O} = R$, we have $p_R = \frac{2^n}{2^{2n} - 1} \le \frac{2}{2^n}$.

Corollary 4.1. For any fixed and public g, $\psi(p_1, g, p, p, p_5)$ is not super-pseudorandom if the distinguisher has oracle access to p.

Proof. From the proof of Theorem 4.1.

5 Conclusion

In this paper, we proposed more efficient constructions of super-pseudorandom permutations based on the five round MISTY type permutation than those given in [3].

In particular, we showed that the second round permutation g need not be cryptographic at all, i.e., no randomness nor secrecy is required.

More precisely, let p and p_i be random permutations, then we proved that

- 1. $\psi(h_1, g, p, p^{-1}, h_5^{-1})$ is super-pseudorandom, where h_1 is an ϵ -XOR universal permutation, g is a (publicly known and fixed) XOR-distinct permutation, and h_5 is a uniform ϵ -XOR universal permutation (Theorem 3.1),
- 2. $\psi(h_1, g, p, p^{-1}, h_5^{-1})$ is super-pseudorandom, even if the adversary has oracle access to p and p^{-1} , where h_1 and h_5 are uniform ϵ -XOR universal permutations, and g is a (publicly known and fixed) XOR-distinct permutation (Theorem 3.2),
- 3. but $\psi(p_1, p_2, p, p, p_5)$ is not pseudorandom nor super-pseudorandom, if the adversary has oracle access to p_2, p_2^{-1} and p (Theorem 4.1).

References

- J. L. Carter and M. N. Wegman. Universal classes of hash functions. JCSS, vol. 18, no. 2, pp. 143–154, 1979.
- H. Gilbert and M. Minier. New results on the pseudorandomness of some block cipher constructions. Pre-proceedings of *Fast Software Encryption*, *FSE 2001*, pp. 260–277 (to appear in LNCS, Springer-Verlag).
- T. Iwata, T. Yoshino, T. Yuasa and K. Kurosawa. Round security and superpseudorandomness of MISTY type structure. Pre-proceedings of *Fast Software Encryption, FSE 2001*, pp. 245–259 (to appear in LNCS, Springer-Verlag).
- M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, April 1988.
- S. Lucks. Faster Luby-Rackoff ciphers. Fast Software Encryption, FSE '96, LNCS 1039, pp. 189–203, Springer-Verlag.
- M. Matsui. New structure of block ciphers with provable security against differential and linear cryptanalysis. *Fast Software Encryption*, *FSE '96*, *LNCS 1039*, pp. 206–218, Springer-Verlag.
- M. Matsui. New block encryption algorithm MISTY. Fast Software Encryption, FSE '97, LNCS 1267, pp. 54–68, Springer-Verlag.
- M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revised. J. Cryptology, vol. 12, no. 1, pp. 29–66, Springer-Verlag, 1999.
- Z. Ramzan and L. Reyzin. On the round security of symmetric-key cryptographic primitives. Advances in Cryptology — CRYPTO 2000, LNCS 1880, pp. 376–393, Springer-Verlag, 2000.
- K. Sakurai and Y. Zheng. On non-pseudorandomness from block ciphers with provable immunity against linear cryptanalysis. *IEICE Trans. Fundamentals*, vol. E80-A, no. 1, pp. 19–24, April 1997.
- M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality. *JCSS*, vol. 22, no. 3, pp. 265–279, 1981.

Appendix A. Proof of Lemma 3.1

In ψ , we denote by $I_3^{(i)} \in \{0,1\}^n$ the input to p in the third round, and denote by $O_3^{(i)} \in \{0,1\}^n$ the output of it. Similarly, $I_4^{(i)}, O_4^{(i)} \in \{0,1\}^n$ are the input

and output of p in the fourth round, respectively. That is, $p(I_3^{(i)}) = O_3^{(i)}$ and $p(I_4^{(i)}) = O_4^{(i)}.$

Number of h_1 . First, for any fixed *i* and *j* such that $1 \le i < j \le m$:

- if $x_L^{(i)} = x_L^{(j)}$, then there exists no h_1 such that

$$h_1(x_L^{(i)}) \oplus x_R^{(i)} = h_1(x_L^{(j)}) \oplus x_R^{(j)}$$
(9)

since $x_L^{(i)} = x_L^{(j)}$ implies $x_R^{(i)} \neq x_R^{(j)}$;

- if $x_L^{(i)} \neq x_L^{(j)}$, then the number of h_1 which satisfies (9) is at most $\epsilon \# H_n^0$ since h_1 is an ϵ -XOR universal permutation.

Therefore, the number of h_1 such that

$$h_1(x_L^{(i)}) \oplus x_R^{(i)} = h_1(x_L^{(j)}) \oplus x_R^{(j)} \text{ for } 1 \le \exists i < \exists j \le m$$
 (10)

is at most $\epsilon\binom{m}{2} \# H_n^0$.

Next, for any fixed i and j such that $1 \le i < j \le m$:

- if $x_L^{(i)} = x_L^{(j)}$, then there exists no h_1 such that

$$h_1(x_L^{(i)}) \oplus g(x_R^{(i)}) \oplus x_R^{(i)} = h_1(x_L^{(j)}) \oplus g(x_R^{(j)}) \oplus x_R^{(j)}$$
(11)

since $x_L^{(i)} = x_L^{(j)}$ implies $x_R^{(i)} \neq x_R^{(j)}$, and our XOR-distinct g guarantees

 $g(x_R^{(i)}) \oplus x_R^{(i)} \neq g(x_R^{(j)}) \oplus x_R^{(j)};$ $- \text{ if } x_L^{(i)} \neq x_L^{(j)}, \text{ then the number of } h_1 \text{ which satisfies (11) is at most } \epsilon \# H_n^0$ since h_1 is an ϵ -XOR universal permutation.

Therefore, the number of h_1 such that

$$h_1(x_L^{(i)}) \oplus g(x_R^{(i)}) \oplus x_R^{(i)} = h_1(x_L^{(j)}) \oplus g(x_R^{(j)}) \oplus x_R^{(j)} \text{ for } 1 \le \exists i < \exists j \le m \quad (12)$$

is at most $\epsilon\binom{m}{2} \# H_n^0$.

Then, from (10) and (12), the number of h_1 such that

$$h_{1}(x_{L}^{(i)}) \oplus x_{R}^{(i)} \neq h_{1}(x_{L}^{(j)}) \oplus x_{R}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m, \text{ and} \\ h_{1}(x_{L}^{(i)}) \oplus g(x_{R}^{(i)}) \oplus x_{R}^{(i)} \neq h_{1}(x_{L}^{(j)}) \oplus g(x_{R}^{(j)}) \oplus x_{R}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m \\ \end{cases}$$

$$(13)$$

is at least $\#H_n^0 - 2\epsilon\binom{m}{2} \#H_n^0$. Fix h_1 which satisfies (13) arbitrarily. This implies that $I_3^{(1)}, \ldots, I_3^{(m)}$ and $O_4^{(1)}, \ldots, O_4^{(m)}$ are fixed in such a way that:

$$-I_3^{(i)} \neq I_3^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m, \text{ and} \\ -O_4^{(i)} \neq O_4^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m.$$

Number of h_5 . Similarly, the number of h_5 such that

$$\begin{array}{l} h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus y_{R}^{(i)} \neq h_{5}(y_{L}^{(j)} \oplus y_{R}^{(j)}) \oplus y_{R}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m, \\ h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus O_{4}^{(i)} \neq h_{5}(y_{L}^{(j)} \oplus y_{R}^{(j)}) \oplus O_{4}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m, \\ h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus O_{4}^{(i)} \neq O_{4}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m, \text{ and} \\ h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus y_{R}^{(i)} \neq I_{3}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m, \end{array} \right\}$$

$$(14)$$

is at least $\#H_n^1 - 2\epsilon {m \choose 2} \#H_n^1 - \frac{2m^2 \#H_n^1}{2^n}$. Fix h_5 which satisfies (14) arbitrarily. This implies that $O_3^{(1)}, \ldots, O_3^{(m)}$ and $I_4^{(1)}, \ldots, I_4^{(m)}$ are fixed in such a way that:

$$\begin{split} &-I_4^{(i)} \neq I_4^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m, \\ &-O_3^{(i)} \neq O_3^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m, \\ &-O_3^{(i)} \neq O_4^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m, \text{ and} \\ &-I_4^{(i)} \neq I_3^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m. \end{split}$$

Number of p. Now h_1 and h_5 are fixed in such a way that

$$I_3^{(1)}, \dots, I_3^{(m)}, I_4^{(1)}, \dots, I_4^{(m)}$$

(which are inputs to p) are all distinct and

$$O_3^{(1)}, \dots, O_3^{(m)}, O_4^{(1)}, \dots, O_4^{(m)}$$

(which are corresponding outputs of p) are all distinct. In other words, for p, the above 2m input-output pairs are determined. The other $2^n - 2m$ input-output pairs are undetermined. Therefore we have $(2^n - 2m)!$ possible choice of p for any such fixed h_1 and h_5 .

To summarize, we have:

- at least $\#H_n^0 - 2\epsilon {m \choose 2} \#H_n^0$ choice of h_1 , - at least $\#H_n^1 - 2\epsilon {m \choose 2} \#H_n^1 - \frac{2m^2 \#H_n^1}{2^n}$ choice of h_5 when h_1 is fixed, and - $(2^n - 2m)!$ choice of p when h_1 and h_5 are fixed.

Then the number of $\psi \in MISTY_{2n}^{01}$ which satisfy (1) is at least

$$(\#H_n^0)(\#H_n^1)(2^n - 2m)! \left(1 - 2\epsilon \binom{m}{2}\right) \left(1 - 2\epsilon \binom{m}{2} - \frac{2m^2}{2^n}\right)$$

$$\geq (\#H_n^0)(\#H_n^1)(2^n - 2m)! \left(1 - 2\epsilon \cdot m(m-1) - \frac{2m^2}{2^n}\right)$$

This concludes the proof of the lemma.

Appendix B. Proof of Lemma 3.2

We use the same definition of $I_3^{(i)}$, $O_3^{(i)}$, $I_4^{(i)}$ and $O_4^{(i)}$ as in the proof of Lemma 3.1.

Number of h_1 . First, similarly to the proof of Lemma 3.1, the number of h_1 such that

$$\begin{array}{l} h_{1}(x_{L}^{(i)}) \oplus x_{R}^{(i)} \neq h_{1}(x_{L}^{(j)}) \oplus x_{R}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \\ h_{1}(x_{L}^{(i)}) \oplus x_{R}^{(i)} \neq X^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{1}, \\ h_{1}(x_{L}^{(i)}) \oplus g(x_{R}^{(i)}) \oplus x_{R}^{(i)} \neq h_{1}(x_{L}^{(j)}) \oplus g(x_{R}^{(j)}) \oplus x_{R}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \\ h_{1}(x_{L}^{(i)}) \oplus g(x_{R}^{(i)}) \oplus x_{R}^{(i)} \neq Y^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{1}, \\ \end{array} \right)$$

$$\begin{array}{c} \end{array}$$

is at least $\#H_n^1 - 2\epsilon \binom{m_0}{2} \#H_n^1 - \frac{2m_0m_1\#H_n^1}{2^n}$. Fix h_1 which satisfies (15) arbitrarily. This implies that $I_3^{(1)}, \ldots, I_3^{(m_0)}$ and $O_4^{(1)}, \ldots, O_4^{(m_0)}$ are fixed in such a way that:

 $-I_{3}^{(i)} \neq I_{3}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0},$ $-I_{3}^{(i)} \neq X^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{1},$ $-O_{4}^{(i)} \neq O_{4}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \text{ and}$ $-O_{4}^{(i)} \neq Y^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{1}.$

Number of h_5 . Similarly, the number of h_5 such that

$$\begin{split} & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus y_{R}^{(i)} \neq h_{5}(y_{L}^{(j)} \oplus y_{R}^{(j)}) \oplus y_{R}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \\ & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus y_{R}^{(i)} \neq X^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{0}, \\ & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus O_{4}^{(i)} \neq h_{5}(y_{L}^{(j)} \oplus y_{R}^{(j)}) \oplus O_{4}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \\ & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus O_{4}^{(i)} \neq Y^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{0}, \\ & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus O_{4}^{(i)} \neq Q_{4}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m_{0}, \\ & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus O_{4}^{(i)} \neq I_{3}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m_{0}, \\ & h_{5}(y_{L}^{(i)} \oplus y_{R}^{(i)}) \oplus y_{R}^{(i)} \neq I_{3}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m_{0}, \end{split} \end{split}$$

is at least $\#H_n^1 - 2\epsilon {m_0 \choose 2} \#H_n^1 - \frac{2m_0m_1\#H_n^1}{2^n} - \frac{2m_0^2\#H_n^1}{2^n}$. Fix h_5 which satisfies (16) arbitrarily. This implies that $O_3^{(1)}, \ldots, O_3^{(m_0)}$ and $I_4^{(1)}, \ldots, I_4^{(m_0)}$ are fixed in such a way that:

$$- I_{4}^{(i)} \neq I_{4}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \\ - I_{4}^{(i)} \neq X^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{1}, \\ - O_{3}^{(i)} \neq O_{3}^{(j)} \text{ for } 1 \leq \forall i < \forall j \leq m_{0}, \\ - O_{3}^{(i)} \neq Y^{(j)} \text{ for } 1 \leq \forall i \leq m_{0} \text{ and } 1 \leq \forall j \leq m_{1}, \\ - O_{3}^{(i)} \neq O_{4}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m_{0}, \text{ and} \\ - I_{4}^{(i)} \neq I_{3}^{(j)} \text{ for } 1 \leq \forall i, \forall j \leq m_{0}.$$

Number of p. Now h_1 and h_5 are fixed in such a way that

$$I_3^{(1)}, \dots, I_3^{(m_0)}, I_4^{(1)}, \dots, I_4^{(m_0)}, X^{(1)}, \dots, X^{(m_1)}$$

(which are inputs to p) are all distinct and

$$O_3^{(1)}, \dots, O_3^{(m_0)}, O_4^{(1)}, \dots, O_4^{(m_0)}, Y^{(1)}, \dots, Y^{(m_1)}$$

(which are corresponding outputs of p) are all distinct. Then we have $(2^n 2m_0 - m_1$)! possible choice of p for any such fixed h_1 and h_5 .

To summarize, we have:

- at least $\#H_n^1 2\epsilon {m_0 \choose 2} \#H_n^1 \frac{2m_0m_1\#H_n^1}{2^n}$ choice of h_1 , at least $\#H_n^1 2\epsilon {m_0 \choose 2} \#H_n^1 \frac{2m_0m_1\#H_n^1}{2^n} \frac{2m_0^2\#H_n^1}{2^n}$ choice of h_5 when h_1 is fixed, and
- $-(2^n-2m_0-m_1)!$ choice of p when h_1 and h_5 are fixed.

Then the number of $\psi \in MISTY_{2n}^{11}$ which satisfy (5) is at least

$$\begin{aligned} (\#H_n^1)^2(2^n - 2m_0 - m_1)! \\ \times \left(1 - 2\epsilon \binom{m_0}{2} - \frac{2m_0m_1}{2^n}\right) \left(1 - 2\epsilon \binom{m_0}{2} - \frac{2m_0m_1}{2^n} - \frac{2m_0^2}{2^n}\right) \\ \ge (\#H_n^1)^2(2^n - 2m_0 - m_1)! \left(1 - 2\epsilon \cdot m_0(m_0 - 1) - \frac{4m_0m_1}{2^n} - \frac{2m_0^2}{2^n}\right) \end{aligned}$$

This concludes the proof of the lemma.