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Abstract. With the services that autonomous robots are to provide
becoming more demanding, the states that the robots have to estimate
become more complex. In this paper, we develop and analyze a proba-
bilistic, vision-based state estimation method for individual, autonomous
robots. This method enables a team of mobile robots to estimate their
joint positions in a known environment and track the positions of au-
tonomously moving objects. The state estimators of different robots co-
operate to increase the accuracy and reliability of the estimation process.
This cooperation between the robots enables them to track temporarily
occluded objects and to faster recover their position after they have lost
track of it. The method is empirically validated based on experiments
with a team of physical robots.

1 Introduction

Autonomous robots must have information about themselves and their environ-
ments that is sufficient and accurate enough for the robots to complete their
tasks competently. Contrary to these needs, the information that robots receive
through their sensors is inherently uncertain: typically the robots’ sensors can
only access parts of their environments and their sensor measurements are inac-
curate and noisy. In addition, control over their actuators is also inaccurate and
unreliable. Finally, the dynamics of many environments cannot be accurately
modeled and sometimes environments change nondeterministically.

Recent longterm experiments with autonomous robots [13] have shown that
an impressively high level of reliability and autonomy can be reached by ex-
plicitly representing and maintaining the uncertainty inherent in the available
information. One particularly promising method for accomplishing this is prob-
abilistic state estimation. Probabilistic state estimation modules maintain the
probability densities for the states of objects over time. The probability density
of an object’s state conditioned on the sensor measurements received so far con-
tains all the information which is available about an object that is available to a
robot. Based on these densities, robots are not only able to determine the most
likely state of the objects, but can also derive even more meaningful statistics
such as the variance of the current estimate.

Successful state estimation systems have been implemented for a variety of
tasks including the estimation of the robot’s position in a known environment,
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the automatic learning of environment maps, the state estimation for objects
with dynamic states (such as doors), for the tracking of people locations, and
gesture recognition [12]. With the services that autonomous robots are to pro-
vide becoming more demanding, the states that the robots have to estimate
become more complex. Robotic soccer provides a good case in point. In robot
soccer (mid-size league) two teams of four autonomous robots play soccer against
each other. A probabilistic state estimator for competent robotic soccer players
should provide the action selection routines with estimates of the positions and
may be even the dynamic states of each player and the ball.

This estimation problem confronts probabilistic state estimation methods
with a unique combination of difficult challenges. The state is to be estimated
by multiple mobile sensors with uncertain positions, the soccer field is only partly
accessible for each sensor due to occlusion caused by other robots, the robots
change their direction and speed very abruptly, and the models of the dynamic
states of the robots of the other team are very crude and uncertain.

In this paper, we describe a state estimation module for individual, au-
tonomous robots that enables a team of robots to estimate their joint positions
in a known environment and track the positions of autonomously moving ob-
jects. The state estimation modules of different robots cooperate to increase the
accuracy and reliability of the estimation process. In particular, the cooperation
between the robots enables them to track temporarily occluded objects and to
faster recover their position after they have lost track of it.

The state estimation module of a single robot is decomposed into subcom-
ponents for self-localization and for tracking different kinds of objects. This
decomposition reduces the overall complexity of the state estimation process
and enables the robots to exploit the structures and assumptions underlying the
different subtasks of the complete estimation task. Accuracy and reliability is
further increased through the cooperation of these subcomponents. In this co-
operation the estimated state of one subcomponent is used as evidence by the
other subcomponents.

The main contributions of this paper are the following ones. First, we show
that image-based probabilistic estimation of complex environment states is fea-
sible in real time even in complex and fast changing environments. Second, we
show that maintaining trees of possible tracks is particularly useful for estimat-
ing a global state based on multiple mobile sensors with position uncertainty.
Third, we show how the state estimation modules of individual robots can co-
operate in order to produce more accurate and reliable state estimation.

In the remainder of the paper we proceed as follows. Section 2 describes the
software architecture of the state estimation module and sketches the interac-
tions among its components. Section 3 provides a detailed description of the
individual state estimators. We conclude with our experimental results and a
discussion of related work.
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Fig. 1. (a) Architecture of the state estimator. (b) The figure shows an image
captured by the robot and the feature maps that are computed for self, ball, and
opponent localization.

2 Overview of the State Estimator

Fig. 1a shows the components of the state estimator and its embedding into the
control system. The subsystem consists of the perception subsystem, the state
estimator itself, and the world model. The perception subsystem itself consists of
a camera system with several feature detectors and a communication link that
enables the robot to receive information from other robots. The world model
contains a position estimate for each dynamic task-relevant object. In this paper
the notion of position refers to the x- and y-coordinates of the objects and
includes for the robots of the own team the robot’s orientation. The estimated
positions are also associated with a measure of accuracy, a covariance matrix.

The perception subsystem provides the following kinds of information:
(1) partial state estimates broadcasted by other robots, (2) feature maps ex-
tracted from captured images, and (3) odometric information. The estimates
broadcasted by the robots of the own team comprise the estimate of the ball’s
location. In addition, each robot of the own team provides an estimate of its
own position. Finally, each robot provides an estimate for the position of ev-
ery opponent. From the captured camera images the feature detectors extract
problem-specific feature maps that correspond to (1) static objects in the envi-
ronment including the goal, the borders of the field, and the lines on the field,
(2) a color blob corresponding to the ball, and (3) the visual features of the
opponents.

The state estimation subsystem consists of three interacting estimators: the
self localization system, the ball estimator, and the opponents estimator. State
estimation is an iterative process where each iteration is triggered by the arrival
of a new piece of evidence, a captured image or a state estimate broadcasted
by another robot. The self localization estimates the probability density of the
robot’s own position based on extracted environment features, the estimated
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ball position, and the predicted position. The ball localizer estimates the proba-
bility density for the ball position given the robot’s own estimated position and
its perception of the ball, the predicted ball position, and the ball estimations
broadcasted by the other robots. The positions of the opponents are estimated
based on the estimated position of the observing robot, the robots’ appearances
in the captured images, and their positions as estimated by the team mates.

Every robot maintains its own global world model, which is constructed as
follows. The own position, the position of the ball, and the positions of the oppo-
nent players are produced by the local state estimation processes. The estimated
positions of the team mates are the broadcasted results of the self localization
processes of the corresponding team mates

3 The Individual State Estimators

3.1 Self- and Ball-Localization

The self- and ball-localization module iteratively estimates, given the observa-
tions taken by the robot and a model of the environment and the ball, the prob-
ability density over the possible robot and ball positions. A detailed description
and analysis of the applied alogrithms can be found in [6,7].

3.2 Opponents Localization

The objective of the opponents localization module is to track the positions of the
other team’s robots. The estimated position of one opponent is represented by
one or more alternative object hypotheses. Thus the task of the state estimator is
to (1) detect feature blobs in the captured image that correspond to an opponent,
(2) estimate the position and uncertainties of the opponent in world coordinates,
and (3) associate them with the correct object hypothesis. In our state estimator
we use Reid’s Multiple Hypotheses Tracking (MHT) algorithm [10] as the basic
method for realizing the state estimation task. In this section we demonstrate
how this framework can be applied to model dynamic environments in multi-
robot systems. We extend the general framework in that we provide mechanisms
to handle multiple mobile sensors with uncertain positions.

Multi Hypotheses Tracking We will describe the Multiple Hypotheses Track-
ing method by first detailing the underlying opponents model, then explaining
the representation of tracked opponents position estimates, and finally present-
ing the computational steps of the algorithm.

The Opponents Model. The model considers opponent robots to be moving ob-
jects of unknown shape with associated information describing their temporal
dynamics, such as their velocity. The number of the opponent robots may vary.
The opponent robots have visual features that can be detected as feature blobs
by the perception system.
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Fig. 2. (a) The multiple hypotheses framework for dynamic environment mod-
eling. (b) An estimate of the robot’s distance is given through the intersection
of the viewing ray with the ground plane of the field.

The Representation of Opponent Tracks. When tracking the positions of a set of
opponent robots there are two kinds of uncertainties that the state estimator has
to deal with. The first one is the inaccuracy of the robot’s sensors. We represent
this kind of uncertainty using a Gaussian probability density. The second kind of
uncertainty is introduced by the data association problem, i.e. assigning feature
blobs to object hypotheses. This uncertainty is represented by a hypotheses tree
where nodes represent the association of a feature blob with an object hypothesis.
A node Hj(t) is a son of the node Hi(t− 1) if Hj(t) results from the assignment
of an observed feature blob with a predicted state of the hypothesis Hi(t − 1).
In order to constrain the growth of the hypotheses tree, it is pruned to eliminate
improbable branches with every iteration of the MHT.

The MHT Algorithm. Fig. 2a outlines the computational structure of the MHT
algorithm. An iteration begins with the set of hypotheses H(t − 1) from the
previous iteration t − 1. Each hypothesis represents a different assignment of
measurements to objects, which was performed in the past. The algorithm main-
tains a Kalman filter for each hypothesis. For each hypothesis a position of the
dynamic objects is predicted Ẑi(t) and compared with the next observed oppo-
nent performed by an arbitrary robot of the team. Assignments of measurements
to objects are accomplished on the basis of a statistical distance measurement.
Each subsequent child hypothesis represents one possible interpretation of the
set of observed objects and, together with its parent hypothesis, represents one
possible interpretation of all past observations. With every iteration of the MHT
probabilities describing the validity of an hypothesis are calculated [1]. In order
to constrain the growth of the tree the algorithm prunes improbable branches.
Pruning is based on a combination of ratio pruning, i.e. a simple lower limit
on the ratio of the probabilities of the current and best hypotheses, and the
N -scan-back algorithm [10]. The algorithm assumes that any ambiguity at time
t is resolved by time t+ N . Consequently if at time t hypothesis Hi(t − 1) has
n children, the sum of the probabilities of the leaf notes of each branch is cal-
culated. The branch with the greatest probability is retained and the others are
discarded.
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The Unscented Transformation

The general problem is as follows. Given an n-dimensional vector random variable
x with mean x̄ and covariance Cx we would like to estimate the mean ȳ and the
covariance Cy of an m-dimensional vector random variable y. Both variables are
related to each other by a non-linear transformation y = g(x). The unscented
transformation is defined as follows:

1. Compute the set Z of 2n points from the rows or columns of the matrices
±√

nCx. This set is zero mean with covariance Cx. The matrix square root
can efficiently be calculated by the Cholesky decomposition.

2. Compute a set of points X with the same covariance, but with mean x̄, by
translating each of the points as xi = zi + x̄.

3. Transform each point xi ∈ X to the set Y with yi = g(xi).
4. Compute ȳ and Cy by computing the mean and covariance of the 2n points

in the set Y .

Fig. 3. Outline of the unscented transformation.

Feature Extraction and Uncertainty Estimation This section outlines the
feature extraction process which is performed in order to estimate the positions
and the covariances of the opponent team’s robots. Each opponent robots is
modeled in world coordinates by a bi-variate Gaussian density with mean Ψ and
a covariance matrix Cψ.

At present it is assumed that the opponent robots are constructed in the
same way and have approximately circular shape. All robots are colored black.
Friend foe discrimination is enabled through predefined color markers (cyan and
magenta, see Fig. 1b) on the robots. Each marker color may be assigned to any
of the two competing teams. Consequently it is important that the following
algorithms can be parameterized accordingly. Furthermore we assume that (see
Fig. 2b) the tracked object almost touches the ground. The predefined robot
colors allow a relatively simple feature extraction process.

Step 1: Extraction of Blobs Containing Opponent Robots From a cap-
tured image the black color-regions are extracted through color classification and
morphological operators. In order to be recognized as an opponent robot a black
blob has to obey several constraints, e.g. a minimum size and a red or green
color-region adjacent to the bottom region row. Through this we are able to
distinguish robots from black logos and adverts affixed on the wall surrounding
the field. Furthermore blobs that contain or have a color-region of the own team
color in the immediate neighborhood are discarded.
For all remaining regions three features are extracted: The bottom most pixel
row which exceeds a predefined length, the column col representing the center
of gravity and a mean blob width in pixels. For the latter two features only
the three bottom most rows which exceed a certain length are used. In order
to determine these rows, we allow also for occlusion through the ball. If the
length of these rows exceeds an upper length, we assume that we have detected
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two opponents which are directly next to each other. In this case two centers of
gravity are computed and the width is halfed.
In order to detect cascaded robots, i.e. opponent robots that are partially oc-
cluded by other robots, our algorithm also examines the upper rows of the blobs.
As soon as the length of a blob row differs significantly from the length of its
lower predecessor and the respective world coordinates indicate a height of more
than 10 cm above the ground we assume that we have detected cascaded robots.
In this case we split the blob into two and apply the above procedure to both
blobs. Empirically we have found that this feature extraction procedure is suffi-
cient to determine accurate positions of opponent robots. Mistakenly extracted
objects are generally resolved in a fast manner by the MHT algorithm.
Step 2: Estimation of Opponent Position and Uncertainty In the fol-
lowing we will estimate the position and covariance of an observed robot. For
this the pose and the covariance of the observing robots as well as position of the
detected feature blob in the image and the associated measurement uncertainties
are taken into account.
We define a function opp that determines the world coordinates of an opponent
robot based on the pose Φ of the observing robot, the pixel coordinates row,col
of the center of gravity and the width width of the opponent robot’s blob. Due to
rotations and radial distortions of the lenses opp is non-linear. First the function
opp converts the blob’s pixel coordinates to relative polar coordinates. On this
basis and the width of the observed blob the radius of the observed robot is
estimated. Since the polar coordinates only describe the distance to the opponent
robot but not the distance to its center, the radius is added to the distance.
Finally the polar coordinates are transformed into world coordinates taking the
observing robot’s pose Φ into account.
In order to estimate the position ψ and the covariance Cψ of an opponent robot,
we will use a technique similar to the unscented transformation [8] (see Fig. 3).
First an intermediate mean ω̄ and covariance Cω describing jointly the observ-
ing robot’s pose and the observed robot is set up (see Fig. 4a). Φ, row, col
and width are assumed to be uncorrelated with a variance of one pixel. To this
mean and covariance the unscented transformation using the non-linear map-
ping opp is applied. This yields the opponent robot’s position ψ and covariance
Cψ . In Fig. 4b the uncertainties of objects depending on the uncertainty of the
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Fig. 5. (a) Two robots are traveling across the field, while they observe three
stationary robots of the opponent team. The diamonds and crosses indicate the
different measurements performed by the observing robots. (b) The resolved
trajectory (continuous line) of an opponent robot, observed by two robots. The
real trajectory is displayed as dotted line. The dashed lines indicate the robot’s
90 degrees field of view.

observing robot and their relative distances are displayed using 1σ-contours. For
illustrative purposes the uncertainty ellipses are scaled by an order of five. Each
robot observes two obstacles in 3.5 and 7 meters distance. Robot Odilo is very
certain about its pose and thus the covariance of the observed robot depends
mainly on its distance. Robot Grimoald has a high uncertainty in its orientation
(≈ 7 degrees). Consequently the position estimate of the observed obstacle is
less precise and is highly influenced by the orientation uncertainty.
Step 3: Association of Opponents to Object Hypotheses The associa-
tion of an opponent robot’s position with a predicted object position is cur-
rently performed on the basis of the Mahalanobis distance. In future we intent
to use the Bhattacharyya distance, which is a more accurate distance measure
for probability distributions.

4 Experimental Results

The presented algorithms are applied in our middle-size RoboCup team, the
AGILO1 RoboCuppers. At present, the RoboCup scenario defines a fixed world
model with field-boundaries, lines and circles (see Fig. 4). Our approach was
successfully applied in 1999 and 2000 during the RoboCup World Soccer Cham-
pionship in Stockholm and Melbourne and the German Vision Cup. During a
RoboCup match, every robot is able to process 15 to 18 frames per second with
its on-board Pentium 200 MHz computer. When the robots planning algorithms’
are turned off the vision system is easily able to cope with the maximum frame
rate of our camera (25 fps). The localization algorithm runs with a mean pro-
cessing time of 18 msec for a 16-Bit RGB (384 ∗ 288) image. Only for 4% of the
images the processing time exceeds 25 msec. A detailed analysis of the self- and
ball-localization algorithm can be found in [6].

1 The name is an homage to the oldest ruling dynasty in Bavaria, the Agilolfinger. The
dynasties most famous representatives are Grimoald, Hugibert, Odilo and Tassilo
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In the following we will present experiments that investigate the capability of
tracking multiple opponent robots by our system. In the first experiment we have
examined the capability of our algorithms to detect and estimate the opponent
robots positions. The robots Odilo and Grimoald are simultaneously traveling in
opposite directions from one side of the playing field to the other (see Fig. 5a).
While they are in motion they are observing three stationary robots which are set
up at different positions in the middle of the field. Diamonds and crosses indicate
the observed opponents by Odilo and Grimoald, respectively. The variance in the
observation is due to positions estimations over long distances (4 to 7 meters) and
minor inaccuracies in the robots self-localization. Furthermore it is noteworthy
that the vision system of both robots never mistook their teammate as opponent.

The second experiment examines the tracking and data fusion capability of
our system. Odilo and Grimoald are set up at different positions on the field. An
opponent robot crosses the field diagonally from the corner of the penalty area
at the top right to the corner of the penalty area at the lower left (see Fig. 5b).
The first part of the journey is only observed by Grimoald, the middle part of
both robots and the final part only by Odilo. The 90 degrees field of view of
both robots is indicated through lines.

The opponent robot was tracked using the MHT algorithm with a simple
linear Kalman filter. The state transition matrix, described a constant velocity
model and the measurement vector provided positional information only. The
positions of the opponent robots and their uncertainties were computed accord-
ing to the algorithm described in section 3.2. Positional variance for the pixel
coordinates of the region’s center of gravity and region’s width was assumed
to be one pixel. The process noise was assumed to be white noise acceleration
with a variance of 0.1 meters. The Mahalanobis distance was chosen such that
P{X ≤ χ2

2} = 0.95. N-scan-back pruning was performed from a depth of N = 3.
In general the update time for one MHT iteration including N -scan-back and
hypo pruning was found to be less than 10 msec. This short update time is due
to the limited number of observers and observed objects in our experiment. We
expect this time to grow drastically with an increasing number of observing and
observed robots. However within a RoboCup scenario a natural upper bound
is imposed through the limited number of robots per team. A detailed analy-
sis of the hypothesis trees revealed that only at very few occasions new tracks
were initiated. All of them were pruned away within two iterations of the MHT.
Overall the observed track (see Fig. 5b, continuous line) diverges relatively little
from the real trajectory (dotted line).

5 Related Work

Related work comprises work done on object tracking and probabilistic localiza-
tion in the robot soccer domain and probabilistic and vision-based tracking of
moving targets. In the research area of autonomous robot soccer algorithms for
probabilistic self-localization have been proposed. Gutmann et al. [5] have pro-
posed a self localization method based on a Kalman filter approach by matching
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observed laser scan lines into the environment model. We differ from this ap-
proach mainly by using vision data instead of laser data. The advantage of using
vision sensors is that the method can be applied more easily to other kinds of en-
vironments, for example outdoor environments. Enderle et al. [3] have developed
a vision-based self-localization module using a sample-based Markov localization
method. The advantage of Markov localization is that no assumption about the
form of the probability distribution is made. However, in order to achieve high
accuracy, usually a high number of samples is required. A good match between
the observation and a sample pose leads to new randomly generated sample
poses in the vicinity of the good sample. Hence, Markov localization leads to
limited accuracy and/or relatively high computational cost. The self localization
method that is proposed here has the advantage that it is faster and can be
more easily integrated with the other state estimation modules. Our approach
extends the Kalman filter approach [4] to self localization in that we are able to
deal with nonlinearities because our approach performs a iterative optimization
instead of a linear prediction.

To the best of our knowledge no probabilistic state estimation method has
been proposed for tracking the opponent robots in robot soccer or similar appli-
cation domains. Gutmann et al. [5] estimate the positions of the opponents and
store them in the team world model but they do not probabilistically integrate
the different pieces of information. This results in a less accurate and reliable
estimate of the opponents positions. Probabilistic tracking of multiple moving
has been proposed by Schulz et al. [11]. They apply sample-based Markov esti-
mation to the tracking of moving people with a moving robot using laser range
data. The required computational power for the particle filters is opposed by the
heuristic based pruning strategies of the MHT algorithm.

Our approach to multiple hypothesis tracking is most closely related to the
one proposed by Cox and Miller [2]. Indeed our algorithm is based on their
implementation. We extend their work on multiple hypothesis tracking in that
we apply the method to a much more challenging application domain where we
have multiple moving observers with uncertain positions. In addition, we perform
object tracking at an object rather than on a feature level.

6 Conclusions

In this paper, we have developed and analyzed a cooperative probabilistic, vision-
based state estimation method for individual, autonomous robots. This method
enables a team of mobile robots to estimate their joint positions in a known
environment and track the positions of autonomously moving objects.
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