
Extension of Macrostep Debugging Methodology
Towards Metacomputing Applications

Robert ~ovas' , Vaidy sunderam*

'MTA SZTAKI Computer and Automation Research Institute,
Hungarian Academy of Sciences

P.O. Box 63, H-1518 Budapest, Hungary
rlovas@sztaki.hu

' ~ m o r ~ University, Dept. of Math & Computer Science
1784 N. Decatur Rd. #I00
Atlanta, GA, 30322, USA

vss@mathcs.emory.edu

Abstract. This paper focuses on the non-deterministic behaviour and
architecture dependencies of metacomputing applications from point of view of
debugging. As a possible solution we applied and also extended the macrostep
systematic debugging methodology f i r metacomputing applications. Our
extended methodology is based on modified collective breakpoints and
macrosteps furthermore, we introduce host-translation tables generated
automatically for exhaustive testing. The prototype is developed under the
Harness metacomputing framework for message box communication based
applications. The main implementation issues as well as the architecture of our
systematic debugger are also described as the further development of X-IDVS
Harness-based metadebugger.

1 Introduction

Debugging of metacomputing applications can be much more exhausting task
contrary to debugging of sequential or even parallel programs. This problem comes
from the following features of metacomputing: (i) heterogeneity, (ii) dynamic
behaviour of computational environment, (iii) large amount of computational
resources, (iv) authorisation/authentication on different administration domains, (v)
non-deterministic execution of metacomputing applications. During our previous
debugging project [15] we have already given some efficient solutions for (i)-(iv) but
the systematic handling of non-determinism was out of scope of that work. In this
paper1 w e focused on the issues of the non-deterministic behaviour of metacomputing
applications caused by the varying relative execution speeds of tasks as well as the
architecture dependent failures. For instance, it seems a given metacomputing

The work presented in this paper was supported in part by U.S. Department of Energy grant #
DE-FG02-99ER25379 and National Research Grant (OTKA) registered under No. T-032226.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 263−272, 2001.
Ó Springer-Verlag Berlin Heidelberg 2001c©

application always generates correct results on a particular architecture or a
combination of architectures (where the programmers originally developed their
application) but often fails on other architectures. Mostly, the reason for this
behaviour is the varying relative speeds of tasks together with the hazardous and
untested race conditions. Besides, these different timing conditions might be occurred
more frequently in metacomputing environment than in case of dedicated clusters or
traditional supercomputers because of the different implementation of the underlying
operating systems1communications layers and the unpredictable network traffic, CPU
loads or other dynamical changes. By metacomputing applications the above
described phenomenon can be very crucial because we cannot ensure that our
metacomputing application always runs on the same nodes with almost the same
timing conditions.

The only way to prove the 'metacomputing-enabled' feature of an application is
the usage of systematic testing methods in order to find the timinglarchitecture
dependent failures in the implemented code. For this purpose we applied and also
extended the macrostep systematic debugging methodology that has been introduced
originally for message passing parallel programs developed by P-GRADE graphical
programming environment [lo]. Our prototype is under development in the Harness
metacomputing framework [14]

and we also applied the achievements of the earlier
developed X-IDVS metadebugger tool

[15].
This paper is organized as follows. In the next section we introduce briefly the

Harness framework, the Java Platform Debugger Architecture (JPDA) and X-IDVS
metadebugger tool as the basis of our prototype. Section 3 describes the fundamental
principles of the extended macrostep debugging methodology and some
implementation details. Finally, Section 4 summarizes our project and points out the
most current related work.

2 Background

2.1 Harness Metacomputing Framework

Harness attempts to overcome the limited flexibility of traditional software systems
by defining a simple but powerful architectural model based on the concept of a
software backplane. The Harness model consists primarily of a kernel (see Figure 2)
that is configured, according to user or application requirements, by attaching "plug-
in" modules that provide various services. Some plug-ins are provided as part of the
Harness system, while others might be developed by individual users for special
situations, while yet other plug-ins might be obtained from third-party repositories.

By configuring a Harness distributed virtual machine using a suite of plug-ins
appropriate to the particular hardware platform being used, the application being
executed, and resourceltime constraints, users are able to obtain functionality and
performance that is well suited to their specific circumstances. Furthermore, since the
Harness architecture is modular, plug-ins may be developed incrementally for
emerging technologies such as faster networks or switches, new data compression

264 R. Lovas and V. Sunderam

algorithms or visualization methods, or resource allocation schemes - and these may
be incorporated into the Harness system without requiring a major re-engineering
effort.

The fundamental abstraction in the Harness metacomputing framework is the
Distributed Virtual Machine (DVM) (see Figure 1, Level 1). Any DVM is associated
with a symbolic name that is unique in the Harness name space but has no physical
entities connected to it. Heterogeneous Computational Resources may enroll into a
DVM (see Figure 1, Level 2) at any time however, at this level the DVM is not ready
yet to accept requests from users. To get ready to interact with users and applications
the heterogeneous computational resources enrolled in a DVM need to load 'plug-ins'
(see Figure 1, Level 3). A plug-in is a software component implementing a specific
service. By loading plug-ins a DVM can build a consistent service baseline (see
Figure 1, Level 4). Users may reconfigure the DVM at any time (see Figure 1, Level
4) both in terms of computational resources enrolled by having them join or leave the
DVM and in terms of services available by loading and unloading plug-ins.

Users

Applications

ILevel41

Change the set of

resources enrolled
in the DVM

Change WM Capabilities 00 , (add remove services)

Fig. 1. Abstract Model of a Harness DVM with Message Box (MB) Service

The availability of services to heterogeneous computational resources derives from
two different properties of the framework: the portability of plug-ins and the presence
of multiple searchable plug-in repositories. Harness implements these properties
mainly leveraging two different features of Java technology. These features are the
capability to layer a homogeneous architecture such a$ the Java Virtual Machine
(JVM) over a large set of heterogeneous computational resources, and the capability
to customize the mechanism adopted to load and link new objects and libraries.

265Extension of Macrostep Debugging Methodology

2.2 Java Platform Debug Architecture

Java Platform Debug Architecture (JPDA) is available for almost all widespread
platforms as part of Java SDK 1.3. In outline, JPDA provides a high-level remote
debugging interface for debuggers called Java Debug Interface (JDI). For the purpose
of out-of-process debugging, JPDA gives the Java Virtual Machine Debug Interface
(JVMDI) to the debuggeeltarget JVM. Between the JDI and the JVMDI, the Java
Debug Wire Protocol (JDWP) is responsible for transporting both debug requests and
debug events. Hence, JPDA can form a base of our X-IDVS debugger (see Section
2.3) by its remote debugging facilities (see Figure 2 between JVMI and HMCPI).

2.3 Extendible Integrated Debugger & Visualization Service for Harness

In order to solve the emerging debugging issues in the field of metacomputing we
already defined the fundamental principles of an extendible, programmable and
integrated debugging & visualization tool [15]. The next target was to design and
implement a prototype; X-IDVS (extendible Integrated Debugger & Visualization
Service) applying the defined principles and relying on the Harness framework as
well as the above described Java Platform Debugger Architecture.

In order to illustrate briefly the novelty of this work, the main features of the
current X-IDVS prototype can be summarized as follows; X-IDVS was designed as a
real metacomputing application itself hence, the debugger tool can adapt totally to the
debugged application and also can take all advantages of the metacomputing
environment, such as fault-tolerance, dynamic behaviour, support for heterogeneous
computational environment and authorization. When a plug-in is loaded by the user's
application anywhere in the metacomputer, X-IDVS can load and activate some
system plug-ins on the target host for debugginglmonitoring purposes (using the same
authorization keys as the loaded plug-in). Moreover, for providing efficient debugging
support for RMI-based plug-ins, X-IDVS offers some unique debugging capabilities
for RMI communication. Firstly, during step-by-step execution X-IDVS is able to
hide the differences between the traditional and remote method invocations from
user's point of view. Basically, it means two automatic context switches during an
RMI call (client to serverlserver to client side). On the other hand, X-IDVS combines
some program visualization techniques with debugging methods. Hence, the user can
get a big picture about the history of plug-ins with the help of an integrated semi-
online visualization tool depicted the communication interacts among Harness plug-
ins.

Another significant feature of the system is the extendibility. X-IDVS can invoke
external sequential debuggers that might implement some other architecture
dependent debugging facilities on a specified hostJpool in the heterogeneous
environment. In this way the user can choose the best tool in every phases of
debugging procedure. Additional tightly integrated graphical tools are responsible for
the navigation through the distributedJJava virtual machines and threads (equipped by
filtering options for handling of scalability), management of breakpoint sets and
establishment of new debug sessions.

266 R. Lovas and V. Sunderam

Finally, X-IDVS is programmable with a simple macro language particularly for
testing purposes. Thus, the programmer can test the startup of his application and can
force the metacomputing application to run with vary timing conditions.

3 Systematic debugging in Harness

As it was described above, X-IDVS was designed originally for Harness
applications built on RMI-based plug-ins. During an RMI-based interaction the
invoked remote methods are executed in separated threads on the server side but the
macrostep debugging methodology [7] cannot be applied in case of multithreaded
applications (which might use shared objects). Thus, we had to take into consideration
two options: (i) attempt to extend the macrostep debugging methodology with
multithreaded/shared objects support or (ii) provide systematic debugging support for
other types of Harness plug-ins, e.g. which are based on message passing paradigm.
As the first stage of this project, we applied the macrostep debugging methodology on
Harness plug-ins which can communicate with each other via message box. Based on
these experiences and achievements we will try to solve the systematic debugging
issues of multithreaded/RMI-based metacomputing applications as the next stage of
this project.

In Harness the message box plug-in provides a generic send/receive/scatter/gather
message passing service for Harness plug-ins via a simple interface:
- public void send(String senderID, String destination, Object message)
- public void sendToAny(String senderID, Object message)
- public H-Envelope receive(String myID, String senderID)
- public H-Envelope receiveFromAny(String myID)
- public H-Envelope receiveAsync(String myID, String senderID)
- public HEnvelope receiveFromAnyAsync(String myID)

In details, the send and sendToAny operations are always executed asynchronously
but each type of receive operation can be either asynchronous or synchronous. As a
first step we reduced these communication possibilities in order to get a similar
message passing interface as in P-GRADE system where the macrostep debugging
methodology has been implemented for the first time. Thus, we turned the
asynchronous send operations to synchronous send and also removed both
asynchronous receive operations.

The main ideas of the further developed macrostep debugging methodology can be
summarized by the following concepts: (i) enhanced collective breakpoints, (ii)
modified macrosteps, (iii) extended macrostep-by-macrostep execution mode, (iv)
execution tree, (v) meta-breakpoints, (vi) execution tree. In the rest of this section we
describe these concepts as well as some implementation issues.

In [7], a restriction was introduced on the global breakpoint sets and introduced a
special version of them called collective breakpoints. When all the breakpoints of the
global breakpoint set are placed on communication instructions, the global breakpoint
set is called collective breakpoint. A formal definition of the collective breakpoints
can be found in [7]. If there is at least one breakpoint for each alternative execution
path of every process, the collective breakpoint is called strongly complete. In

267Extension of Macrostep Debugging Methodology

practice, we were able to implement the strongly complete collective breakpoints by
placing breakpoints on each method entries of message box interface. It means only a
couple permanent breakpoints for each message box thus, we might achieve good
performance that can be crucial in case of communication intensive metacomputing
programs. Two problems were turned out during the design phase: (i) RMI
communication between plug-ins and the message box, (ii) dynamically created
message boxes. In details; the message box service was implemented as a plug-in,
according to the Harness concept, and the senderlreceiver plug-ins have to
communicate with the message box plug-in via RMI. As it described in [15] JPDA has
no debugging support for RMI but we have to find out which plug-in wants to send or
receive a message (the mylD and senderID string arguments can be defined without
any restrictions by plug-ins). Hereby, we had to deal with issues of RMI debugging
and to apply some RMI-related functions of X-IDVS in spite of our original plans. On
the other hand, any Harness plug-in can create dynamically new message boxes
therefore; our debugger tool must be also responsible for detecting when a new
message box plug-in is loaded.

The set of executed code regions between two consecutive collective breakpoints is
called a macrostep. Precise definition of macrostep is given in [7]. Provided that
sequential program parts between communication instructions are already tested, a
systematic debugging of a metacomputing program requires to debug the
metacomputing program by pure macrosteps, i.e. instrumenting all the communication
instructions by global breakpoints. A breakpoint of the collective breakpoint is called
active if it was hit in a macrostep and its associated instruction has been completed. A
breakpoint is called sleeping if it was hit in a macrostep but its associated instruction
has not been completed (for example, receive instruction waiting for a message).
Those breakpoints that were either active or sleeping in a macrostep are together
called effective breakpoints.

After the definitions given above we can define the macrostep-by-macrostep
execution mode of metacomputing programs. In each step either the user or the
debugger runs the program until the collective breakpoint is hit. Under these
conditions the metacomputing program will be executed by macrostep-by-macrostep.
The boundaries of the macrosteps are defined by a series of effective global
breakpoint sets. In such cases the user is interested only in checking the program state
at the well-defined boundary conditions.

There is a clear analogy between the step-by-step execution mode of sequential
programs realised by local breakpoints and the macrostep-by-macrostep execution
mode of metacomputing programs. The macrostep-by-macrostep execution mode
enables to check the progress of the metacomputing program at the points that are
relevant from the point of view of parallel execution, i.e. at the message passing
points. What we should ensure is that the macrostep-by-macrostep execution mode
should work deterministically just like the step-by-step execution mode works in case
of sequential programs. In order to ensure it, according to the original macrostep
concept the debugger should store the history of collective breakpoints, the
acceptance order of messages at receive instructions and the result of input operations.
Additionally, in a metacomputing environment we should also store the events about
the reconfiguration; when a new plug-in is loaded, unloaded or failed anywhere in
heterogeneous computational environment, new host is grabbedheleased or a new

268 R. Lovas and V. Sunderam

message box is started by the user's application. Therefore, our debugger tool must be
able to adapt to the dynamic behaviour of debugged application as well as its fault
tolerance. As it was mentioned in Section 2.1, the enrolled computational resources as
well as the DVM itself can be reconfigured. To handle the dynamic, reconfigurable
and fault tolerant behaviour of DVM, our basic idea was the following. During the
initialisation the Harness MonitorIControl Plug-In (HMCPI) places some so-called
'system breakpoints' in the Harness kernel (see Figure 2) in order to detect the
changes/reconfiguration of DVM in advance. Then, HMCPI can report these events to
Harness Systematic Debugger Tool (HSDT) that is responsible for storing these
reconfiguration events in a trace file (see Figure 2). Basically, the fault tolerance of X-
IDVS has been inherited from the Harness Framework itself.

At replay, the progress of tasks are controlled by the stored collective breakpoints
and reconfiguration events and the program is automatically executed again
macrostep-by-macrostep as in the execution phase. The debugger is also responsible
for loadinglunloading/killing the plugins, grabbinglreleasing hosts and starting new
message boxes during each macrostep (if it is needed). Obviously, during the replay
phase it is not guaranteed that a host can be grabbed again for the distributed virtual
machine or a given host is able to load the required plug-in (resource limitations, etc.).
Our solution is a host translation table maintained by the debugger, in that each host
enrolled in the original DVM can be associated to a substitute host (independently for
each plug-in) where the appropriate plug-in actually run during the replay phase. The
relative speed of the substitute host is unessential because the macrostep-by-
macrostep execution can handle this issue. Only the architecture of the substitute host
can be important if the current plug-in uses some architecture dependent features (e.g.
via Java Native Interface). In this case, we have to check whether both architectures
of reference and substitute hosts are the same ones.

In Harness the introduced host-translation table is used by the systematic debugger
tool as well as the RMI communication core during the replaylcontrol phases.

The execution path is a graph whose nodes represent macrosteps and the directed
arcs connect the consecutive macrosteps. The execution tree is a generalization of the
execution path, it contains all the possible execution paths of a metacomputing
program assuming that the non-determinism of the current program is inherited from
(wildcard) message passing communications. Nodes of the execution tree can be of
four types: (i) Root node, (ii) Alternative nodes, (iii) Deterministic nodes.

The Root node represents the starting conditions of the metacomputing program.
Alternative nodes indicate either a wildcard receive instructions which can choose a
message non-deterministically from several processes or (as an extension of the
original macrostep concept) a wildcard send instructions which can send a message
non-deterministically to any process. Only alternative nodes can create new execution
paths in the execution tree, deterministic nodes cannot create any new execution path.

Breakpoints can be placed at the nodes of the execution tree. Such breakpoints are
called meta-breakpoints. The role of meta-breakpoints is analogous with the role of
the breakpoints of sequential programs. A breakpoint in a sequential program means
to run the program until the breakpoint is hit. Similarly, a meta-breakpoint at a node
of the execution tree means to place the collective breakpoint belonging to that node
and run the metacomputing application until the collective breakpoint is hit. Replay

269Extension of Macrostep Debugging Methodology

guarantees that the collective breakpoint will be hit and the metacomputing program
will be stopped at the requested node.

The task of systematic debugging or testing is to exhaustively traverse the
complete execution tree with all the possible execution paths in it. Therefore, the
execution tree represents a search space that should be completely explored by the
debugging method. Accordingly, systematic testing and debugging of a
metacomputing program require (i) generation of its execution tree (ii) exhaustive
traverse of its execution tree. With the help of the extended macrostep-by-macrostep
concept both of these issues can be solved and implemented in a very similar way as
they have been implemented in DIWIDE [8][12]. Some minor changes are required
by the wildcard send operations as well as the event tracing and replaying.

Often a Harness plug-in does not require a particular architecture for its execution.
Despite of this we always have to inspect whether each plug-in has been implemented
architecture independently if we want to get a real metacomputing application. For
testing the architecture independency of plug-ins or whole applications the
systematically generated host-translation tables are needed. It means that we have to
test each architecture independent plug-in on each significantly different architecture
(by exhaustive traverse of the execution tree).

We can test several plug-ins (from the aspect of architecture dependency) in one
exhaustive traverse of an execution tree. In the best case we need only as much
traversing of the execution tree as the number of significantly different architecture
we have in the metacomputing environment. Our solution contains four steps: (1) the
debugger looks for a host with a new and untested architecture for each architecture
independent and not fully tested plug-in and the debugger also registers the found host
into the new host-translation table, (2) if step 1 was not successful by any plug-in
(after a timeout), we allowed the debugger to look for any host for the unsuccessfully
mapped plug-ins (3) if there was at least one successfully mapped plug-in among the
not fully tested plug-ins the debugger starts exhaustive traverse of execution tree, else
go to Step 1, (4) if there is any not fully tested plug-in, go to Step 1.

We can decrease the time and resource requirements of the exhaustive tests by
magnitude of orders in two ways. On one hand, we can take the advantage the large
number of resources included in metacomputing environment by starting more
(hundreds or thousands) test scenarios at the same time. On the other hand, we can try
to reduce the complexity/size of metacomputing application as much as possible
without losing the relevant parts of the application.

4 The architecture of systematic debugger

First of all, Harness kernels (see Figure 2) are launched with a special debug flag in
order to enable the JVMDI interfaces and turn the JIT compiler off. As depicts in
Figure 2, on each host enrolled in the distributed virtual machine two different types
of plug-in can be found for debugging purposes: one HDPI and one HMCPI plug-in.
Both of them are loaded by HSDT (with the same authorization keys as the user plug-
ins) during the initialisation phase but they play different roles. In the first step of
initialisation, HDPI gathers information about the enabled JVMDI interface and pass

270 R. Lovas and V. Sunderam

the information to the HSDT. Therefore, in the second step the HSDT is able to load
the HMCPI plug-in and attach it to the JVM of Harness kernel with the help of
JDWP. Then, HMCPI is able to (i) place the system breakpoints in the Harness kernel
in order to detect the reconfiguration of DVM, (ii) monitor the access the message
boxes, (iii) control the execution of plug-ins.

Fig. 2. Fundamental Architecture of Systematic Debugger In Harness

5 Conclusion and related work

As we studied the related work (such as DejaVu [I], DJVM [l l] , DIWIDE [8][12]
integrated in P-GRADE [lo], Macrostep-by-macrostep concept [7], Totalview, P2D2
[4]) we realized that there is a lack of an integrated graphical systematic debugger for
metacomputing applications equipped by visualization techniques. Even the most
relevant gridlmetacomputing projects such as Globus [3], Condor [13] and Legion [6]
do not give efficient solution to the emerging debugging issues. That was the main
reason for the further development of the macrostep debugging methodology. The
current prototype is partly implemented under the Harness Framework as an extension
of X-IDVS metadebugger.

We also plan to investigate the efficiency issues of the described methodology as
well as the feasible optimisation techniques that could be applied in order to reduce
the complexity of exhaustive testing.

271Extension of Macrostep Debugging Methodology

6 References

[I] Bowen Alpern, Jong-Deok Choi, Ton Ngo, Manu Sridharan, John Vlissides. A
Perturbation-Free Replay Platform for Cross-Optimized Multithreaded Applications. IBM
Research Report, RC 21864,22 September 2000.

[2] Jong-Deok Choi and Harini Srinivasan. Deterministic Replay of Java Multithreaded
Applications. ACM SIGMETRICS Symposium on Parallel and Distributed Tools, pages
48-59, August 1998.

[3] I. Foster and C. Kesselman. Globus: a Metacomputing Infrastructure Toolkit. International
Journal of Supercomputing Application, May 1997.

[4] Robert Hood. The p2d2 project: building a portable distributed debugger. Proceedings of
the SIGMETRICS symposium on Parallel and distributed tools, May 22 - 23, 1996,
Philadelphia, PA USA

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Mancheck and V. Sunderam. PVM:
Parallel Virtual Machine a User's Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, MA, 1994.

[6] A. Grimshaw, W. Wulf, J. French, A. Weaver and P. Reynolds. Legion: the next logical
step toward a nationwide virtual computer, Technical Report CS-94-21, University of
Virginia, 1994.

[7] P. Kacsuk. Systematic Macrostep Debugging of Message Passing Parallel Programs.
Future Generation Computer Systems, Vol. 16, No. 6, pp. 609-524, 2000.

[8] P. Kacsuk, R. Lovas, J. Kovacs. Systematic Debugging of Parallel Programs in DIWIDE
Based on Collective Breakpoints and Macrosteps. In: Proceedings. 51h International Euro-
Par Conference, Toulouse, France, 1999. pp. 90-97.

[9] P. Kacsuk, G. Dbzsa, T. Fadgyas, R. Lovas. GRADE: A Graphical Programming
Environment for Multicomputers. Computer and Artificial Intelligence. 17 (5) :417-427.
(1998)

[lo] P. Kacsuk. Visual Message Passing Programming - the P-GRADE Concept. Scientific
Programming Journal. 2000, Special Issue on SGI'2000

[I 11 Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi. Deterministic Replay of Distributed
Java Applications. 141h International Parallel & Distributed Processing Symphosium,
pages 219-228, May 2000.

[12] J. Kovacs, P. Kacsuk. The DIWIDE Distributed Debugger on Windows NT and UNIX
Platforms, Distributed and Parallel Systems, From Instruction Parallelism to Cluster
Computing, Eds.: P. Kacsuk and G. Kotsis, Cluwer Academic Publishers, 2000.

[13]M. J. Litzkow, M. Livny and M. W. Mutka. Condor - A Hunter of Idle Workstations,
Proc. of the 8'h International Conference on Distributed Computer Systems, pp. 104-1 11,
IEEE Press, June 1998.

[14] M. Migliardi, V. Sunderam, A.Geist, J. Dongarra. Dynamic Reconfiguration and Virtual
Machine Management in the Harness Metacomputing System, Proc. of ISCOPE98, pp.
127-134, Santa Fe', New Mexico (USA), December 8-11, 1998.

[15] R. Lovas, V. Sunderam: Extendible Integrated Debugging and Visualization Service for
Harness Metacomputing Framework, technical paper, available online at:
http://www.sztaki.hu/-rlovas/projects/harness/docs/xidvs.pdf

272 R. Lovas and V. Sunderam

	Introduction
	Background
	Harnes Metacomputing Framework
	Java Platform Debug Architecture
	Extendible Integrated Debugger & Visualization Service for Harnes

	Systematic Debugging in Harness
	The Architecture of Systematic Debugger
	Conclusion and Related Work
	References

