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Abstract. This paper focuses on the non-deterministic behaviour and 
architecture dependencies of metacomputing applications from point of view of 
debugging. As a possible solution we applied and also extended the macrostep 
systematic debugging methodology f i r  metacomputing applications. Our 
extended methodology is based on modified collective breakpoints and 
macrosteps furthermore, we introduce host-translation tables generated 
automatically for exhaustive testing. The prototype is developed under the 
Harness metacomputing framework for message box communication based 
applications. The main implementation issues as well as the architecture of our 
systematic debugger are also described as the further development of X-IDVS 
Harness-based metadebugger. 

1 Introduction 

Debugging of metacomputing applications can be much more exhausting task 
contrary to debugging of sequential or even parallel programs. This problem comes 
from the following features of metacomputing: (i) heterogeneity, (ii) dynamic 
behaviour of computational environment, (iii) large amount of computational 
resources, (iv) authorisation/authentication on different administration domains, (v) 
non-deterministic execution of metacomputing applications. During our previous 
debugging project [15] we  have already given some efficient solutions for (i)-(iv) but 
the systematic handling of non-determinism was out of scope of that work. In this 
paper1 w e  focused on the issues of the non-deterministic behaviour of metacomputing 
applications caused by the varying relative execution speeds of tasks as well as the 
architecture dependent failures. For instance, it seems a given metacomputing 
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application always generates correct results on a particular architecture or a 
combination of architectures (where the programmers originally developed their 
application) but often fails on other architectures. Mostly, the reason for this 
behaviour is the varying relative speeds of tasks together with the hazardous and 
untested race conditions. Besides, these different timing conditions might be occurred 
more frequently in metacomputing environment than in case of dedicated clusters or 
traditional supercomputers because of the different implementation of the underlying 
operating systems1communications layers and the unpredictable network traffic, CPU 
loads or other dynamical changes. By metacomputing applications the above 
described phenomenon can be very crucial because we cannot ensure that our 
metacomputing application always runs on the same nodes with almost the same 
timing conditions. 

The only way to prove the 'metacomputing-enabled' feature of an application is 
the usage of systematic testing methods in order to find the timinglarchitecture 
dependent failures in the implemented code. For this purpose we applied and also 
extended the macrostep systematic debugging methodology that has been introduced 
originally for message passing parallel programs developed by P-GRADE graphical 
programming environment [lo]. Our prototype is under development in the Harness 
metacomputing framework [14] 

and we also applied the achievements of the earlier 
developed X-IDVS metadebugger tool 

[15]. 
This paper is organized as follows. In the next section we introduce briefly the 

Harness framework, the Java Platform Debugger Architecture (JPDA) and X-IDVS 
metadebugger tool as the basis of our prototype. Section 3 describes the fundamental 
principles of the extended macrostep debugging methodology and some 
implementation details. Finally, Section 4 summarizes our project and points out the 
most current related work. 

2 Background 

2.1 Harness Metacomputing Framework 

Harness attempts to overcome the limited flexibility of traditional software systems 
by defining a simple but powerful architectural model based on the concept of a 
software backplane. The Harness model consists primarily of a kernel (see Figure 2) 
that is configured, according to user or application requirements, by attaching "plug- 
in" modules that provide various services. Some plug-ins are provided as part of the 
Harness system, while others might be developed by individual users for special 
situations, while yet other plug-ins might be obtained from third-party repositories. 

By configuring a Harness distributed virtual machine using a suite of plug-ins 
appropriate to the particular hardware platform being used, the application being 
executed, and resourceltime constraints, users are able to obtain functionality and 
performance that is well suited to their specific circumstances. Furthermore, since the 
Harness architecture is modular, plug-ins may be developed incrementally for 
emerging technologies such as faster networks or switches, new data compression 
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algorithms or visualization methods, or resource allocation schemes - and these may 
be incorporated into the Harness system without requiring a major re-engineering 
effort. 

The fundamental abstraction in the Harness metacomputing framework is the 
Distributed Virtual Machine (DVM) (see Figure 1, Level 1). Any DVM is associated 
with a symbolic name that is unique in the Harness name space but has no physical 
entities connected to it. Heterogeneous Computational Resources may enroll into a 
DVM (see Figure 1, Level 2) at any time however, at this level the DVM is not ready 
yet to accept requests from users. To get ready to interact with users and applications 
the heterogeneous computational resources enrolled in a DVM need to load 'plug-ins' 
(see Figure 1, Level 3). A plug-in is a software component implementing a specific 
service. By loading plug-ins a DVM can build a consistent service baseline (see 
Figure 1, Level 4). Users may reconfigure the DVM at any time (see Figure 1, Level 
4) both in terms of computational resources enrolled by having them join or leave the 
DVM and in terms of services available by loading and unloading plug-ins. 

Users 

Applications 

ILevel41 

Change the set of 

resources enrolled 
in the DVM 

Change WM Capabilities 00 , (add remove services) 

Fig. 1. Abstract Model of a Harness DVM with Message Box (MB) Service 

The availability of services to heterogeneous computational resources derives from 
two different properties of the framework: the portability of plug-ins and the presence 
of multiple searchable plug-in repositories. Harness implements these properties 
mainly leveraging two different features of Java technology. These features are the 
capability to layer a homogeneous architecture such a$ the Java Virtual Machine 
(JVM) over a large set of heterogeneous computational resources, and the capability 
to customize the mechanism adopted to load and link new objects and libraries. 

265Extension of Macrostep Debugging Methodology



2.2 Java Platform Debug Architecture 

Java Platform Debug Architecture (JPDA) is available for almost all widespread 
platforms as part of Java SDK 1.3. In outline, JPDA provides a high-level remote 
debugging interface for debuggers called Java Debug Interface (JDI). For the purpose 
of out-of-process debugging, JPDA gives the Java Virtual Machine Debug Interface 
(JVMDI) to the debuggeeltarget JVM. Between the JDI and the JVMDI, the Java 
Debug Wire Protocol (JDWP) is responsible for transporting both debug requests and 
debug events. Hence, JPDA can form a base of our X-IDVS debugger (see Section 
2.3) by its remote debugging facilities (see Figure 2 between JVMI and HMCPI). 

2.3 Extendible Integrated Debugger & Visualization Service for Harness 

In order to solve the emerging debugging issues in the field of metacomputing we 
already defined the fundamental principles of an extendible, programmable and 
integrated debugging & visualization tool [15]. The next target was to design and 
implement a prototype; X-IDVS (extendible Integrated Debugger & Visualization 
Service) applying the defined principles and relying on the Harness framework as 
well as the above described Java Platform Debugger Architecture. 

In order to illustrate briefly the novelty of this work, the main features of the 
current X-IDVS prototype can be summarized as follows; X-IDVS was designed as a 
real metacomputing application itself hence, the debugger tool can adapt totally to the 
debugged application and also can take all advantages of the metacomputing 
environment, such as fault-tolerance, dynamic behaviour, support for heterogeneous 
computational environment and authorization. When a plug-in is loaded by the user's 
application anywhere in the metacomputer, X-IDVS can load and activate some 
system plug-ins on the target host for debugginglmonitoring purposes (using the same 
authorization keys as the loaded plug-in). Moreover, for providing efficient debugging 
support for RMI-based plug-ins, X-IDVS offers some unique debugging capabilities 
for RMI communication. Firstly, during step-by-step execution X-IDVS is able to 
hide the differences between the traditional and remote method invocations from 
user's point of view. Basically, it means two automatic context switches during an 
RMI call (client to serverlserver to client side). On the other hand, X-IDVS combines 
some program visualization techniques with debugging methods. Hence, the user can 
get a big picture about the history of plug-ins with the help of an integrated semi- 
online visualization tool depicted the communication interacts among Harness plug- 
ins. 

Another significant feature of the system is the extendibility. X-IDVS can invoke 
external sequential debuggers that might implement some other architecture 
dependent debugging facilities on a specified hostJpool in the heterogeneous 
environment. In this way the user can choose the best tool in every phases of 
debugging procedure. Additional tightly integrated graphical tools are responsible for 
the navigation through the distributedJJava virtual machines and threads (equipped by 
filtering options for handling of scalability), management of breakpoint sets and 
establishment of new debug sessions. 
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Finally, X-IDVS is programmable with a simple macro language particularly for 
testing purposes. Thus, the programmer can test the startup of his application and can 
force the metacomputing application to run with vary timing conditions. 

3 Systematic debugging in Harness 

As it was described above, X-IDVS was designed originally for Harness 
applications built on RMI-based plug-ins. During an RMI-based interaction the 
invoked remote methods are executed in separated threads on the server side but the 
macrostep debugging methodology [7] cannot be applied in case of multithreaded 
applications (which might use shared objects). Thus, we had to take into consideration 
two options: (i) attempt to extend the macrostep debugging methodology with 
multithreaded/shared objects support or (ii) provide systematic debugging support for 
other types of Harness plug-ins, e.g. which are based on message passing paradigm. 
As the first stage of this project, we applied the macrostep debugging methodology on 
Harness plug-ins which can communicate with each other via message box. Based on 
these experiences and achievements we will try to solve the systematic debugging 
issues of multithreaded/RMI-based metacomputing applications as the next stage of 
this project. 

In Harness the message box plug-in provides a generic send/receive/scatter/gather 
message passing service for Harness plug-ins via a simple interface: 
- public void send(String senderID, String destination, Object message) 
- public void sendToAny(String senderID, Object message) 
- public H-Envelope receive(String myID, String senderID) 
- public H-Envelope receiveFromAny(String myID) 
- public H-Envelope receiveAsync(String myID, String senderID) 
- public HEnvelope receiveFromAnyAsync(String myID) 

In details, the send and sendToAny operations are always executed asynchronously 
but each type of receive operation can be either asynchronous or synchronous. As a 
first step we reduced these communication possibilities in order to get a similar 
message passing interface as in P-GRADE system where the macrostep debugging 
methodology has been implemented for the first time. Thus, we turned the 
asynchronous send operations to synchronous send and also removed both 
asynchronous receive operations. 

The main ideas of the further developed macrostep debugging methodology can be 
summarized by the following concepts: (i) enhanced collective breakpoints, (ii) 
modified macrosteps, (iii) extended macrostep-by-macrostep execution mode, (iv) 
execution tree, (v) meta-breakpoints, (vi) execution tree. In the rest of this section we 
describe these concepts as well as some implementation issues. 

In [7], a restriction was introduced on the global breakpoint sets and introduced a 
special version of them called collective breakpoints. When all the breakpoints of the 
global breakpoint set are placed on communication instructions, the global breakpoint 
set is called collective breakpoint. A formal definition of the collective breakpoints 
can be found in [7]. If there is at least one breakpoint for each alternative execution 
path of every process, the collective breakpoint is called strongly complete. In 
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practice, we were able to implement the strongly complete collective breakpoints by 
placing breakpoints on each method entries of message box interface. It means only a 
couple permanent breakpoints for each message box thus, we might achieve good 
performance that can be crucial in case of communication intensive metacomputing 
programs. Two problems were turned out during the design phase: (i) RMI 
communication between plug-ins and the message box, (ii) dynamically created 
message boxes. In details; the message box service was implemented as a plug-in, 
according to the Harness concept, and the senderlreceiver plug-ins have to 
communicate with the message box plug-in via RMI. As it described in [15] JPDA has 
no debugging support for RMI but we have to find out which plug-in wants to send or 
receive a message (the mylD and senderID string arguments can be defined without 
any restrictions by plug-ins). Hereby, we had to deal with issues of RMI debugging 
and to apply some RMI-related functions of X-IDVS in spite of our original plans. On 
the other hand, any Harness plug-in can create dynamically new message boxes 
therefore; our debugger tool must be also responsible for detecting when a new 
message box plug-in is loaded. 

The set of executed code regions between two consecutive collective breakpoints is 
called a macrostep. Precise definition of macrostep is given in [7]. Provided that 
sequential program parts between communication instructions are already tested, a 
systematic debugging of a metacomputing program requires to debug the 
metacomputing program by pure macrosteps, i.e. instrumenting all the communication 
instructions by global breakpoints. A breakpoint of the collective breakpoint is called 
active if it was hit in a macrostep and its associated instruction has been completed. A 
breakpoint is called sleeping if it was hit in a macrostep but its associated instruction 
has not been completed (for example, receive instruction waiting for a message). 
Those breakpoints that were either active or sleeping in a macrostep are together 
called effective breakpoints. 

After the definitions given above we can define the macrostep-by-macrostep 
execution mode of metacomputing programs. In each step either the user or the 
debugger runs the program until the collective breakpoint is hit. Under these 
conditions the metacomputing program will be executed by macrostep-by-macrostep. 
The boundaries of the macrosteps are defined by a series of effective global 
breakpoint sets. In such cases the user is interested only in checking the program state 
at the well-defined boundary conditions. 

There is a clear analogy between the step-by-step execution mode of sequential 
programs realised by local breakpoints and the macrostep-by-macrostep execution 
mode of metacomputing programs. The macrostep-by-macrostep execution mode 
enables to check the progress of the metacomputing program at the points that are 
relevant from the point of view of parallel execution, i.e. at the message passing 
points. What we should ensure is that the macrostep-by-macrostep execution mode 
should work deterministically just like the step-by-step execution mode works in case 
of sequential programs. In order to ensure it, according to the original macrostep 
concept the debugger should store the history of collective breakpoints, the 
acceptance order of messages at receive instructions and the result of input operations. 
Additionally, in a metacomputing environment we should also store the events about 
the reconfiguration; when a new plug-in is loaded, unloaded or failed anywhere in 
heterogeneous computational environment, new host is grabbedheleased or a new 
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message box is started by the user's application. Therefore, our debugger tool must be 
able to adapt to the dynamic behaviour of debugged application as well as its fault 
tolerance. As it was mentioned in Section 2.1, the enrolled computational resources as 
well as the DVM itself can be reconfigured. To handle the dynamic, reconfigurable 
and fault tolerant behaviour of DVM, our basic idea was the following. During the 
initialisation the Harness MonitorIControl Plug-In (HMCPI) places some so-called 
'system breakpoints' in the Harness kernel (see Figure 2) in order to detect the 
changes/reconfiguration of DVM in advance. Then, HMCPI can report these events to 
Harness Systematic Debugger Tool (HSDT) that is responsible for storing these 
reconfiguration events in a trace file (see Figure 2). Basically, the fault tolerance of X- 
IDVS has been inherited from the Harness Framework itself. 

At replay, the progress of tasks are controlled by the stored collective breakpoints 
and reconfiguration events and the program is automatically executed again 
macrostep-by-macrostep as in the execution phase. The debugger is also responsible 
for loadinglunloading/killing the plugins, grabbinglreleasing hosts and starting new 
message boxes during each macrostep (if it is needed). Obviously, during the replay 
phase it is not guaranteed that a host can be grabbed again for the distributed virtual 
machine or a given host is able to load the required plug-in (resource limitations, etc.). 
Our solution is a host translation table maintained by the debugger, in that each host 
enrolled in the original DVM can be associated to a substitute host (independently for 
each plug-in) where the appropriate plug-in actually run during the replay phase. The 
relative speed of the substitute host is unessential because the macrostep-by- 
macrostep execution can handle this issue. Only the architecture of the substitute host 
can be important if the current plug-in uses some architecture dependent features (e.g. 
via Java Native Interface). In this case, we have to check whether both architectures 
of reference and substitute hosts are the same ones. 

In Harness the introduced host-translation table is used by the systematic debugger 
tool as well as the RMI communication core during the replaylcontrol phases. 

The execution path is a graph whose nodes represent macrosteps and the directed 
arcs connect the consecutive macrosteps. The execution tree is a generalization of the 
execution path, it contains all the possible execution paths of a metacomputing 
program assuming that the non-determinism of the current program is inherited from 
(wildcard) message passing communications. Nodes of the execution tree can be of 
four types: (i) Root node, (ii) Alternative nodes, (iii) Deterministic nodes. 

The Root node represents the starting conditions of the metacomputing program. 
Alternative nodes indicate either a wildcard receive instructions which can choose a 
message non-deterministically from several processes or (as an extension of the 
original macrostep concept) a wildcard send instructions which can send a message 
non-deterministically to any process. Only alternative nodes can create new execution 
paths in the execution tree, deterministic nodes cannot create any new execution path. 

Breakpoints can be placed at the nodes of the execution tree. Such breakpoints are 
called meta-breakpoints. The role of meta-breakpoints is analogous with the role of 
the breakpoints of sequential programs. A breakpoint in a sequential program means 
to run the program until the breakpoint is hit. Similarly, a meta-breakpoint at a node 
of the execution tree means to place the collective breakpoint belonging to that node 
and run the metacomputing application until the collective breakpoint is hit. Replay 
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guarantees that the collective breakpoint will be hit and the metacomputing program 
will be stopped at the requested node. 

The task of systematic debugging or testing is to exhaustively traverse the 
complete execution tree with all the possible execution paths in it. Therefore, the 
execution tree represents a search space that should be completely explored by the 
debugging method. Accordingly, systematic testing and debugging of a 
metacomputing program require (i) generation of its execution tree (ii) exhaustive 
traverse of its execution tree. With the help of the extended macrostep-by-macrostep 
concept both of these issues can be solved and implemented in a very similar way as 
they have been implemented in DIWIDE [8][12]. Some minor changes are required 
by the wildcard send operations as well as the event tracing and replaying. 

Often a Harness plug-in does not require a particular architecture for its execution. 
Despite of this we always have to inspect whether each plug-in has been implemented 
architecture independently if we want to get a real metacomputing application. For 
testing the architecture independency of plug-ins or whole applications the 
systematically generated host-translation tables are needed. It means that we have to 
test each architecture independent plug-in on each significantly different architecture 
(by exhaustive traverse of the execution tree). 

We can test several plug-ins (from the aspect of architecture dependency) in one 
exhaustive traverse of an execution tree. In the best case we need only as much 
traversing of the execution tree as the number of significantly different architecture 
we have in the metacomputing environment. Our solution contains four steps: (1) the 
debugger looks for a host with a new and untested architecture for each architecture 
independent and not fully tested plug-in and the debugger also registers the found host 
into the new host-translation table, (2) if step 1 was not successful by any plug-in 
(after a timeout), we allowed the debugger to look for any host for the unsuccessfully 
mapped plug-ins (3) if there was at least one successfully mapped plug-in among the 
not fully tested plug-ins the debugger starts exhaustive traverse of execution tree, else 
go to Step 1, (4) if there is any not fully tested plug-in, go to Step 1. 

We can decrease the time and resource requirements of the exhaustive tests by 
magnitude of orders in two ways. On one hand, we can take the advantage the large 
number of resources included in metacomputing environment by starting more 
(hundreds or thousands) test scenarios at the same time. On the other hand, we can try 
to reduce the complexity/size of metacomputing application as much as possible 
without losing the relevant parts of the application. 

4 The architecture of systematic debugger 

First of all, Harness kernels (see Figure 2) are launched with a special debug flag in 
order to enable the JVMDI interfaces and turn the JIT compiler off. As depicts in 
Figure 2, on each host enrolled in the distributed virtual machine two different types 
of plug-in can be found for debugging purposes: one HDPI and one HMCPI plug-in. 
Both of them are loaded by HSDT (with the same authorization keys as the user plug- 
ins) during the initialisation phase but they play different roles. In the first step of 
initialisation, HDPI gathers information about the enabled JVMDI interface and pass 
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the information to the HSDT. Therefore, in the second step the HSDT is able to load 
the HMCPI plug-in and attach it to the JVM of Harness kernel with the help of 
JDWP. Then, HMCPI is able to (i) place the system breakpoints in the Harness kernel 
in order to detect the reconfiguration of DVM, (ii) monitor the access the message 
boxes, (iii) control the execution of plug-ins. 

Fig. 2. Fundamental Architecture of Systematic Debugger In Harness 

5 Conclusion and related work 

As we studied the related work (such as DejaVu [I], DJVM [l l ] ,  DIWIDE [8][12] 
integrated in P-GRADE [lo], Macrostep-by-macrostep concept [7], Totalview, P2D2 
[4]) we realized that there is a lack of an integrated graphical systematic debugger for 
metacomputing applications equipped by visualization techniques. Even the most 
relevant gridlmetacomputing projects such as Globus [3], Condor [13] and Legion [6] 
do not give efficient solution to the emerging debugging issues. That was the main 
reason for the further development of the macrostep debugging methodology. The 
current prototype is partly implemented under the Harness Framework as an extension 
of X-IDVS metadebugger. 

We also plan to investigate the efficiency issues of the described methodology as 
well as the feasible optimisation techniques that could be applied in order to reduce 
the complexity of exhaustive testing. 
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