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Abstract. Cryptographic Boolean functions should have large distance
to functions with simple algebraic description to avoid cryptanalytic at-
tacks based on successive approximation of the round function such as
the interpolation attack. Hyper-bent functions achieve the maximal min-
imum distance to all the coordinate functions of all bijective monomials.
However, this class of functions exists only for functions with even num-
ber of inputs. In this paper we provide some constructions for Boolean
functions with odd number of inputs that achieve large distance to all
the coordinate functions of all bijective monomials.
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1 Introduction

Several cryptanalytic attacks on block ciphers are based on approximating the
round function (or S-box) with a simpler one. For example, linear cryptanaly-
sis [13] is based on approximating the round function with an affine function.
Another example is the interpolation attack [10] on block ciphers using simple
algebraic functions as S-boxes and the extended attack in [11] on block ciphers
with probabilistic nonlinear relation of low degree.

Thus, cryptographic functions used in the construction of the round func-
tion should have a large distance to functions with simple algebraic description.
Along this line of research , Gong and Golomb [9] introduced a new S-box de-
sign criterion. By showing that many block ciphers can be viewed as a non
linear feedback shift register with input, Gong and Golomb proposed that S-
boxes should not be approximated by a bijective monomial. The reason is that,
for gcd(c, 2N −1) = 1, the trace functions Tr(ζxc) and Tr(λx), x ∈ GF (2N ), are
both m-sequences with the same linear span.
For Boolean functions with even number of input variables, bent functions
achieve the maximal minimum distance to the set of affine functions. In other
words, they achieve the maximal minimum distance to all the coordinate func-
tions of affine monomials (i.e., functions in the form Tr(λx)+e) ). However, this
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doesn’t guarantee that such bent functions cannot be approximated by the co-
ordinate functions of bijective monomials (i.e., functions in the form Tr(λxc) +
e, gcd(c, 2N − 1) = 1). At Eurocrypt’ 2001, Youssef and Gong [19] introduced a
new class of bent functions which they called hyper-bent functions. Functions
within this class achieve the maximal minimum distance to all the coordinate
functions of all bijective monomials.

In this paper we provide some constructions for Boolean functions with odd
number of inputs that achieve large distance to all the coordinate functions
of all bijective monomials. Unlike the N even case, bounding the nonlinearity
(NL) for functions with odd number of inputs, N , is still an open problem.
For N = 1, 3, 5 and 7, it is known that max NL = 2N−1 − 2(N−1)/2. However,
Patterson andWiedemann [15], [16] showed that forN = 15, maxNL ≥ 16276 =
16384 − 27

322
15−1

2 . It should be noted that our task, i.e., finding functions with
large distance to all the coordinate functions of all bijective monomials, is far
more difficult than finding functions with large nonlinearity. For example, while
the (experimental) average nonlinearity for functions with N = 11 and 13 is
about 941 and 3917 respectively, the (experimental) average minimum distance
to the coordinate functions of all bijective monomials is about 916 and 3857
respectively.

We conclude this section with the notation and concepts which will be used
throughout the paper.

- F = GF (2).
- E = GF (2N ).
- TrNM (x),M |N , represents the trace function from F2N to F2M , i.e., TrNM (x) =
x+ xq + · · ·+ xq

l−1
where q = 2M and l = N/M . If M = 1 and the context

is clear, we write it as Tr(x).
- a = {ai}, a binary sequence with period s|2N − 1. Sometimes, we also use
a vector of dimension s to represent a sequence with period s. I.e., we also
write a = (a0, a1, · · · , as−1).

- Per(b), the period of a sequence b.
- a(t) denotes the sequence obtained by decimating the sequence a by t,i.e.,

a(t) = {atj}j≥0 = a0, at, a2t, · · · .
- w(s): the number of 1’s in one period of the sequence s or the number of
1’s in the set of images of the function s(x) : GF (2N )→ GF (2). This is the
so-called the Hamming weight of s whether s is a periodic binary sequence
or a function from GF (2N ) to GF (2).

- S denotes the set of all binary sequences with period r|2N − 1.
- F denotes the set of all (polynomial) functions from GF (2N ) to GF (2).

2 Preliminaries

The trace representation of any binary sequence with period dividing 2N − 1 is
a polynomial function from GF (2N ) to GF (2). Any such polynomial function
corresponds to a Boolean function in N variables. This leads to a connection
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among sequences, polynomial functions and Boolean functions. Using this con-
nection, pseudo-random sequences are rich resources for constructing functions
with good cryptographic properties.

Any non-zero function f(x) ∈ F can be represented as

f(x) =
s∑
i=1

Tr
mti
1 (βixti), βi ∈ GF (2mti )∗, (1)

where 1 ≤ s ≤ |Ω(2N − 1)|, Ω(2N − 1) is the set of coset leaders modulo 2N − 1,
ti is a coset leader of a cyclotomic coset modulo 2N − 1, and mti |N is the size of
the cyclotomic coset containing ti. For any sequence a = {ai} ∈ S, there exists
f(x) ∈ F such that

ai = f(αi), i = 0, 1, · · · ,
where α is a primitive element of E. f(x) is called the trace representation of a.
( a is also referred to as an s-term sequence.) If f(x) is any function from E to
F, by evaluating f(αi), we get a sequence over F with period dividing 2N − 1.
Thus

δ : a↔ f(x) (2)

is a one-to-one correspondence between F and S through the trace representation
in (1). We say that f(x) is the trace representation of a and a is the evaluation of
f(x) at α. In this paper, we also use the notation a↔ f(x) to represent the fact
that f(x) is the trace representation of a. The set consisting of the exponents
that appear in the trace terms of f(x) is said to be the null spectrum set of f(x)
or a.

If s = 1, i.e.,
ai = TrN1 (βα

i), i = 0, 1, · · · , β ∈ E
∗,

then a is an m-sequence over F of period 2N − 1 of degree N . (For a detailed
treatment of the trace representation of sequences, see [14]).

3 Extended Transform Domain Analysis
for Boolean Functions

The Hadamard transform of f : E→ F is defined by [1]

f̂(λ) =
∑
x∈E

(−1)f(x)+Tr(λx), λ ∈ E. (3)

The Hadamard transform spectrum of f exhibits the nonlinearity of f . More
precisely, the nonlinearity of f is given by

NL(f) = 2N−1 − 1
2
max
λ∈E

|f̂(λ)|,

which indicates that the absolute value of f̂(λ) reflects the difference between
agreements and disagreements of f(x) and the linear function Tr(λx). Only bent
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functions [17] have a constant spectrum of their Hadamard transform. Gong
and Golomb [9] showed that many block ciphers can be viewed as a non linear
feedback shift register with input. In the analysis of shift register sequences [4],
all m-sequences are equivalent under the decimation operation on elements in a
sequence. The same idea can be used to approximate Boolean functions, i.e., we
can use monomial functions instead of linear functions to approximate Boolean
functions.

Gong and Golomb [9] introduced the concept of extended Hadamard trans-
form (EHT) for a function from E to F. The extended Hadamard transform is
defined as follows.

Definition 1. Let f(x) be a function from E to F. Let

f̂(λ, c) =
∑
x∈E

(−1)f(x)+Tr(λxc) (4)

where λ ∈ E and c is a coset leader modulo 2N − 1 co-prime to 2N − 1. Then we
call f̂(λ, c) an extended Hadamard transform of the function f .

Notice that the Hadamard transform of f , defined by (3), is f̂(λ, 1). The numer-
ical results in [9] show that, for all the coordinate functions fi, i = 1, · · · , 32 of
the DES s-boxes, the distribution of f̂i(λ, c) in λ is invariant for all c.

Thus a new generalized nonlinearity measure can be defined as

NLG(f) = 2N−1 − 1
2

max
λ ∈ E,

c : gcd(c, 2N − 1) = 1

|f̂(λ, c)|.

This leads to a new criterion for the design of Boolean functions used in
conventional cryptosystems. The EHT of Boolean functions should not have any
large component.

In what follows we will provide constructions for Boolean functions with large
distance to all the coordinate functions of bijective monomials. The construction
method depends on whether N is a composite number or not.

4 Case 1: N Is a Composite Number

Let N = nm where n,m > 1. Let b = {bj}j≥0 be a binary sequence with
per(b) = d = qn−1

q−1 , q = 2m, and w(b) = v. Let g(x) ↔ b. In the following, we
derive some bounds on NLG(g) in terms of v.

Write ai = Trnm1 (αi), i = 0, 1, · · · . Thus a = {ai} is an m-sequence of period
2N − 1. Let

δ(τ) = |{0 ≤ i < d|bi = 1, T rNm(α
i+τ ) = 0}|.

Lemma 1. With the above notation, we have

w(Tr(ατxr) + g(x)) = 2nm−1 − v + qδ(τ). (5)
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Proof. Throughout the proof, we will write δ(τ) as δ for simplicity. The sequence
a can be arranged into a (q − 1, d)-interleaved sequence [8]. Thus a can be
arranged into the following array

A =




a0 a1 · · · ad−1
ad ad+1 · · · a2d−1
...

...
...

...
ad(q−2) vd(q−2)+1 · · · v(q−1)d−1


 = [A0, A1, · · · , Ad−1],

where Ai’s are columns of the matrix. Similarly we can arrange the sequence b
in the following array

B =




b0 b1 · · · bd−1
bd bd+1 · · · b2d−1
...

...
...

...
bd(q−2) bd(q−2)+1 · · · b(q−1)d−1


 .

Note that w(A) = |{(i, j)|aij = 1}, 0 ≤ i < q − 1, 0 ≤ j < d}|. Thus

w(A+B) =
∑
bi=0

w(Ai) +
∑
bi=1

w(Ai + 1)

=
∑
bi=0

w(Ai) +
∑
bi=1

(q − 1− w(Ai)).

In the array A, there are

r =
qn−1 − 1
q − 1 (6)

zero columns (See Lemma 1 in [18]). If there are δ zero columns corresponding
to the indices of the 1’s in {bi}, then they contribute δ(q− 1) 1’s. Thus we have

w(A+B) =∑
bi=0,Ai �=0

w(Ai)+
∑

bi=0,Ai=0

w(Ai)+
∑

bi=1,Ai �=0

(d−w(Ai))+
∑

bi=1,Ai=0

(q−1−w(Ai)).

Since Ai’s arem-sequences, then for all the non-zero Ai’s we have w(Ai) = 2m−1.
Let

Nij = |{bk = i, char(Ak) = j, 0 ≤ k < d}|,
where i, j ∈ {0, 1} and

char(Ai) =
{
0 if Ai = 0,
1 if Ai = 0.

Note that
N1,0 = δ,
N1,0 +N0,0 = r,
N0,0 = r − δ.

(7)
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Hence we have

N1,0 +N1,1 = v ⇒ N1,1 = v −N1,0 = v − δ,
N0,1 +N1,1 = d− r ⇒ N0,1 = d− r −N1,1 = d− r − (v − δ) = d− r − v − δ.
Thus

w(A+B) = 2m−1N0,1 + 0N0,0 + (2m−1N1,1 + (2m − 1)N1,0
= 2m−1(d− r − v) + δ2m−1 + v(2m−1 − 1)− δ2m−1 + δ + 2mδ − δ
= 2m−1(d− r)− v2m−1 + v2m−1 − v + 2mδ
= 2m−1(d− r)− v + 2mδ = 2m−1(d− r)− v + 2mδ.

(8)
By noting that d− r = qn−1 then we have

w(A+B) = 2nm−1 − v + 2mδ,

which proves the lemma.

Theorem 1. With the notation above, if v = d−1
2 then

NLG(g) ≥ 2nm−1 − d− 1
2

.

Proof.

ĝ(0, c) =
∑
x∈E

(−1)g(x) = 1 +
∑
x∈E∗

(−1)g(x) = 1 + (q − 1)
d−1∑
k=0

(−1)bk

= 1 + (q − 1)(d− 2wt(b)) = q.

For λ = 0,

ĝ(λ, c) =
∑
x∈E

(−1)Tr(λxc)+g(x) = 1 +
∑2nm−1
i=0 (−1)ai+bi

= 2nm − 2wt(A+B).
(9)

Note that δ ≤ r = qn−1−1
q−1 . Thus

w(A+B) ≤ 2nm−1 − d− 1
2

,

and

w(A+B) ≥ −2nm−1 − d− 1
2

+ q
qn−1 − 1
q − 1 = −2nm−1 +

d− 1
2

.

By noting that n > 1 then d− 1 > q and hence

|ĝ(λ, c)| ≤ (d− 1)
which proves the theorem.

Using the construction above for N = 9, m = n = 3 we get NLG = 220. It is
clear that, in order to maximize NLG, we should minimize d = 2nm−1

2m−1 . Thus
we should choose m to be the large factor of N = n × m. For example, let
N = 15 = 3 × 5. If we choose m = 5, then we have NLG = 15856. However, if
we picked m = 3, then we get NLG = 14044.
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5 Case 2: N Is a Prime Number

If N is a prime number then the above sub-field construction is not applicable.
This case is further divided into two cases depending on whether 2N − 1 is a
prime number or not.

5.1 Case 2.1: 2N − 1 Is a Prime Number

In this case, we base our construction on the Legendre sequence. Let γ be a
primitive root of a prime p, then the Legendre sequence (also called quadratic
residue sequence) of period p, p ≡ 3 (mod 4),is defined by

ai =



1 or 0, if i = 0
1, i is a residue (i ≡ γ2s mod p
0, i is a non-residue (i ≡ γ2s mod p)

Note that for N ≥ 2 we always have 2N − 1 ≡ 3 mod 4. The properties of
Legendre sequences have been extensively studied (e.g., [2], [5], [6], [12]). In here
we are concerned with the following fact:

Fact 1 If a Legendre sequence of period p ≡ 3 mod 4 is decimated with d then
the original sequence is obtained if d is a quadratic residue mod p, and the reverse
sequence is obtained if d is non-quadratic residue mod p.

This fact can be easily explained by noting that the Boolean function corre-
sponding to Legendre sequence has the following trace representation [12]

f(x) =
∑
c∈QR

Tr(xc),

where QR denotes the set of quadratic residue mod 2N − 1.
Example 1. Let p=7, then a = {1110100} The sequences a(d) obtained by deci-
mating a with d are given by

a(1) = {1110100},
a(2) = {1110100},
a(3) = {1001011},
a(4) = {1110100},
a(5) = {1001011},
a(6) = {1001011}.

(10)

Note that a(1) = a(2) = a(3) since 1, 2, 4 are quadratic residue mod 7. Also
a(3) = a(5) = a(6) are the same since since 3, 5, 6 are quadratic non-residue mod
7.

The following property follows directly from Fact 1.
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Property 1. Let f ↔ a where a is a Legendre sequence. Then we have

NLG(f) = min {NL(f), NL(g)}, (11)

where g ↔ a(c) and c is any quadratic non-residue modulo 2N − 1.

Example 2. For N = 5, b = {1110110111100010101110000100100}. If we let
f ↔ b with f(0) = 1 then we have f̂(λ, c) ∈ {−2,−6,−10, 2, 6, 10} for c ∈ set
of quadratic residue mod 31. f̂(λ, c) ∈ {−2,−6, 2, 10} for c /∈ set of quadratic
residue mod 31. Thus we have NLG(f) = 11.

Table 1 shows NLG of the functions obtained from this construction. In this
case, we set f(0) = 1. If we set f(0) = 0 then we obtain balanced functions for
which NLG is 1 less than the values shown in the table.

Table 2 shows NLG versus NL distribution for N = 5. It is clear that our
Legendre sequence construction achieves the maximum possible NLG. Table 3
shows the same distribution for balanced functions. For N = 7 we searched all
functions in the form [7]

f(x) =
∑

c∈Ω(2N−1)

Trnc1 (xc),

where Ω(2N − 1) is the set of coset leaders mod 2N − 1 and nc is the size of the
coset containing c. Table 4 shows NLG versus NL distribution for this case. Table
5 shows the same distribution for the balanced functions of the same form. Again,
it’s clear that the construction above achieves the best possible NLG. For larger
values of N , our construction is no longer optimum. For example, for N = 13,
g(x)↔ b = {i mod 2 , i = 0, 1, · · · } have NLG = 3972.

Table 1.

N 3 5 7 13 17 19
NLG 1 11 55 3964 64816 259882

Table 2. N = 5

NLG 0 1 2 3 4 5 6 7 8 9 10 11

NL

0 64 0 0 0 0 0 0 0 0 0 0 0

1 0 2048 0 0 0 0 0 0 0 0 0 0

2 0 0 31744 0 0 0 0 0 0 0 0 0

3 0 0 0 317440 0 0 0 0 0 0 0 0

4 0 0 0 0 2301440 0 0 0 0 0 0 0

5 0 0 0 0 0 12888064 0 0 0 0 0 0

6 0 0 0 0 13020 0 57983268 0 0 0 0 0

7 0 0 0 7440 0 3919392 0 211487952 0 0 0 0

8 0 0 2790 0 2396610 0 74021180 0 571246300 0 0 0

9 0 620 0 923180 0 39040780 0 544800200 0 777687700 0 0

10 62 0 149668 0 8474160 0 189406218 0 1022379070 0 191690918 0

11 0 9300 0 606980 0 19419516 0 232492250 0 302968890 0 911896

12 248 0 1302 0 263810 0 3803018 0 20035610 0 3283148 0
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Table 3. N = 5 balanced case

NLG 0 2 4 6 8 10

NL
0 62 0 0 0 0 0
2 0 15872 0 0 0 0
4 0 0 892800 0 0 0
6 0 0 6200 19437000 0 0
8 0 1550 1074150 27705010 167500130 0
10 62 77128 3274220 62085560 276057170 34259588
12 248 682 109430 1536050 6312220 735258

Table 4. N = 7

NLG 0 2 8 14 16 22 28 30 36 42 44 46 48 50 52 54

NL

2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 306 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 306 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 3264 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 90 0 6030 0 0 0 0 0 0 0 0 0

30 0 0 0 90 0 0 1269 4761 0 0 0 0 0 0 0 0

36 0 0 72 0 0 3156 4032 2916 23088 0 0 0 0 0 0 0

42 0 6 0 280 460 2448 4715 4408 12927 7012 0 0 0 0 0 0

44 6 0 0 460 280 2448 6696 2427 12927 6248 764 0 0 0 0 0

46 0 0 0 4 1 121 157 174 326 119 0 8 0 0 0 0

48 0 0 1 25 46 578 1232 757 2486 1052 3 0 50 0 0 0

50 0 0 326 918 948 10187 16267 9632 32340 16288 33 90 401 742 0 0

52 0 1 120 549 504 4746 6409 4236 12167 5781 15 25 170 272 5 0

54 2 10 46 228 164 1281 2557 1295 4548 1727 1 21 5 84 1 1

56 10 0 47 47 108 619 1270 570 2241 926 15 0 13 27 0 1

5.2 Case 2.2: N Is a Prime Number
and 2N − 1 Is a Composite Number

Let 2N − 1 = dr, d > r > 1. In this case we a use construction similar to case
1, i.e., we let f ↔ b where per(b) = d and w(b) = d−1

2 . However, unlike case 1,
there is no easy way to determine the weight distribution of Ai’s because they
are no longer m-sequences. Using this approach for N = 11, d = 89 we obtained
several functions with NLG(f) = 980 = 2N−1 − d−1

2 .
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Table 5. N = 7 balanced case

NLG 0 2 14 16 28 30 42 44 52 54

NL
0 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
14 0 0 81 0 0 0 0 0 0 0
16 0 0 0 81 0 0 0 0 0 0
28 0 0 0 54 1242 0 0 0 0 0
30 0 0 54 0 561 681 0 0 0 0
42 0 6 160 232 2144 1997 2517 0 0 0
44 6 0 232 160 3067 1074 2510 7 0 0
46 0 0 4 1 66 76 28 0 0 0
48 0 0 21 39 904 561 747 3 0 0
50 0 0 82 115 1220 544 908 1 0 0
52 0 1 549 504 6409 4236 5781 15 5 0
54 2 10 228 164 2557 1295 1727 1 1 1
56 10 0 47 108 1270 570 926 15 0 1

6 Conclusions and Open Problems

In this paper we presented some methods to construct functions with odd num-
ber of inputs which achieve large minimum distance to the set of all bijective
monomials. However, since a a general upper bound on NLG is not known, it is
interesting to search for other functions that outperform the constructions pre-
sented in this paper. Finding NLG of functions corresponding to the Legendre
sequences is another interesting open problem.
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