
Fast Normal Basis Multiplication
Using General Purpose Processors

(Extended Abstract)

Arash Reyhani-Masoleh1 and M. Anwar Hasan2

1 Centre for Applied Cryptographic Research,
Department of Combinatorics and Optimization,

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
areyhani@cacr.math.uwaterloo.ca

2 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

ahasan@ece.uwaterloo.ca

Abstract. For cryptographic applications, normal bases have received
considerable attention, especially for hardware implementation. In this
article, we consider fast software algorithms for normal basis multipli-
cation over the extended binary field GF(2m). We present a vector-level
algorithm which essentially eliminates the bit-wise inner products needed
in the conventional approach to the normal basis multiplication. We then
present another algorithm which significantly reduces the dynamic in-
struction counts. Both algorithms utilize the full width of the data-path
of the general purpose processor on which the software is to be exe-
cuted. We also consider composite fields and present an algorithm which
can provide further speed-up and an added flexibility toward hardware-
software co-design of processors for very large finite fields.

Keywords: Finite field multiplication, normal basis, software algo-
rithms, ECDSA, composite fields.

1 Introduction

The extended binary finite field GF(2m) of degree m is used in important cryp-
tographic operations, such as, key exchange, signing and verification. For today’s
security applications the minimum values of m are considered to be l60 in the
elliptic curve cryptography and 1024 in the standard discrete log based cryptog-
raphy. Elliptic curve crypto-systems use relatively smaller field sizes, but require
considerable amount of field arithmetic for each group operation (i.e., addition of
two points). In such crypto-systems, often the most complicated and expensive
module is the finite field arithmetic unit. As a result, it is important to de-
velop suitable finite field arithmetic algorithms and architectures that can meet
the constraints of various implementation technologies, such as, hardware and
software.

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 230–244, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Fast Normal Basis Multiplication 231

For cryptographic applications, the most frequently used GF(2m) arithmetic
operations are addition and multiplication. Compared to the former, the latter
is much more complicated and time consuming operation. The complexity of
GF(2m) multiplication depends very much on how the field elements are rep-
resented. For hardware implementation of a multiplier, the use of normal bases
has received considerable attention and a number of hardware architectures and
implementations have been reported (see for example [1], [2], [7], [20]). A ma-
jority of such efforts were motivated by the fact that certain normal bases, e.g.,
optimal bases, yield area efficient multipliers, and that the field squaring, which
is heavily used in exponentiation and Frobenius mapping, is a simple cycle shift
of the field element’s coordinates and hence in hardware it is almost free of cost.
However, the task of implementing a normal basis multiplier in hardware poses a
number of challenges. For example, when one has to deal with very large fields,
the interconnections among the various parts of the multiplier could be quite
irregular which may slow down the clock speed. Also, normal basis multipliers
are not easily scalable with m. Given a normal basis multiplier designed for
GF(2233), one cannot conveniently make it usable for GF(2163) or GF(2283).
Unlike hardware, so far software implementation of a GF(2m) multiplier us-

ing normal bases has not been very efficient. This is mainly due to a number
of practical considerations. Most importantly, normal basis multiplication algo-
rithms require inner products or matrix multiplications over the ground field
GF(2). Such computations are not directly supported by most of today’s gen-
eral purpose processors. These computations require bit-by-bit logical AND and
XOR operations, which are not efficiently implemented using the instruction set
supported by the processors. Also, when a high level programming language,
such as, C is used, the cyclic shifts needed for field squaring operations, are not
as efficient as they are in hardware.
In this article, we consider algorithms for fast software normal basis multipli-

cation on general purpose processors. We discuss how the conventional bit-level
algorithm for normal basis multiplication fails to utilize the full data-path of the
processor and makes its software implementation inefficient. We then present a
vector-level normal basis multiplication algorithm which eliminates the matrix
multiplication over GF(2) and significantly reduces the number of dynamic in-
structions. We then derive another scheme for normal basis multiplication to
further improve the speed. We also consider normal basis multiplication over
certain special classes of composite fields. We show that normal basis multipli-
ers over such composite fields can provide an additional speed-up and a great
deal of flexibility toward hardware-software co-design of very large finite field
processors.

2 Preliminaries

2.1 Normal Basis Representation

It is well known that there exists a normal basis (NB) in the field GF (2m) over
GF (2) for all positive integers m. By finding an element β∈GF (2m) such that

232 Arash Reyhani-Masoleh and M. Anwar Hasan

{β, β2, · · · , β2m−1} is a basis of GF (2m) over GF (2), any element A ∈ GF (2m)
can be represented as A =

∑m−1
i=0 aiβ

2i = a0β + a1β
2 + · · ·+ am−1β2m−1

, where
ai ∈ GF (2), 0 ≤ i ≤ m−1, is the i-th coordinate of A. In this article, this normal
basis representation of A will be written in short as A = (a0, a1, · · · , am−1). In
vector notation, element A will be written as A = a · βT = β · aT , where a =
[a0, a1, · · · , am−1], β = [β, β2, · · · , β2m−1

], and T denotes vector transposition.
Now, consider the following matrix

M = βT · β =
[
β2i+2j

]m−1
i,j=0

, (1)

whose entries belong to GF(2m). Writing these entries with respect to the NB,
one obtains the following.

M =M0β +M1β
2 + · · ·+Mm−1β2m−1

, (2)

where Mi’s are m ×m multiplication matrices whose entries belong to GF (2).
Let H(Mi), 0 ≤ i ≤ m − 1, be the number of 1’s (or Hamming weight) of Mi.
It is easy to verify that H(M0) = H(M1) = · · · = H(Mm−1). The number of
logic gates needed for the implementation of a NB multiplier depends on H(Mi)
which is referred to as the complexity of the normal basis. Let us denote this
complexity as CN . It was shown in [12] that CN ≥ 2m− 1. When CN = 2m− 1,
the NB is called an optimal normal basis (ONB).
Two types of ONBs were constructed by Mullin et al. [12]. Gao and Lenstra

[5] showed that these two types are all the ONBs in GF (2m). As an extension
of the work on ONBs, Ash et al. in [3] proposed low complexity normal bases of
type t where t is a positive integer. These low complexity bases are referred to as
Gaussian Normal Basis (GNB). When t = 1 and 2, the GNBs become the two
types of ONBs of [3]. A type t GNB for GF (2m) exists if and only if p = tm+1
is prime and gcd(tmk , m) = 1, where k is the multiplicative order of 2 modulo p
[8]. More on this can be found in [3].

2.2 Conventional NB Multiplication Algorithm

Below we give the conventional normal basis multiplication algorithm as de-
scribed by NIST in [13]. This algorithm is for t even only (the reader is referred
to [8] for algorithm with t odd). The case of t even is of particular interest for
implementing high speed crypto-systems based on Koblitz curves. Such curves
with points over GF (2m) exist for m = 163, 233, 283, 409, 571, where normal
bases have t even. Note that in the following algorithm, p = tm+ 1, and A	 i
(resp. A
 i) denotes i-fold left (resp. right) cyclic shifts of the coordinates of
A. The algorithm requires the input sequence F (1), F (2), · · · , F (p − 1) to be
pre-computed using

F (2iuj mod p) = i, 0 ≤ i ≤ m− 1, 0 ≤ j < t, (3)

where u is an integer of order t mod p.

Fast Normal Basis Multiplication 233

Algorithm 1 (Bit-Level NB Multiplication)
Input: A, B ∈ GF (2m), F (n) ∈ [0, m− 1] for 1 ≤ n ≤ p− 1
Output: C = AB
1. Initialize C = (c0, c1, · · · , cm−1) := 0
2. For i = 0 to m− 1 {
3. For n = 1 to p− 2 {
4. ci := ci + aF (n+1)bF (p−n)
5. }
6. A	 1, B 	 1
7. }
Software implementation of Algorithm 1 is not very efficient for the following

reasons. First, in each execution of line 4, one coordinate of each of A and
B are accessed. These accesses are such that their software implementation is
rather unsystematic and typically requires more than one instruction. Secondly,
in line 4 the mod 2 multiplication of the coordinates, which is implemented by
bit level logical AND operation, is performed m(p − 2) times in total, and the
mod 2 addition, which is implemented by bit level logical XOR operation, is
performed 1

4m(p−2) times, on average, assuming that A and B are two random
inputs. In the C programming language, these mod 2 multiplication and addition
operations correspond to aboutm(p−2) AND and 1

4m(p−2) XOR instructions1,
respectively.

3 Vector-Level NB Multiplication

In this section we discuss improvements to Algorithm 1 so that normal basis
multiplication can be efficiently implemented in software. One crucial improve-
ment is that most arithmetic operations are done on vectors instead of bits.
This enables us to use the full data-path of the processor on which the software
is executed. The assumption that t is even in Algorithm 1 is also used in the
remaining discussion of this section.

Lemma 1. For GNB of type t, where t is even, the sequence F (n) of p − 1
integers as defined above is mirror symmetric around the center, i.e., F (n) =
F (p− n), 1 ≤ n ≤ p− 1.
Proof. In (3), t is the smallest nonzero integer such that ut mod p = 1. Then
u
t
2 mod p must be equal to −1 . For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ t − 1, let

n = 2iuj mod p. Then F (n) = F (2iuj mod p) = i. Also, F (2iu
t
2+j mod p) = i.

Thus F (n) = F (2iu
t
2+j mod p) = F (−2iuj mod p) = F (p− n). ✷

From (3) and Lemma 1, one has F (1) = F (p − 1) = 0. For 1 ≤ n ≤ p − 2,
let us define

∆F (n) = F (n+ 1)− F (n) mod m. (4)

Now we have the following corollary.
1 These are dynamic instructions which the underlying processor needs to execute.

234 Arash Reyhani-Masoleh and M. Anwar Hasan

Corollary 1. For ∆F (n) as defined above and for t even, the following holds

∆F (p− n) = m−∆F (n− 1) mod m, 1 ≤ n ≤ p− 2.
Proof. Using (4), one obtains F (n+ 1) =

∑n
i=1 ∆F (i). Applying Lemma 1 into

(4), one can also write ∆F (p− n) = −∆F (n− 1) mod m, 2 ≤ n ≤ p− 1 which
results in∆F (p− n) = m−∆F (n− 1), 2 ≤ n < p−1

2 , and ∆F (p−12) = 0. ✷

In Algorithm 1, the i-th coordinate of the product C = AB is computed in
its inner loop which can be written as follows

ci =
p−2∑
n=1

aF (n+1)+ibF (p−n)+i, 0 ≤ i ≤ m− 1. (5)

Using Lemma 1 and equation (4), one can write

ci =
p−2∑
n=1

aF (n+1)+ibF (n)+i, 0 ≤ i ≤ m− 1, (6)

=
p−2∑
n=1

aF (n)+∆F (n)+ibF (n)+i, 0 ≤ i ≤ m− 1. (7)

For a particular GNB, the values of ∆F (n), 1 ≤ n ≤ p− 2, are fixed and are
to be determined only once, i.e., at the time of choosing the basis. Additionally,
Corollary 1 implies that it is sufficient to store only half (i.e., p−12) of these
∆F (n)’s. We now state the vector-level algorithm for t even as follows. A similar
algorithm for odd values of t is given in [18].

Algorithm 2 (Vector-Level NB Multiplication)
Input: A, B ∈ GF (2m), ∆F (n) ∈ [0,m− 1], 1 ≤ n ≤ p− 1
Output: C = AB
1. Initialize SA := A, SB := B, C := 0
2. For n = 1 to p− 2 {
3. SA 	 ∆F (n)
4. R := SA � SB
5. C := C +R
6. SB 	 ∆F (n)
7. }
In line 4 of Algorithm 2, for X, Y ∈ GF (2m), X � Y denotes the bit-wise

AND operation between coordinates of X and Y , i.e., X� Y = (x0y0, x1y1, · · · ,
xm−1ym−1). In order to obtain an overall computation time for a GF (2m) multi-
plication using Algorithm 2, the coordinates of the field elements can be divided
into

⌈
m
ω

⌉
units where ω corresponds to the data-path width of the processor.

We assume that the processor can perform bit-wise XOR and AND of two ω-bit
operands using one single XOR instruction and one single AND instruction, re-
spectively. Since the loop in Algorithm 2, has p−2 iterations, the total number of

Fast Normal Basis Multiplication 235

bit-wise AND and bit-wise XOR instructions are the same and is (p− 2) ⌈mω ⌉ =
(tm− 1) ⌈mω ⌉. Also, this algorithm needs 2 (p− 2) ⌈mω ⌉ = 2 (tm− 1) ⌈mω ⌉ cyclic
shifts. We assume that an i-fold, 1 ≤ i < ω, left/right shift can be emulated in
the C programming language using a total of ρ instructions. The value of ρ is
typically 4 when simple logical instructions, such as AND, SHIFT, and OR are
used. We can now state the following theorem.

Theorem 1. The dynamic instruction count for Algorithm 2 is given by

#Instructions ≈ 2(1 + ρ) (tm− 1)
⌈m
ω

⌉
.

4 Efficient NB Multiplication over GF (2m)

In this section, we develop another algorithm for normal basis multiplication. We
also analyze the cost of this algorithm in terms of dynamic instruction counts
and memory requirements and then compare them with those of similar other
algorithms.

4.1 Algorithm

For the normal basis {β, β21
, · · · , β2m−1}, let δj = β1+2j , j = 1, · · · , v, where

v =
⌈
m−1
2

⌉
. Then one has the following result from [16].

Lemma 2. Let A and B be two elements of GF (2m) and C be their product.
Then

C =



∑m−1
i=0

[
aibiβ

2i+1
+
(∑v

j=1 xi,jδ
2i
j

)]
, for m odd∑m−1

i=0

[
aibiβ

2i+1
+
(∑v−1

j=1 xi,jδ
2i
j

)
+ aibv+iδ

2i
v

]
, for m even

where ai’s and bi’s are the NB coordinates of A and B, respectively. Also, indices
and exponents are reduced mod m and

xi,j = aibi+j + ai+jbi, 1 ≤ j ≤ v, 0 ≤ i ≤ m− 1. (8)

Let hj , 1 ≤ j ≤ v, be the number of 1’s in the normal basis representation
of δj . Let wj,1, wj,2, · · · , wj,hj denote the positions of 1’s in the normal basis
representation of δj , i.e.,

δj =
hj∑
k=1

β2wj,k , 1 ≤ j ≤ v, (9)

where 0 ≤ wj,1 < wj,2 < · · · < wj,hj ≤ m− 1. Now, using (9) into Lemma 2, we
have the following for m odd.

C =
m−1∑
i=0

aibiβ
2i+1

+
m−1∑
i=0

v∑
j=1

xi,j


 hj∑
k=1

β2wj,k




2i

236 Arash Reyhani-Masoleh and M. Anwar Hasan

=
m−1∑
i=0

aibiβ
2i+1

+
m−1∑
i=0

v∑
j=1

xi,j


 hj∑
k=1

β2i+wj,k




=
m−1∑
i=0

aibiβ
2i+1

+
v∑
j=1

hj∑
k=1

(
m−1∑
i=0

β2i+wj,k

)
. (10)

Also, for even values of m, one has v = m
2 and δv = δ2

m
2

v . This implies
that in the normal basis representation of δv, its i-th coordinate is equal to its
(m2 + i mod m)-th coordinate. Thus, hv is even and one can write

δv =

hv
2∑

k=1

(β2wv,k + β2wv,k+v

), v =
m

2
. (11)

Now, using (11) into Lemma 2 (form even) and using (10), we have the following
theorem, where all indices and exponents are reduced modulo m.

Theorem 2. Let A and B be two elements of GF (2m) and C be their product.
Then

C =



∑m−1
i=0 aibiβ

2i+1
+
∑v
j=1

∑hj
k=1

(∑m−1
i=0 xi,jβ

2i+wj,k
)
, for m odd∑m−1

i=0 aibiβ
2i+1

+
∑v−1
j=1

∑hj
k=1

(∑m−1
i=0 xi,jβ

2i+wj,k
)
+ F, for m even

(12)

where

F =

hv
2∑

k=1

v−1∑
i=0

xi,v(β2i+wv,k + β2i+wv,k+v

), and v =
m

2
.

Note that for a normal basis, the representation of δj is fixed and so is
wj,k, 1 ≤ j ≤ v, 1 ≤ k ≤ hj . Now, define

∆wj,k � wj,k − wj,k−1, 1 ≤ j ≤ v, 1 ≤ k ≤ hj , wj,0 = 0, (13)

where wj,k’s are as given in (9). For a particular normal basis, all wj,k’s are fixed.
Hence, all ∆wj,k’s need to be determined only at the time of choosing the basis.
Using ∆wj,k’s, below we present an efficient NB (ENB) multiplication algorithm
over GF (2m) for odd values of m. The corresponding algorithm for even values
of m is shown in [18]. Also, an efficient scheme to compute ∆wj,k’s is presented
in [18].

Algorithm 3 (ENB Multiplication for m Odd)
Input: A, B ∈ GF (2m), ∆wj,k ∈ [0,m−1], 1 ≤ j ≤ v, 1 ≤ k ≤ hj , v = m−1

2
Output: C = AB
1. Initialize C := A�B, SA := A, SB := B
2. C
 1
3. For j = 1 to v {

Fast Normal Basis Multiplication 237

4. SA 	 1, SB 	 1
5. TA := A� SB , TB := B � SA
6. R := TA + TB
7. For k = 1 to hj {
8. R
 ∆wj,k
9. C := C +R
10. }
11. }
In the above algorithm, shifted values of A and B are stored in SA and

SB , respectively. In line 6, R ∈ GF (2m) contains (x0,j , x1,j , · · · , xm−1,j), i.e.,∑m−1
i=0 xi,jβ

2i . Also, right cyclic shift of R in lines 8, corresponds to∑m−1
i=0 xi,jβ

2i+wj,k . After the final iteration, C is the normal basis representation
of the required product AB. To illustrate the operation of the above algorithm,
we present the following example.

Example 1. Consider the finite field GF (25) generated by the irreducible poly-
nomial F (z) = z5+z2+1 and let α be its root, i.e., F (α) = 0. We choose β = α5,
then {β, β2, β4, β8, β16} is a type 2 GNB. Here m = 5, and v = 5−1

2 = 2. Using
Table 2 in [12], one has

δ1 = β3 = β + β8, h1 = 2, [w1,k]h1
k=1 = [0, 3],

δ2 = β5 = β8 + β16, h2 = 2, [w2,k]h2
k=1 = [3, 4].

Let A = β2 + β4 + β8 = (01110) and B = β + β4 + β16 = (10101) be two field
elements. Table 1 shows contents of various variables of the algorithm as they
are updated. The row with j being ’-’ is for the initialization step (i.e., line 1)
of the algorithm.

Table 1. Contents of variables in Algorithm 3 for multiplication of A = (01110) and
B = (10101).

j SA SB TA TB k ∆wj,k R C

- 01110 10101 - - - - - 00010

1
11100 01011 01010 10100

1
2

0
3

11110
11110
11011

11100
00111

2
11001 10110 00110 10001

1
2

3
1

10111
11110
01111

11001
10110

As it can be seen in Algorithm 3, all ∆wj,k’s have to be pre-computed. In
the above example, they are determined by calculating δj ’s, which is essentially
a multiplication process all by itself. For this multiplication, one can use either
Algorithm 1 or Algorithm 2. However, an efficient scheme which does not need
multiplication is presented in [18].

238 Arash Reyhani-Masoleh and M. Anwar Hasan

4.2 Cost and Comparison

In an effort to determine the cost of Algorithm 3, we give the dynamic instruction
counts for its software implementation. We also consider the number of memory
accesses to read the pre-computed values of ∆wj,k. For software implementation
of the above algorithm, one would heavily rely on instructions, such as, XOR,
AND and others which can be used to emulate cyclic shifts (in the C like pro-
gramming language). XOR instructions are needed in lines 6 and 9, which are re-
peated v and

∑v
j=1 hj times, respectively. Since v = m−1

2 and
∑v
j=1 hj =

CN−1
2

[10], the total number of XOR instructions is 1
2 (CN + m − 1) ⌈mω ⌉. Because

of the � operations in lines 1 and 5, one can also see that the above algo-
rithm requires m

⌈
m
ω

⌉
AND instructions. We assume that each i-fold cyclic shift,

1 ≤ i ≤ m − 1, in lines 2, 4 and 8 needs ρ
⌈
m
ω

⌉
instructions where ρ is as de-

fined earlier. In Algorithm 3, the number of cyclic shifts in lines 2, 4 and 8 are
1, 2v and

∑v
j=1 hj , respectively. Thus, the total number of cyclic shifts in this

algorithm is 1 + 2v +
∑v
j=1 hj =

1
2 (CN + 2m − 1) and so the total number of

instructions to emulate cyclic shifts used in Algorithm 3 is ρ2 (CN +2m−1)
⌈
m
ω

⌉
.

Based on the above discussion, we have the following theorem.

Theorem 3. The dynamic instruction count for Algorithm 3 is given by

#Instructions ≈
(
1 + ρ

2
CN +

3 + 2ρ
2

m− 2 + ρ

2

)⌈m
ω

⌉
.

For software implementation of Algorithm 3, if the loops are not unrolled and
the values of ∆wj,k’s are not hard-coded, one needs to store all these ∆wj,k, 1 ≤
j ≤ v, 1 ≤ k ≤ hj . Since the total number of ∆wj,k’s is

∑v
j=1 hj and each

∆wj,k ∈ [0,m−1] needs
log2 m� bits of memory, a total of about CN−12
log2 m�
bits of memory is needed to store the pre-computed ∆wj,k’s.

Table 2. Comparison of multiplication algorithms in terms of number of instructions
and memory requirements.

Algorithms # Instructions Memory

XOR AND Others Size in bits # Accesses

Alg. 1 1
4m (tm−1) m (tm−1) 2ρm

⌈
m
ω

⌉
(tm−1) �log2 m� 2m(tm−1)

Alg. 2 (tm−1)
⌈
m
ω

⌉
(tm−1)

⌈
m
ω

⌉
2ρ (tm−1)

⌈
m
ω

⌉
tm
2 �log2 m� tm

Alg. 3 1
2 (CN+m−2)

⌈
m
ω

⌉
m

⌈
m
ω

⌉
ρ
2 (CN+2m−1)

⌈
m
ω

⌉
CN−1

2 �log2 m�
CN−1

2

Ratio of

Alg. 2 to Alg. 3
≈ 2t
t+1 ≈ t ≈ 4t

t+1 ≈ 1 ≈ 2

Table 2 compares the number of dynamic instructions of the three algorithms
we have described so far. This table also gives memory sizes and numbers of mem-
ory accesses of these algorithms. As it can be seen in Table 2, both our proposed
schemes (i.e., Algorithms 2 and 3) are superior to the conventional bit-level
multiplication scheme (i.e., Algorithm 1). The final row of Table 2 gives ap-
proximate improvement factors of Algorithm 3 to Algorithm 2. A more detailed

Fast Normal Basis Multiplication 239

comparison of these two algorithms are given in Table 3 for the five binary fields
recommended by NIST for ECDSA (elliptic curve digital signature algorithm)
[13]. We have also coded these algorithms in software using the C programming
language. Table 3 also shows timing (in µs) for these codes executed on Pen-
tium III 533 MHz PC2. Our codes are parameterized in the sense that they
can be used for various m and t without major modifications. For high speed
implementation, the codes can be optimized for special values of m and t.
Agnew et. al. in [1] have proposed a bit-serial architecture for the NB mul-

tiplication. Although their work has been targeted to hardware implementa-
tion, the main idea can be used for software implementation similar to the
vector level method proposed here. For such a software implementation of [1],
one would require (CN − 1)

⌈
m
ω

⌉
XOR instructions, m

⌈
m
ω

⌉
AND instructions,

and ρ (CN +m− 1) ⌈mω ⌉ other instructions. Thus, the dynamic instruction count
would be (ρ+ 1) (CN +m− 1) ⌈mω ⌉ which is about twice of that in Algorithm 3
(see Theorem 3). In [19], one can find software implementation of the NB multi-
plication for two special cases, namely, two optimal normal bases. The method
used in [19] is similar to that of the NB multiplication of [1].
Some of the recently proposed polynomial basis multiplication algorithms,

for example [6], [9], create a look-up table on the fly based on one of the inputs
(say B) and yield significant speed-ups by processing a group of bits of the other
input (i.e., A) at a time. At this point, it is not clear whether such a group-level
processing of A can be incorporated into our Algorithm 3. However, if m is a
composite number, then one can essentially achieve similar kind of group-level
processing by performing computations in the sub-fields. This idea is explored
in the following section.

Table 3. Comparison of the proposed algorithms for binary fields recommended by
NIST for ECDSA applications (ω = 32).

Algorithm 2,

Parameters Algorithm 3

Instructions Memory Timing

m t CN XOR AND Others/ρ Total (ρ = 4) Size in bits # Accesses in µs Ratio

163 4 645
3906,
2418

3906,
978

7812,
2910

39060,
15036

2608,
2576

652,
322

307,
99

3.1:1

233 2 465
3720,
2784

3720,
1864

7440,
3720

37200,
19528

1864,
1856

466,
232

346,
126

2.75:1

283 6 1677
15273,
8811

15273,
2547

30546,
10089

152730,
51714

7641,
7542

1698,
838

1005,
318

3.16:1

409 4 1629
21255,
13234

21255,
5317

42510,
15899

212550,
82147

7362,
7326

1636,
814

1466,
473

3.1:1

571 10 5637
102762,
55854

102762,
10278

205524,
61002

1027620,
310140

28550,
28180

5710,
2818

8423,
2949

2.86:1

2 The PC has 64 M bytes of RAM, 32 K bytes of L1 cache and 512 K bytes of L2
cache.

240 Arash Reyhani-Masoleh and M. Anwar Hasan

5 Efficient Composite Field NB Multiplication Algorithm

In this section, we consider multiplications in the finite field GF(2m) where m
is a composite number. These fields are referred to as composite fields and have
been used in the recent past to develop efficient multiplication schemes [14],
[15]. When these fields are to be used for elliptic curve crypto-systems, one must
choose m such that its factor are large enough to resist the attack described by
Galbraith and Smart [4].

Lemma 3. [11] Let gcd(m1,m2) = 1. Let N1 = {β2j
1 | 0 ≤ j ≤ m1 − 1} be

a normal basis of GF (2m1) over GF (2). Then N1 is also a normal basis of
GF (2m1m2) over GF (2m2).

Here, we consider composite fields with only two prime factors3 (i.e., bothm1
andm2 are prime). Thus, in the following we give all equations and algorithm for
odd degrees (i.e., m1 and m2). The reader can easily extend it for even degrees
using the results of the previous section. Also, the parameters, namely δj , hj , v,
β, and ∆wj,k of the previous section are used here in the context of the sub-fields
GF (2m1) and GF (2m2) by putting an extra sub/superscript for example δ(1)j for

GF (2m1) and δ
(2)
j for GF (2m2).

Let A and B be two elements of GF (2m1) over GF (2) and C be their product.
Then we have the following from [17].

C =
m1−1∑
i=0

aibiβ
2i
1 +

v1∑
j=1

h
(1)
j∑
k=1

(
m1−1∑
i=0

yi,jβ
2
i+w(1)

j,k

1

)
, for m1 odd (14)

where
yi,j = (ai + ai+j)(bi + bi+j), 1 ≤ j ≤ v1, 0 ≤ i ≤ m1 − 1,

v1 =
m1 − 1
2

, β2j+1
1 =

h
(1)
j∑
k=1

β2
w

(1)
j,k

1 .

By combining Lemma 3 with (14), the following is obtained.

Lemma 4. Let A = (A0, A1, · · · , Am1−1) and B = (B0, B1, · · · , Bm1−1) be two
elements of GF (2m1m2) over GF (2m2) and C be their product. Then

C =
m1−1∑
i=0

AiBiβ
2i
1 +

v1∑
j=1

h
(1)
j∑
k=1

(
m1−1∑
i=0

Yi,jβ
2
i+w(1)

j,k

1

)
, for m1 odd (15)

3 This is important for elliptic curve crypto-systems. For such systems in today’s
security applications, the values of m appear to be in the range of 160 to several
hundreds only (571 as given in [13]). To avoid the attack of [4], one however may like
to choose m such that it has no small factors such as 2, 3, 5, 7, 11. This basically
makes one to choose m as the product of two primes.

Fast Normal Basis Multiplication 241

where

Yi,j = (Ai +Ai+j)(Bi +Bi+j), 1 ≤ j ≤ v1, 0 ≤ i ≤ m1 − 1, (16)

and Ai = (ai,0, ai,1, · · · , ai,m2−1), Bi = (bi,0, bi,1, · · · , bi,m2−1) ∈ GF (2m2) are
sub-field coordinates of A and B.

Lemma 4 leads to an algorithm for multiplication in composite fields using
normal basis. The algorithm is stated below.

Algorithm 4 (ECFNB Multiplication of GF (2m1m2) over GF (2m2))
Input: A, B ∈ GF (2m), ∆w

(1)
j,k ∈ [0,m1 − 1], 1 ≤ j ≤ v1, v1 = m1−1

2 , 1 ≤
k ≤ h

(1)
j

Output: C = AB
1. Initialize C := A⊗B, SA := A, SB := B
2. For j = 1 to v1 {
3. SA 	 m2, SB 	 m2
4. TA := A+ SA, TB := B + SB
5. R := TA ⊗ TB
6. For k = 1 to h

(1)
j {

7. R
 m2∆w
(1)
j,k

8. C := C +R
9. }
10. }
In lines 1 and 5 of Algorithm 4, A ⊗ B = (A0B0, A1B1, · · · , Am1−1Bm1−1)

denotes parallel sub-field multiplications of A and B. This sub-field multiplica-
tion can be implemented with an extension of Algorithm 3 such that it produces
m1 sub-field multiplications over GF (2m2). This is shown in Algorithm 5 where
A ✄ i (resp. A ✁ i) 0 ≤ i ≤ m2 − 1, denotes an i-fold right (resp. left) sub-field
cyclic shift of all sub-field elements of A, i.e., A0, A1, · · · , Am1−1, respectively.

Algorithm 5 (Parallel Sub-Field Multiplication over GF (2m2))
Input: A, B ∈ GF (2m), ∆w

(2)
j,k ∈ [0,m2− 1], 1 ≤ j ≤ v2, 1 ≤ k ≤ h

(2)
j , v2 =

m2−1
2
Output: C = A⊗B
1. Initialize C := A�B, SA := A, SB := B
2. C ✄ 1
3. For j = 1 to v2 {
4. SA ✁ 1, SB ✁ 1
5. TA := A� SB , TB := B � SA
6. R := TA + TB
7. For k = 1 to h

(2)
j {

8. R ✄ ∆w
(2)
j,k

9. C := C +R
10. }
11. }

242 Arash Reyhani-Masoleh and M. Anwar Hasan

In order to obtain the cost of Algorithm 4, we need to evaluate the cost of
Algorithm 5 which is called 1 + v1 = m1+1

2 times by the former. Like Algorithm
3, one can determine the dynamic instruction counts of Algorithm 5 to be 1

2 (C2+
m2−2) XOR, m2 AND and 1

2 (C2+2m2−1) others to emulate cyclic shifts. The
total cost of Algorithm 4 also depends on how sub-field elements, each ofm2 bits,
are stored in registers. For the sake of simplicity we assume that an element of
GF (2m2) is stored in one ω-bit register (for software implementation of elliptic
curve crypto-systems with both m1 and m2 being prime, most general purpose
processors would have ω bit registers where ω ≥ m2). For ω = 24 and 32, the
best values of m2 are those which have ONBs, i.e., 23 and 29, respectively. Thus,
each element of GF (2m) needs m1 registers and the cyclic shifts in lines 3 and
7 of Algorithm 4 are almost free of cost (or at best register renaming). Based
on this assumption, we give the dynamic instruction counts of Algorithm 4 in
Table 4. In this table, µ is the number of instructions needed for one sub-field
cyclic shift in each register and it is 4 in the C programming language.

Table 4. Cost of Algorithm 4.

XOR m1
2

[
(C1 + 2m1 − 3) + (m1+1)

2 (C2 +m2 − 2)
]

Instructions AND m1m2(m1+1)
2

Others µm1
4 (m1 + 1)(C2 + 2m2 − 1)

Memory Size in bits C1−1
2 �log2m1�+ C2−1

2 �log2m2�
Accesses C1−1

2 + (m1+1)(C2−1)
4

Table 5 shows the number of instructions and memory requirements of Al-
gorithm 4 for six different composite fields. These six fields are obtained by
combining three m1’s and two m2’s. Algorithm 4 is also coded for these com-
posite fields using the C programming language. The actual timing (in µs) of
Algorithm 4 executed on Pentium III 533 MHz PC are also shown in Table 5.

Table 5. Cost of Algorithm 4 for certain composite fields (µ = 4).

Parameters # Instructions Memory Actual timing
m m1 m2 C1 C2 XOR AND Others Total Size in bits # Accesses (in µs)
299 13 23 45 45 3445 2093 16380 21918 198 176 114
377 ” 29 ” 57 4264 2639 20748 27651 228 218 150
391 17 23 81 45 6001 3519 27540 37060 310 238 188
437 19 ” 117 ” 7714 4370 34200 46284 400 278 249
493 17 29 81 57 7378 4437 34884 46699 340 292 242
551 19 ” 117 ” 9424 5510 43320 58254 430 338 309

Fast Normal Basis Multiplication 243

6 Conclusions

In this article, we have presented a number of software algorithms for normal
basis multiplication over GF (2m). Both Algorithms 2 and 3 make maximal use
of the full width of the data-path of the processor on which the software is to be
executed and they provide significant speed-ups compared to the conventional
bit-level multiplication scheme (i.e., Algorithm 1). Algorithms 2 and 3 are partic-
ularly suitable if m is a prime. Such values of m are of importance, especially for
designing high speed crypto-systems based on Koblitz curves and for protecting
elliptic curve crypto-systems against the attack of Galbraith and Smart [4]. Both
Algorithms 2 and 3 have been coded for software implementation using C, and
our timing results show that Algorithm 3 is about 200% faster that Algorithm
2. These results are for those five Gaussian normal bases over the binary fields
which NIST has described in their ECDSA document [13]. For the purpose of
using NIST parameters, although we have presented our results for Gaussian
normal bases, our algorithms are quite generic and can be used for any normal
bases of GF (2m) over GF (2).
We have also considered composite fields with m = m1 · m2. To avoid the

attack of [4] on elliptic curve crypto-systems defined over these composite fields,
we choose both m1 and m2 to be prime. We have presented an algorithm (i.e.,
Algorithm 4) for normal basis multiplication for GF (2m) over GF (2m2). Our
results show that for similar values of m, Algorithm 4 can be much more efficient
than Algorithm 3. For example, the actual timing of Algorithm 3 is 318 micro-
seconds for GF (2283) whereas the timing of Algorithm 4 is 114 micro-seconds
for GF (2299). Composite fields also provide an added flexibility to hardware-
software co-design of finite field processors. For example, Algorithm 5 which is
called by Algorithm 4 a total of m1+1

2 times, can be implemented in hardware
for small values of m2, and Algorithm 4 can be embedded in a micro-controller
which would give us a high speed, yet quite flexible, normal basis multiplier over
very large fields.

Acknowledgment

The authors would like to thank Z. Zhang for his help with implementing the
algorithms and getting their timing results.

References

1. G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. “An Imple-
mentation for a Fast Public-Key Cryptosystem”. Journal of Cryptology, 3:63–79,
1991.

2. G. B. Agnew, R. C. Mullin, and S. A. Vanstone. “An Implementation of Elliptic
Curve Cryptosystems Over F2155”. IEEE J. Selected Areas in Communications,
11(5):804–813, June 1993.

3. D. W. Ash, I. F. Blake, and S. A. Vanstone. “Low Complexity Normal Bases”.
Discrete Applied Mathematics, 25:191–210, 1989.

244 Arash Reyhani-Masoleh and M. Anwar Hasan

4. S. D. Galbraith and N. Smart. A Cryptographic Application of Weil Descent. In
Proceedings of the Seventh IMA Conf. on Cryptography and Coding, LNCS 1764,
pages 191–200. Springer-Verlag, 1999.

5. S. Gao and Jr. H. W. Lenstra. “Optimal Normal Bases”. Designs, Codes and
Cryptography, 2:315–323, 1992.

6. M. A. Hasan. Look-up Table-Based Large Finite Field Multiplication in Memory
Constrained Cryptosystems. IEEE Transactions on Computers, 49:749–758, July
2000.

7. M. A. Hasan, M. Z. Wang, and V. K. Bhargava. “A Modified Massey-Omura
Parallel Multiplier for a Class of Finite Fields”. IEEE Transactions on Computers,
42(10):1278–1280, Oct. 1993.

8. D. Johnson and A. Menezes. “The Elliptic Curve Digital Signature Algorithm
(ECDSA)”. Technical Report CORR 99-34, Dept. of C & O, University of Water-
loo, Canada, August 23 1999. Updated: Feb. 24, 2000.

9. J. Lopez and R. Dahab. High Speed Software Multiplication in F2m . In Proceedings
of Indocrypt 2000, pages 203–212. LNCS 1977, Springer, 2000.

10. Chung-Chin Lu. “A Search of Minimal Key Functions for Normal Basis Multipli-
ers”. IEEE Transactions on Computers, 46(5):588–592, May 1997.

11. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers, 1993.

12. R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. “Optimal
Normal Bases in GF (pn)”. Discrete Applied Mathematics, 22:149–161, 1988/89.

13. National Institute of Standards and Technology. Digital Signature Standard. FIPS
Publication 186-2, February 2000.

14. S. Oh, C. H. Kim, J. Lim, and D. H. Cheon. “Efficient Normal Basis Multipliers
in Composite Fields”. IEEE Transactions on Computers, 49(10):1133–1138, Oct.
2000.

15. C. Paar, P. Fleishmann, and P. Soria-Rodriguez. “Fast Arithmetic for Public-Key
Algorithms in Galois Fields with Composite Exponents”. IEEE Transactions on
Computers, 48(10):1025–1034, Oct. 1999.

16. A. Reyhani-Masoleh and M. A. Hasan. “A Reduced Redundancy Massey-Omura
Parallel Multiplier over GF (2m)”. In 20th Biennial Symposium on Communica-
tions, pages 308–312, Kingston, Ontario, Canada, May 2000.

17. A. Reyhani-Masoleh and M. A. Hasan. “On Efficient Normal Basis Multiplication”.
In LNCS 1977 as Proceedings of Indocrypt 2000, pages 213–224, Calcutta, India,
December 2000. Springer Verlag.

18. A. Reyhani-Masoleh and M. A. Hasan. “Fast Normal Basis Multiplication Using
General Purpose Processors”. Technical Report CORR 2001-25, Dept. of C & O,
University of Waterloo, Canada, April 2001.

19. M. Rosing. Implementing Elliptic Curve Cryptography. Manning Publications
Company, 1999.

20. B. Sunar and C. K. Koc. “An Efficient Optimal Normal Basis Type II Multiplier”.
IEEE Transactions on Computers, 50(1):83–88, Jan. 2001.

	Fast Normal Basis Multiplication Using General Purpose Processors
	1 Introduction
	2 Preliminaries
	2.1 Normal Basis Representation
	2.2 Conventional NB Multiplication Algorithm

	3 Vector-Level NB Multiplication
	4 Efficient NB Multiplication over GF(2^m)
	4.1 Algorithm
	4.2 Cost and Comparison

	5 Efficient Composite Field NB Multiplication Algorithm
	6 Conclusions
	Acknowledgment
	References

