
The RIPEMDL and RIPEMDR Improved
Variants of MD4 Are Not Collision Free

Christophe Debaert1 and Henri Gilbert2

1 DGA/DCE/CELAR
2 France Télécom R&D

Abstract. In 1992, the cryptographic hash function RIPEMD, a Eu-
ropean proposal, was introduced as an improved variant of the MD4
hash function. RIPEMD involves two parallel lines of modified versions
of the MD4 compression function. Three years later, an attack against
a reduced version of RIPEMD in which the first or the last round of
the RIPEMD compression function is omitted was described by Hans
Dobbertin, who also published in 1998 a cryptanalysis of MD4. In this
paper, we present a method for finding collisions in each of the paral-
lel lines of RIPEMD. The collision search procedure requires only a few
seconds computing time. We show that although the modifications of
the MD4 compression function Used in RIPEMD introduce additional
constraints in the cryptanalysis as Compared with Dobbertin’s attack
of MD4, these modifications do not result in an increase of the collision
search computation time. It is still an open question whether collisions
can be found for the full RIPEMD function.

1 Introduction

A collision resistant hash function can be informally defined as an easy to com-
pute but hard to invert function which maps a message of arbitrary length into
a fixed length (m-bit) hash value, and satisfies the property that finding a colli-
sion, i.e. two messages with the same hash value, is computationally unfeasible.
The best collision resistance one can hope to achieve with an m-bit function
is bounded above by the O(2m/2) complexity of a birthday attack. For most
currently used hash functions, m = 128 or m = 160. Collision resistant hash
functions represent a quite useful primitive in cryptography and are of frequent
use for the purposes of message pre-processing in digital signature, commitment
in public key authentication schemes, etc.

Most collision resistant hash function candidates proposed so far are based
upon the iterated use of a so-called compression function, which maps a fixed
length (m + n-bit) input value into a shorter fixed length m-bit output value.
First padding data (which include filling bits and sometimes information such as
the message length) is appended to the M message to be hashed as to obtain a
padded message which length is a multiple of n, and then split into n-bit blocks
M1 to Mk. Denote the compression function by f and the hash function by h.
The m-bit hash value h(M) is computed using the recurrence: H0 = IV 0 (where

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 52–65, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



The RIPEMDL and RIPEMDR Improved Variants 53

IV0 is an m-bit constant initial value); for i=1 to k Hi = f(Hi−1||Mi); h(M) =
Hk. We are using in the sequel a terminology introduced by H. Dobbertin to
distinguish two kinds of situations where two distinct (IV,M) and (IV’,M’) inputs
have to the same image by the compression function of an iterated hash function:
we will restrict the use of the term collision to the case where in addition IV=IV’
and use the term pseudo collision otherwise. It was independently shown by
Merkle and Damgard that if a compression function f is collision and pseudo
collision resistant, then under some simple additional conditions on the padding
rule, the associated hash function is collision resistant.

The most commonly used and (for the most recent ones) most trusted existing
collision resistant hash functions do all belong to the MD-family of iterated hash
functions, which includes MD4 (a 128-bit hash function proposed in 1990 by R.
Rivest [9]), MD5 (a more conservative 128-bit hash function proposed in 1991
by R. Rivest [10]), RIPEMD (a 128-bit function which mixes the outputs of two
parallel improved variants of MD4, proposed in 1995 by the European RIPE
consortium [8]), RIPEMD-128 and RIPEMD-160 (128-bit and 160-bit variants
of RIPEMD [6]), SHA (a 160-bit hash function proposed in 1992 by NIST), and
SHA-1 (which was proposed by NIST as an improvement and replacement to
the initial SHA [7] in 1994).

The hash functions of the MD family and the associated compression func-
tions of MD family have been submitted to an extensive cryptanalytic investi-
gation during the past years. Some collisions attacks were discovered on two of
the three rounds of the MD4 compression function: an attack on the two last
rounds by den Boer and Bosselaers [2] and an attack on the two first rounds
leading to almost collisions on the full MD4, by Vaudenay [11]... This provided
initial arguments in favor of moving from MD4 to MD5. Later on, Dobbertin
established three major results on the cryptanalysis of the MD family of hash
functions, namely (1) collisions for the full MD4 compression and hash functions
that led to recommending the abandonment of its use (2) collisions for both
the first and the last two rounds of the compression function of RIPEMD and
(3) pseudo collisions on the whole MD5 compression [4], which do not lead to
a collision of the associated MD5 hash function, but nevertheless invalidate the
applicability of the Merkle-Damgard construction. Finally, Joux and Chabaud
[1] discovered an attack allowing to find collisions for SHA in approximately 261

SHA computations (instead of the about 280 computations an ideal 160-bit hash
function would require). As a consequence of these analyses, MD4 and SHA are
no longer recommended, RIPEMD-128 seems to be a more conservative 128-bit
hash function than MD5 and RIPEMD, and RIPEMD-160 and SHA-1 seem to
be far from reach of known attack methods. In this paper we present a new result
on the cryptanalysis of RIPEMD, which is to a certain extent complementary of
the attack on the two-round version of RIPEMD described in [5]: we show how
to construct collisions for the RIPEMDL and RIPEMDR three-rounds improved
variants of MD4 used in the two parallel lines of computations of the RIPEMD
compression function (in the left line and the right line respectively). The overall
structure of our attack on RIPEMDL and RIPEMDR is close to the one in Dob-



54 C. Debaert and H. Gilbert

bertin’s attack on MD4 [3]. However, some of the MD4 modifications introduced
in RIPEMDL and RIPEMDR prevent against too direct transpositions of the
MD4 attack, and do substantially complicate the construction of collisions, so
that the key steps of both attacks are quite different. The rest of this paper is
organized as follows. Section 2 briefly describes the RIPEMD, RIPEMDL and
RIPEMDR compression functions (a full description of which is provided in ap-
pendix), and introduces some basic techniques applicable to the cryptanalysis
of hash functions of the MD family. Section 3 provides an overview of our at-
tack strategy and of the main steps of the attack, which are later on detailed in
Sections 5, 6 and 7. Section 8 concludes the paper.

2 Preliminaries

2.1 Notation

Throughout this paper, all the operations or functions considered relate to 32-bit
words. The + symbol represents a modulo 232 addition, the ⊕, ∧, and ∨ symbols
represent the bitwise exclusive OR, bitwise AND and bitwise OR respectively.
If X is a 32-bit word and s ∈ [0..31] then X<<s denotes the left cyclic shift of
X by s bit positions to the left.

2.2 Description of the RIPEMD, RIPEMDL, and RIPEMDR

Compression Functions

The RIPEMD compression function transforms a 4-word (128-bit) initial state
value IV = (IVA, IVB , IVC , IVD) and a 16-word message block X = (X0, .., X15)
into a 128-bit output value (AA,BB,CC,DD). As said before, it consists of two
parallel lines of computation achieving two variants of the MD4 compression
function, namely the RIPEMDL and RIPEMDR three round compression func-
tions.

The RIPEMDL (resp RIPEMDR) register values (A,B,C,D) (resp
(A′B′C ′D′)) are initially set to the IV value. Each of the three rounds of
RIPEMDL (resp RIPEMDR) consists of 16 steps. Each step consists of a trans-
formation of the form

A = (A + fr(B,C,D) + Xϕ(i mod 16) + Kr)<<si

A′ = (A′ + fr(B′, C ′, D′) + Xϕ(i mod 16) + K ′
r)<<si

where i ∈ [0..47] denotes the step number, r ∈ [0..2] denotes the round number,
fr is a round dependent 32-bit bitwise boolean function of three inputs (namely
the majority function in the first round, the multiplexing function in the second
round and the exclusive or in the third round; ϕ is a round-dependent permu-
tation of i mod 16, (namely the identity permutation of in the first round and
two other permutations denoted by σ and ρ in the two other rounds), so that
each message word is involved in exactly one step of each round; si is a rota-
tion amount which depends upon the step number and Kr and K ′

r are round



The RIPEMDL and RIPEMDR Improved Variants 55

dependent constants: they represent the single element which causes RIPEMDL

and RIPEMDR to differ. Finally the RIPEMD (resp RIPEMDL and RIPEMDR)
outputs are deduced from the (A,B,C,D) and (A′, B′, C ′, D′) states obtained
at the completion of step 47.

A detailed description of the above compression functions is provided in
appendix.

The problem of finding an (X,X∗) pair of colliding messages for a compres-
sion function of the MD family such as say RIPEMDL can be restated in terms
of controlling the (∆A,∆B,∆C,∆D) = (A,B,C,D) − (A∗, B∗, C∗, D∗) differ-
ences between the register values induced by X and X∗ at the various steps of
the computation.

3 Outline of Our Attack

In this Section we provide an outline of the overall structure of our attack on
the RIPEMDL and RIPEMDR compression functions. Our aim is to construct
a collision of the form f(IV 0, X) = f(IV O,X∗) where IV 0 is defined as the
proposed initial value for RIPEMD [8] and X = (Xi), i = 0..15 and X∗ = X∗

i , i =
0..15 are two 16-word messages. We further require that only one X word Xi0 be
distinct from the corresponding X∗ word X∗

i0
, and that the ∆Xi0 = Xi0 − X∗

i0
difference be of weight 1 (in other words there exists an integer k ∈ [0..31], such
that ∆Xi0 = 1<<k).

3.1 Attack Structure

There are three occurrences of the Xi0 (resp X∗
i0

) word in the f computation,
namely at steps i0 , 16 + ρ(i0 mod 16), 32 + σ(i0 mod 16), which respectively
belong to the first, the second and the third round1 of f [table 1].

Due to the fact that each step represents a one to one transformation of the
(A,B,C,D) register, the collision must necessarily happen at occurrence 3 of
Xi0 .

Our overall attack strategy is similar (at least at the level of detail considered
in this Section) to the one used in Dobbertin’s MD4 attack [3]. It consists in
trying to enforce a suitably selected ”almost collision”, i.e. a suitably chosen low
weight difference value, just after occurrence 2 of the Xi0 (resp X∗

i0
) message

words, in such a way that with sufficiently high probability this almost collision
results, just before occurrence 3, in an intermediate difference value which is
compensated during that step by the ∆Xi0 message difference. The collision is
then preserved between both computations after occurrence 3.

A little bit more in detail, our attack consists (once a suitable choice of i0
has been found) of three main parts, which purpose is to efficiently generate
allocations of the 16 Xi words in such a way that the probability of obtaining a
full collision for one of these allocations is high.
1 ρ and σ are defined at the end of the article.



56 C. Debaert and H. Gilbert

Table 1. The three main parts of the attack.

IV0

Part 3: (backward adjustment)

Occurrence 1 of Xi0 , X∗
i0 (step i0 = 10)

Part 2: (inner almost-collisions search)

Occurrence 2 of Xi0 , X∗
i0 (step 16 + ρ(i0 mod 16) = 20)

Part 1: (differential part)

Occurrence 3 of Xi0 , X∗
i0 (step 32 + σ(i0 mod 16) = 33)

(1) Differential part [occurrences 2 to 3]

This preliminary part of the attack consists in finding a suitable ∆ low weight
intermediate difference value such that if (∆A,∆B,∆C,∆D) = ∆ after occur-
rence 2 of the ∆Xi0 message difference, then with a sufficiently high probability
(∆A,∆B,∆C,∆D) = 0 after occurrence 3. It is based upon quite simple differ-
ential cryptanalysis techniques.

(2) Almost collision search [occurrences 1 to 2]

This is the most complex part of the attack. It consists of finding an allocation
of the Ai0 , Bi0 , Ci0 , Di0 registers value at the end of step i0 and allocations of the
Xi words corresponding to those i values involved in steps i0 (occurrence 1) to
16 + ρ(i0 mod 16) (occurrence 2) which together ensure that an almost collision
occurs at occurrence 2, i.e. that the difference value on the registers A to D is
equal to the ∆ low weight difference found in part (1).

(3) Backward adjustment [beginning to occurrence 1]

This part of the attack consists of finding allocations of the Xi values not
fixed in part (2) such that initial value IV0 results in the Ai0 , Bi0 , Ci0 , Di0

register values at the completion of occurrence 1 (step i0).

The actual collision search procedure consists of first achieving the precom-
putations of parts (1) and parts (2) above, which determine a first subset of
the Xi allocations, and then of using part (3) to efficiently generate many al-
locations of the other Xi values leading to an almost collision after occurrence
2, until eventually one of these almost collisions provides a full collision after
occurrence 3.



The RIPEMDL and RIPEMDR Improved Variants 57

3.2 Selecting an Appropriate i0 Value: Reasons for the i0 = 10
Choice

The selected i0 value must achieve the best possible trade-off between the re-
quirements inherent to the different parts of the attack, which can be summarized
as follows:

- Part 1 (differential part): the number of steps between occurrences 2 and
3 of Xi0 must not be too large in order for the probability of the differential
characteristic used in part 1 to be large enough. More importantly, the σ(i0 mod )
number of steps where the H function (exclusive OR) is used must be extremely
low, because otherwise the very fast diffusion achieved by H would result in
unacceptably small collision probabilities.

- Part 2 (almost collisions search): the 16+ρ(i0 mod 16)− i0 number of steps
between occurrences 1 and 2 of Xi0 must be large enough (say at least 6), but
not too large in order to leave some free variables for part 3 of the attack, and if
possible not involve a not too large fraction of F functions (multiplexing), which
are harder to exploit than the G function (majority).

- Part 3 (backward adjustment): as said before, the number of Xi variables
left free after part 2 must be sufficient. Due to the modifications introduced in
the RIPEMD ρ and σ permutations as compared with those involved MD4, it is
impossible to find any i0 value which is as suitable for an attack as the i0 = 12
value used in the attack of MD4.

The part 1 requirement on a low σ(i0 mod 16) number of steps involving
the H functions between occurrences 2 and 3 is very demanding, and leads to
discarding candidate index value such as i0 = 15. The i0 = 13 index value had
also to be discarded because the number of steps between occurrences 1 and 2
of Xi0 is only 5, a too low value. The index value i0 = 10 appeared to realize the
best trade-off between the various requirements: the number of steps between
the end of occurrence 2 (step 21) and the end of occurrence 3 (step 34) is 13, a
rather low value (note that the corresponding number of steps in the MD4 attack
is 15), and more importantly only 3 of these 13 steps involve the H function;
finally, the number of steps between occurrence 1 (step 10) and occurrence 2
(step 20) is acceptable (11 steps, which involve the 9 Xi input words 1, 4, 7, and
10 to 15).

The difference between X10 and X∗
10 is chosen equal to the low Hamming

weight value 1<<6. The attack aims at finding a collision for two collections of
words X and X∗ defined by setting:

X∗
i = Xi for i �= 10, X∗

10 = X10 + 1<<6

Each of the 3 parts ends with an occurrence of X10. The first occurrence of X10
introduces differences in the computation of the collision. This differences in the
registers are compensated by the difference of the third occurrence of X10 at
step 33 and are equal to zero. So between the first and the second occurrences
of the word 10, the differences have to be controlled to allow the compensation
of the variations between steps 21 and 33.



58 C. Debaert and H. Gilbert

To achieve this, a well-chosen value for the differences at step 20, ∆20 =
(1<<24, 0, 0,−1<<6), is required.

4 Differential Attack Modulo 232 (Steps 21-33).

The ∆20 differences value just before step 21 must result after step 32 in an
intermediate difference value compensated at step 33 by the ∆X10 = 1<<6

difference. This part of the attack is a routine differential attack.
The variations on the register occurring at any computation step i come from

the difference on the inputs Xi and X∗
i , the direct diffusion of the changing reg-

ister and the indirect diffusion from the boolean vector function. The difference
on the inputs occurs only when X10 is used in the step (steps 10, 20 and 33).
The direct diffusion cannot be suppressed whereas the differences due to indirect
diffusions have a non zero probability to appear for the multiplexing (F ) and
Majority (G) functions. Thus, with a certain probability, the indirect diffusions
are equal to zero in those steps belonging to the second round of the compres-
sion function (21-31) and compensate the variations during the third round steps
(31-33).

The probabilities can be computed backward from step 33 to step 21. We
obtain at the beginning of step 21, a ∆20 = (1<<24, 0, 0,−1<<6) difference lead-
ing to no difference at the end of step 33, ∆33 = (0, 0, 0, 0). Table 2 gives for
step i, the probability for ∆i to be equal to the values in the table under the
assumption that ∆i−1 does the same.

Table 2. Differential attack.

step 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
A 1<<24 1<<31 1<<6 0
B 0 0 0 0
C 0 0 0 0
D −1<<6 −1<<15 −1<<27 −1<<6 0
P 1 1 1 1 1 1/9 1/9 1/3 1/3 1/9 1/9 1/3 1/3 1/9 1/9 1/3 1

The probabilities in table 2 are an approximation calculated without taking
the correlations between the lines into account. Each step is strongly dependent
on the 3 previous steps, but an exact computation of the probability would
require lengthy considerations.

The differential attack cannot be achieved unless an initial constraint is sat-
isfied. Actually, in an inner almost-collision, the registers are given fixed values.
So registers from 18 to 20 are known and their values fix the probability of a
computation with no indirect diffusion at step 21, to 0 or 1. A constraint is
added. We reflect this additional condition in saying that in order for an inner
almost-collision to be admissible, the following equations must be satisfied:

G(A20, B19, C18) = G(A∗
20, B

∗
19, C

∗
18) (1)

∆20 = (1<<24, 0, 0,−1<<6) (2)



The RIPEMDL and RIPEMDR Improved Variants 59

Suppose we have an admissible inner-collision. Then the probability2 to
achieve the differential attack is smaller than but close to 2−26.95.

5 Backward Adjustment (Steps 0 to 9)

Suppose we have found an admissible inner almost-collision. The method used
to find an inner almost-collision corresponds to the resolution of a system where
the parameters are the 32-bit registers used at steps 8 to 20 and the variation
of the input word X10. Solving the system fixes the contents of the registers R8
to R20. So using the equations of steps 12 to 20, we obtain the values of words
1, 4, 7, 10, 12, 13, 14 and 15.

The input word X11 appears in step 11. But a solution of the almost collision
does not fix B7 which X11 depends upon. So it does not fix X11. Nevertheless,
since the word X10 is fixed, B7 and C6 are largely linked and X11 cannot be
considered as a free variable:

C6 = C<<18
10 − X10 − F (D9, A8, B7) − K0 (3)

There are still 7 free variables left for the rest of the attack. This is 2 variables
less than in the cryptanalysis of MD4. But since the differential part of the attack
requires numerous trials, it must be possible to take arbitrary values for some of
the input words. For this, we randomly select X0, X2 and X3. Since X1 and X4
are fixed by the admissible inner almost-collision found before, we can compute
steps 0 to 4 to obtain the register values 0 to 4. Thus the backward adjustment
problem consists in finding the remaining free variables, namely D5, X5, X6, X8
and X9.

Let’s fix C6 = −1, set B7 and compute X11. The equations of step 7 and 10
become:

D5 = B<<23
7 − X7 − B3 − K0 (4)

F (D9, A8, B7) = C<<18
10 − X10 − C6 − K0 (5)

Due to the involvement of the F boolean function (multiplexing) in the above
equation , B7 is not easy to compute after the inner almost-collision search. So,
the equation (5) is handled as a new constraint for the resolution of the admissible
inner almost-collision search system. It must be satisfied before the beginning of
the computation for the right initial value.

Finally we know D5 from equation (4) above, i.e. we know all registers from
0 to 20. At steps 5, 6, 8 and 9, the values of X5, X6, X8 and X9 compensate the
contents of the registers.

This means we can reach the connection to a given inner almost-collision
from a given initial value and keep 3 words free for the differential attack if the
given inner almost-collision satisfies (5).
2 This probability has to be compared with 2−30.11, the probability found in the crypt-

analysis of MD4.



60 C. Debaert and H. Gilbert

Explicitly, the prescribed initial value is matched by the settings:

A4 = (A0 + X4 − F (B3, C2, D1) + K0)<<5 (6)
C6 = 0xffffffff (7)
D5 = B<<23

7 − B3 − X7 − K0 (8)
X5 = D<<24

5 − D1 − F (A4, B3, C2) − K0 (9)
X6 = C<<25

6 − C2 − F (D5, A4, B3) − K0 (10)
X8 = A<<21

8 − A4 − F (B7, C6, D5) − K0 (11)
X9 = D<<19

9 − D5 − F (A8, B7, C6) − K0 (12)

6 Inner Almost-Collisions

6.1 Steps 10 to 20: A System with Constraints

In this Section, we consider the compression function between the first two oc-
currences of X10 and X∗

10 (10-20) and search an inner almost-collision between
steps 10 and 20. The inner almost-collision has to be admissible and to satisfy
the constraints resulting from the backward adjustment and differential parts of
the attack:

C6 = −1 (13)
F (D9, A8, B7) = C<<18

10 − X10 + 1 − K0 (14)
G(A20, B19, C18) = G(A∗

20, B
∗
19, C

∗
18) (15)

∆20 = (1<<24, 0, 0,−1<<6) (16)

Thus, finding an inner almost-collision can be expressed as solving a system
of equations under these four Constraints3. For each step from 10 to 20, an
equation involving only the ∆Xj difference values, not the Xj values themselves,
is provided by eliminating the value of the words.

Xj = a
<<32−sj

j+1 − (aj + fi(bj , cj , dj) + Kj) (17)

X∗
j = a

∗<<32−sj

j+1 − (a∗
j + fi(b∗

j , c
∗
j , d

∗
j ) + Kj) (18)

=⇒ ∆Xj = ∆a
<<32−sj

j+1 − ∆aj − ∆fi(bj , cj , dj) (19)

Adding the equation (15) and using equation (16), we obtain a system of 12
(19)-like equations.

The resolution of this system fixes the contents of the registers from 8 to 20.
Once the register values are known, the values of the words 10 to 15, 1, 4 and 7
can be deduced, using the (17)-like equations.

As the words X10 and X13 appear twice between steps 10 and 20, the X10
(resp X13) values provided by the equations of steps 10 and 20 (resp 13 and 18)
3 there were only two constraints in MD4 cryptanalysis.



The RIPEMDL and RIPEMDR Improved Variants 61

must be equal. Thus two constraints must be added to the system in order for
the register values to provide consistent X10 and X13 values. be added to

Therefore, an admissible inner almost-collision can be found by solving the
system under the additional two constraints:

A<<21
20 − (A16 + G(B19, C18, D17) + K20) = C<<18

10 − (G(D9, A8, B7) + K10 − 1)

D<<25
13 − (D9 + F (A12, B11, C10) + K13) = C<<24

18 − (C14 + G(D17, A16, B15) + K18)

6.2 Resolution

The resolution of the system and constraints defined above aims at finding the
suitable values for the contents of the registers from B7 to A20 and differences
on registers R11 to R20. The registers after 21 are computed by choosing ran-
domly X0, X2 and X3, whereas the registers before 6 are fixed by the backward
adjustment as described previously.

We have to control the differences in the registers between the two first
occurrences of the word 10, from ∆9 = (0, 0, 0, 0) to ∆20 = (1<<24, 0, 0,−1<<6).
There are two ways to make the choices on the registers. On the one hand, the
content of a register can be fixed to simplify the system, this specialization of
the system reduces strongly the choices on the content of the register. On the
other hand, at first, only the differences in the registers are chosen as to ensure
consistency in the diffusions and afterwards the registers are given values. This
leads to more possible values for a register.

In the resolution of the system, after suitable “specializations”, solutions can
be found by iterative solving of equations of the form:

G(Z + dZ, a1, b1) − G(Z, a2, b2) = C

where the Z unknown is a 32-bit word, G is a derived from a ternary boolean
function and dZ, a1, b1, a2, b2 and C are known words. Equations are solved
recursively and bitwise from the lowest bit to the highest.

Let’s continue the backward computation of the differences begun in the
differential part of the attack. We obtain the differences for registers from R13
to R20 [table 3] and simplify the system.

Table 3. Diffusion.

step 13 14 15 16 17 18 19 20
A specialization 1<<13 1<<24

B and 0 0 0
C resolution 0 0 0
D −1 −1<<6 −1<<6

Since the first equations of the system involve the multiplexing function F ,
the indirect diffusions are far more difficult to control. We specialize this part of
the system by choosing D13 = −1 and D∗

13 = 0.



62 C. Debaert and H. Gilbert

Without the two additional constraints, the system can be rewritten:

D13 = −1 , D∗
13 = 0 (20)

∆C<<18
10 = 1<<6 (21)

∆F (C10, D9, A8) = ∆B<<17
11 (22)

∆F (B11, C10, D9) = ∆A<<26
12 (23)

∆F (A12, B11, C10) = −1 (24)
A∗

12 = B11 + ∆C10 (25)
∆F (C14, D13, A12) = −∆B11 (26)

B15 = C14 ⊕ (1<<31 − ∆A12) (27)
∆G(A16, B15, C14) = 0 (28)
∆G(D17, A16, B15) = 0 (29)
∆G(C18, D17, A16) = 0 (30)
∆G(B19, C18, D17) = −1<<6 (31)
∆G(A20, B19, C18) = 0 (32)

The end of the system (from equation (28)) can be solved as it is done in
MD4 cryptanalysis: except in equation 31 (step 20), the diffusions are direct as
it is in the differential attack and at step 20, the diffusion from the input are
compensated by the indirect diffusion4, whereas the direct diffusion introduces
the variations on registers R20 required for the rest of the complete attack.

Only the variations for the registers R10, R11 and R12 are still free. Never-
theless, we know ∆C<<18

10 = 1<<6. By choosing C10 and C∗
10 to maximize the

Hamming weight of the ∆C10 difference, we obtain ∆C10 = 1<<20 − 1<<14 + 1
and maximize the possibilities of solving the rest of the system.

7 Collision Search Algorithm

We can now describe the collision search algorithm for RIPEMDL.

There is a practical algorithm which requires less than 1 second and
allows us to compute an inner almost-collision that satisfies the four
equations:

C6 = −1

F (D9, A8, B7) = C<<18
10 − X10 + 1 − K10

∆20 = (1<<24, 0, 0,−1<<6)

∆G(A20, B19, C18) = 0

4 We can notice that since registers R17 has the same variation as words 10, the
majority boolean function leads to a high probability to have a solution for register
R19.



The RIPEMDL and RIPEMDR Improved Variants 63

1. Choose C10 and C∗
10 that satisfy ∆C10 = 1<<20 − 1<<14 + 1.

2. Choose A12, ∆A12 and ∆B11. Verify ∆F (A12, B11, C10) = −1.
3. Compute registers from 9 to 18 and verify the first constraint to obtain the

value of X13.
4. Compute registers R7, R8, R19 and R20. Then verify the second constraint

to obtain the value of X10.
5. With the contents of the registers, set the value for X11, X12, X14, X15, X1,

X4 and X7. We obtain an admissible inner almost-collision.
6. Choose randomly X0, X2 and X3.
7. Compute the registers for 0 to 5 as described in section 5. We reach the right

initial value.
8. Achieve the differential part of the attack by making new trial for X0, X2

and X3 until we reach a collision ∆33 = (0, 0, 0, 0).

With RIPEMDL, we obtained a collision for the (X,X∗) pair determined by
the following values:

X0= 0x10978d07 X∗
0 = 0x10978d07 X8= 0xd0f6edc3 X∗

8 = 0xd0f6edc3
X1= 0x937e0e67 X∗

1 = 0x937e0e67 X9= 0xd22c0042 X∗
9 = 0xd22c0042

X2= 0x697a5fe9 X∗
2 = 0x697a5fe9 X10= 0x847dc027 X∗

10= 0x847dc067
X3= 0x313d55b0 X∗

3 = 0x313d55b0 X11= 0x84fbc027 X∗
11= 0x84fbc027

X4= 0xa816066b X∗
4 = 0xa816066b X12= 0xfc7f4140 X∗

12= 0xfc7f4140
X5= 0xed3f60d6 X∗

5 = 0xed3f60d6 X13= 0xfff00001 X∗
13= 0xfff00001

X6= 0xc6c1e1a X∗
6 = 0xc6c1e1a X14= 0x7fff82 X∗

14= 0x7fff82
X7= 0xa58dc669 X∗

7 = 0xa58dc669 X15= 0xffbf43 X∗
15= 0xffbf43

With RIPEMDR, we obtained a collision for the (X,X∗) pair determined by the
following values:

X0= 0x3e00cc54 X∗
0 = 0x3e00cc54 X8= 0xa32b5a9c X∗

8 = 0xa32b5a9c
X1= 0xc6008000 X∗

1 = 0xc6008000 X9= 0xd6e17c84 X∗
9 = 0xd6e17c84

X2= 0x4f269ad0 X∗
2 = 0x4f269ad0 X10= 0xc0003440 X∗

10= 0xc0003480
X3= 0x398358a6 X∗

3 = 0x398358a6 X11= 0xc07e3440 X∗
11= 0xc07e3440

X4= 0x1448002 X∗
4 = 0x1448002 X12= 0xabdcb55a X∗

12= 0xabdcb55a
X5= 0xcc41f9d9 X∗

5 = 0xcc41f9d9 X13= 0xaf4d741b X∗
13= 0xaf4d741b

X6= 0xb0304fed X∗
6 = 0xb0304fed X14= 0xafdd739c X∗

14= 0xafdd739c
X7= 0x104002 X∗

7 = 0x104002 X15= 0xb05d335d X∗
15= 0xb05d335d

8 Conclusion

It turns out that the modifications of the MD4 compression function introduced
in each of the RIPEMDL and RIPEMDR compression functions of RIPEMD
leads to more constraints in the cryptanalysis as compared with the Dobbertin’s
cryptanalysis attack of MD4, but collisions can still be found easily (smaller
than 2−26.95 for the differential part of the attack). Our attack provides some
arguments in favor of the conjecture that the existence of an attack on MD4 is



64 C. Debaert and H. Gilbert

not due to a suboptimal selection of parameters such as the σ and ρ, the rotation
amounts, etc. The selection made in RIPEMD does not lead to a stronger version
of MD4.

Collisions could be found for each line of the RIPEMD compression function
and for the two-round versions of RIPEMD described in [5]. The two methods
used have not lead yet to a successful attack on the full compression function
and RIPEMD is still holding up.

9 Appendix

Description of the RIPEMD RIPEMDL and RIPEMDR Compression and Hash
Functions

Define the ρ and σ permutations of [0..15] give by Table 4 hereafter

Table 4. Permutations for rounds 2 and 3

Word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ 9 3 13 7 1 11 5 0 15 10 4 14 8 2 12 6
σ 10 7 2 0 3 14 11 9 6 4 1 12 12 13 8 5

Define register Rk (0 ≤ k ≤ 47) as the 32-bit register value computed at
step k. Rk is also denoted Ak when k = 0 mod 4, Dk when k = 1 mod 4, Ck

when k = 2 mod 4 and Bk when k = 3 mod 4 as far as the left line is concerned.
The same definitions apply for the right line and for R′

k, A′
k, D′

k, C ′
k and B′

k.

Start with the initial value IV = (IVA, IVB , IVC , IVD). For the first iteration,
start with IV = IV 0 = (IVA, IVB , IVC , IVD), where IVA = 0x67452301; IVB =
0xefcdab89; IVC = 0x98badcfe; IVD = 0x10325476.

Copy IVA, IVB , IVC , IVD into the registers A,B,C,D for the left line and
A′B′C ′D′ for the right line. These registers correspond to steps −4, −3, −2 and
−1.

Define the constants K0 = 0x0, K1 = 0x5a827999, K2 = 0x6ed9eba1 for the
left line and K ′

0 = 0x50a28be6, K ′
1 = 0x0, K ′

2 = 0x5c4dd124 for the right line.
Define F (x, y, z) = (x∧ y) ∨ ((¬x) ∧ z), G(x, y, z) = (x∧ y) ∨ (x∧ z) ∨ (z ∧ y)

and H(x, y, z) = (x ⊕ y ⊕ z) functions used in rounds 1, 2 and 3 respectively.
Define the word X and the shift for each step given by Table 5 hereafter.
Compute for (i = 0; i < 48;i = i + 1):

Ri = (Ri−4 + fr(Ri−1, Ri−2, Ri−3) + Xϕ(i mod 16) + K0)<<si

R′
i = (R′

i−4 + fr(R′
i−1, R

′
i−2, R

′
i−3) + Xϕ(i mod 16) + K ′

0)<<si

Where r = 0 when i ∈ [0..15], r = 1 when i ∈ [16..31] and r = 2 when i ∈ [32..47]
and f0 = F , f1 = G and f2 = H.



The RIPEMDL and RIPEMDR Improved Variants 65

Table 5. Rotations for each step

step X s X s X s X s step X s X s X s X s step X s X s X s X s
0 to 3 0 11 1 14 2 15 3 12 16 to 19 7 7 4 6 13 8 1 13 32 to 35 3 11 10 13 2 14 4 7
4 to 7 4 5 5 8 6 7 7 9 20 to 23 10 11 6 9 15 7 3 15 36 to 39 9 14 15 9 8 13 1 15
8 to 11 8 11 9 13 10 14 11 15 24 to 27 12 7 0 12 9 15 5 9 40 to 43 14 6 7 8 0 13 6 6
12 to 15 12 6 13 7 14 9 15 8 28 to 31 14 7 2 11 11 13 8 12 44 to 47 11 12 13 5 5 7 12 5

Finally compute the compression function output AA, BB, CC, DD as fol-
lows:

For the RIPEMD compression function: AA = IV B + C + D′,
BB = IV C + D + A′, CC = IV D + A + B′, DD = IV A + B + C ′

For the RIPEMDL compression function: AA = IV A + A,
BB = IV B + B, CC = IV C + C, DD = IV D + D.
For the RIPEMDR compression function: AA = IV A + A′,
BB = IV B + B′, CC = IV C + C ′, DD = IV D + D′.

References

1. F.Chabaud and A.Joux. Differential Collisions in SHA-0. extended abstract. In
CRYPTO’98, LNCS 1462, pp 56–71, 1998.

2. B.den Boer and A.Bosselaers. An attack on the last two rounds of MD4. In Ad-
vances in Cryptology - Crypto’91 pages 194-203 LCNS 576 Springer-Verlag 1992.

3. H.Dobbertin. Cryptanalysis of MD4. In Journal of Cryptology vol.11 n.4 Autumn
1998.

4. H.Dobbertin. Cryptanalysis of MD5 Compress. Presented at the rump session of
Eurocrypt ’96, May 14, 1996.

5. H.Dobbertin. Ripemd with two round compress function is not collision-free. In
Journal of Cryptology vol.10 n.1, winter 1997.

6. H.Dobbertin, A.Bosselaers and B.Preneel. RIPEMD-160: a strenghened version of
RIPEMD. April 1996.
ftp.esat.kuleuven.ac.be/pub/COSIC/bossselae/ripemd.

7. National Institute of Standards and Technology (NIST) FIPS Publication 180-1:
secure Hash Standard. April 1994.

8. RIPE. Integrity Primitives for Secure Information Systems. Final Report of RACE
Integrity Primitives Evaluation (RIPE-RACE 1040). In LNCS 1007 Springer-
Verlag 1995.

9. R.L.Rivest. The MD4 message digest algorithm. In Advances in Cryptology -
Crypto’90 pages 303-311 Springer-Verlag 1991.

10. R.L.Rivest. RFC1321: The MD5 message digest algorithm. M.I.T. Laboratory for
Computer Science and RSA Data Security, Inc., April 1992.

11. S.Vaudenay. On the need for multipermutations: Cryptanalysis of MD4 and
SAFER. In FSE, LCNS 1008, pages 286-297 Springer-Verlag 1995.


	Introduction
	Preliminaries
	Notation
	Description of the RIPEMD, RIPEMD$^L$, and RIPEMD$^R$ Compression Functions

	Outline of Our Attack
	Attack Structure
	Selecting an Appropriate $i_{0}$ Value: Reasons for the $i_0 = 10$ Choice

	Differential Attack Modulo $2^{32}$ (Steps 21-33).
	Backward Adjustment (Steps 0 to 9)
	Inner Almost-Collisions
	Steps 10 to 20: A System with Constraints
	Resolution

	Collision Search Algorithm
	Conclusion
	Appendix

