
Analysis of SSC2

Daniel Bleichenbacher1 and Willi Meier2

1 Bell Laboratories, Rm. 2A-366, 700 Mountain Av
Murray Hill, NJ 07974-0636, USA

bleichen@bell-labs.com
2 FH Aargau

CH-5210 Windisch
meierw@fh-aargau.ch

Abstract. This paper analyses the stream cipher SSC2 [ZCC00]. We
describe some weaknesses and attacks exploiting these weaknesses. The
strongest attack needs about 252 words of known key stream and has a
time complexity of about 275.

1 Introduction

The stream cipher SSC2 has been proposed in [ZCC00]. It consists of a filter
generator and a filtered lagged Fibonacci generator. The outputs of the two
generators are XORed to give the key stream.

This paper investigates the strength of the stream cipher SSC2. We describe
some weaknesses and some attacks based on those weaknesses. The strongest
attack needs about 252 words of known key stream and has a time complexity
of about 275. Note, recently Hawkes, Quick and Rose have found a new attack
that is faster than ours [HR01].

The outline of the paper is as follows. Section 3 analyses the linear feedback
shift register. In Section 4 properties of the nonlinear filter are described. We
compute the distribution of some carry bits, so that we can improve one of the
attacks later.

In Section 6 properties of the lagged Fibonacci generator are discussed. Then
we describe two different attacks on SSC2, exploiting different weaknesses of
SSC2. Our first attack needs about 252 known plaintext and 275 time. This
attack is divided into two sections. First, in Section 7 we describe how to find the
internal state of the LFSR by exploiting the short period of the lagged Fibonacci
generator. Then in Section 8 we cryptanalyse the lagged Fibonacci generator.
Section 9 describes our second attack exploiting the bias in the lagged Fibonacci
generator. One variant of this attack needs 232 words of known plaintext, but
has a time complexity of 2123. In Section 10 we identify a bug in the frame key
generation.

2 The Structure of SSC2

The stream cipher SSC2 as shown in figure 1 consists of a filter generator and
a lagged Fibonacci generator. The word-oriented LFSR has 4 stages with each

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 219–232, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



220 D. Bleichenbacher and W. Meier

+

+

+
<<31

+ +

yn+16
yn+17

F

x
n+3

x
n+2

x
n+1

x
n

z’ z’’n n

zn

>>28

. . .

. . .

Multiplexer

16-bit
Rotation

n+4
x

yn
>>1

LFSR

LFG

Fig. 1. The key stream generator of SSC2.

stage containing one word. It generates a new word and shifts out an old word at
every clock. The nonlinear filter has the 4-word content of the LFSR as its input
and a single word as output. The lagged Fibonacci generator has 17 stages and
is also word-oriented. The word shifted out by the lagged Fibonacci generator is
left-rotated 16 bits and then added to another word selected from the 17 stages.
The sum is XOR-ed with the word produced by the filter generator to give a
word of the key stream.

3 The Linear Feedback Shift Register

The LFSR in [ZCC00] is described using 4 registers where each of them is 32
bits long. The LFSR is regularly clocked. Clocking the LFSR turns a state
(xn+3, xn+2, xn+1, xn) into the state (xn+4, xn+3, xn+2, xn+1), where the 32-bit
variables satisfy the linear recurrence relation

xn+4 = xn+2 ⊕ (xn+1<<31)⊕ (xn>>1). (1)

More convenient for this paper is another equivalent description of the LFSR
using 8 registers where each of them is 16 bits long as shown in figure 2.

The linear feedback shift register can be described using 8 registers of 16
bit each. Cycling this register twice is equivalent to cycling the 32-bit register
once. It can be observed that the least significant bits of the register determine
the least significant bits of further states of the register. If we know the t least
significant bits of hi(xi), lo(xi) for all n+ 1 ≤ i ≤ n+ 4 then we can determine,
the t least significant bits of xn (except the bit that is not used in the nonlinear
filter). For v < t we can further determine the t−v least significant bits of hi(xi)
and lo(xi) for all n+ 4v + 1 ≤ i ≤ n+ 4v + 4.



Analysis of SSC2 221

<<15 >>1 >>1

16-bit word

<<15

16-bit XOR

shift right

shift left

x(n+3) x(n+2) x(n+1) x(n)

Fig. 2. The linear feedback shift register using 16-bit operations. One cycle in the
32-bit variant corresponds to two cycles in the 16-bit variant. It can be observed that
the low significant bits of this register depend on low significant bits of previous states.

4 The Nonlinear Filter

SSC2 derives the sequence z′
n from the LFSR state xn+3, xn+2, xn+1, xn by using

a nonlinear filter F . The filter uses 16-bit rotation and therefore describing F
using 16-bit arithmetic rather than 32-bit simplifies the analysis. Let hi(x) and
lo(x) denote the high order 16 bits rsp. the low order 16 bits of a 32 bit integer.
The original description of the nonlinear filter used 16-bit rotations, which we will
denote by (x >>>16). However, we can get rid of these rotations by describing
the nonlinear filter using 16-bit block rather than 32-bit block. The resulting
description of the nonlinear filter is given in Figure 3. Additional carry bits
c1, c3 and c5 are necessary to simulate 32-bit additions with 16-bit operations.

Correlation Properties. Ideally, correlations of the output of a nonlinear filter to
a linear function of the LFSR should be minimized. The nonlinear filter of SSC2
has some correlations. At the moment we do not know, whether such correlations
can be used in an attack.

Property 1. The nonlinear filter of SSC2 satisfies the following equation, which
is a linear approximation.

Prob (lsb(hi(z′
n)) = lsb(xn+3)⊕ lsb(hi(xn+1))) = 7/12

The probability 7/12 was estimated using heuristic assumptions about the inde-
pendence of the inputs and was verified experimentally.

Philip Hawkes, Frank Quick and Greg Rose have recently presented some
other correlation properties in [HR01]. They use these observations for a new
attack that is faster than ours.

5 Approximation to the Nonlinear Filter

In the analysis we will use an approximation G to the nonlinear filter F . Es-
sentially G tries to guess the carry bits, during the computation of F . The
motivation for approximating F by G is the simplification that we get, because
there are less dependencies in G. The disadvantage of using an approximation G,



222 D. Bleichenbacher and W. Meier

16-bit addition

16-bit XOR

1x16-bit multiplication

16-bit word

carry bit

1

c

c

hi lo hi lo hi lo hi lo

x x x xn+3 n+2 n+1 n

a3 a4

c2
c1

a1

2a

c5

4

3

hi(z’ ) lo(z’ )n n

Fig. 3. This figure describes the nonlinear filter F of SSC2. Here, we give an equivalent
description of the filter using 16-bit operations rather than the original 32-bit oper-
ations. This change is provided to simplify further analysis of SSC2, because in our
description does not need any rotations of integers. Note, that this description needs 3
additional carry bits to simulate the 32-bit additions.

rather than F itself is the error that is introduced. In our attack we will choose
sequences of key stream, and hope that the differentials between G and F cancel
out. Therefore we will have to repeat our attack with different parts of the key
stream. In this section we describe the function G and compute the probability
distribution of the error F ⊕G.

The function G is described in Figure 4. The difference to F is that in G no
carry bits are computed. Rather the effect of carry bits in F is simulated in G
by the additional inputs d1 ∈ {0, 1, 2}, d2 ∈ {0, 1} and d3 ∈ {0, 1, 2}. Otherwise,
F and G are identical. In particular, let c1, c2, c3, c4 and c5 be the carry bits
during the computation of F (xn+3, xn+2, xn+1, xn) and let d1 = c1 + c4, d2 = c2
and d3 = c3 + c5. Then

F (xn+3, xn+2, xn+1, xn) = G(xn+3, xn+2, xn+1, xn, d1, d2, d3).

There are two possible approaches for our attack. We could either try all
possible combinations for the values d1, d2, d3 or we can guess the most likely
values and then try our attack on different sequences of the key stream until we



Analysis of SSC2 223

16-bit addition

16-bit XOR

1x16-bit multiplication

16-bit word

carry bits

1

d

xn+3 xn+2 xn+1 xn

2

d1

d3

hi(v’ ) lo(v’ )

hi lo hi lo hi lo hi lo

n n

Fig. 4. A picture of the function G(xn+3, xn+2, xn+1, xn, d1, d2, d3), which is used to
approximate F . G and F would be equivalent if the carry bits d2 = c2, d1 = c1 + c4

and d3 = c3 + c5 are used. However, we will use d1 = 1 and d3 = 1 and compute the
distribution of the differential.

have found a sequence where our guess was correct. We will choose the second
approach, because it is slightly more efficient. We will use d1 = d3 = 1 and only
guess d2. We are therefore interested in the differential

∆n = F (xn+3, xn+2, xn+1, xn)⊕G(xn+3, xn+2, xn+1, xn, 1, c2, 1).

To analyse ∆n we first investigate the distribution of c1 + c4 and c3 + c5 in
the computation of F . Let

a1 = (c2 · hi(xn))⊕ hi(xn+2)
a2 = hi(xn+3) + hi(xn) mod 216

a3 = (c2 · lo(xn))⊕ lo(xn+2)
a4 = lo(xn+1)⊕ lo(xn+2).

Then it can be observed that

c1 + c4 =
⌊
lo(xn+3) + lo(xn) + a1

216

⌋

and

c3 + c5 =
⌊
a2 + a3 + a4 + c4

216

⌋



224 D. Bleichenbacher and W. Meier

The expression for c1+c4 and c3+c5 are basically (ignoring the carry bit c4) sums
of three 16-bit integers. In [SM91, Section 2.2] the carry of sums of three integers
has been analysed. Under the assumption that the summands are independent
and uniformly distributed it follows that the probability of c1 + c4 = 0 and
c1 + c4 = 2 is ≈ 1/6 in each case, and the probability of c1 + c4 = 1 is ≈ 2/3.
c3 + c5 is similarly distributed.

We now compute the distribution of hi(∆n) under the assumption that d2 =
c2. Hereby, we have to distinguish two cases. Firstly, if c3+c5 = 1, then hi(∆n) =
0. Secondly, if c3 + c5 	= 1 then hi(∆n) is the XOR of two 16-bit integers with
difference 1. Hence the distribution of hi(∆n) is as follows

hi(∆n) Probability
0 ≈ 2/3
1 ≈ 1/6
2k − 1 for k = 2, . . . , 15 ≈ 2−k/3
216 − 1 ≈ 2−15/3

Similar arguments can be used to show that lo(∆n) has the same distribution
as hi(∆n).

6 Lagged Fibonacci Generator

From [ZCC00] we briefly recall the description of the component of SSC2 con-
sisting of a (suitably filtered) lagged Fibonacci generator. The generator is word
oriented and is characterized by the linear recurrence relation

yn+17 = yn+12 + yn (mod 232).

Since the corresponding feedback polynomial x17 + x5 + 1 is irreducible over
ZZ/(2) it follows that the sequence has a period of (217 − 1)231 (or a divisor of
this number and it achieves the maximal period if one of the least significant
bits of f1, . . . , f17 is 1). In SSC2 this generator is implemented with a 17-stage
circular buffer B and two pointers s and r. Initially B[17], B[16],..., B[1] are
loaded with y0, y1, ...y16, and s and r are set to 5 and 17, respectively. At every
clock, a new word is computed by taking the sum of B[r] and B[s] mod 232.
The word B[r] is then replaced by the new word, and the pointers r and s are
decreased by 1. A filter is used to produce the output. The output word z′′

n is
computed from the replaced word yn and another word selected from the buffer
B. The selection uses a multiplexer based on the most significant 4 bits of the
newly generated word yn+17. The output word z′′

n is given by

z′′
n = (yn >>>16) +B[1 + ((yn+17>>28) + sn+1 mod16)] mod 232, (2)

where sn+1 denotes the value of s at time n+1 (note that 1 ≤ s ≤ 17). Observe
that this filter is not memoryless and has indeed a period 17, which has to be
considered when computing the period of the z′′

n. In [ZCC00] it is shown that



Analysis of SSC2 225

Property 2. The period of z′′
n divides 17(217 − 1)231.

The multiplexer can select the same elements of the Fibonacci generator
several times in a row. The linear properties of the Fibonacci generator are only
partially destroyed. It can be observed that the sequence Sn defined by

Sn = z′′
n+17 − z′′

n+12 − z′′
n mod 232

has a nonuniform distribution. This distribution has the following property

Property 3. Let

A = {0x0000000, 0x00000001, 0xffff0000, 0xffff0001}.
Then Sn ∈ A with probability about 2−8.

Property 3 can be explained as follows. The buffer B contains yn+1, . . . yn+17
during the computation of z′′

n. Therefore, there exists an integer 1 ≤ tn ≤ 17,
such that

z′′
n = yn+tn

+ (yn >>>16) mod 232,

We make the heuristic assumption that the high order bits of yn are uniformly
distributed and have verified this assumption with some experiments. With a
probability of about 2−8 we have tn = tn+12 = tn+17. In this case it follows

Sn ≡ z′′
n+17 − z′′

n+12 − z′′
n

≡ yn+17+tn
+ (yn+17 >>>16)− yn+12+tn

− (yn+12 >>>16)− yn+tn
− (yn >>>16)

≡ (yn+17 >>>16)− (yn+12 >>>16)− (yn >>>16) (mod 232).

This value can be evaluated by considering the high order 16 bits and low order
16 bits of yi separately. We have

lo(yn+17) + c216 = lo(yn+12) + lo(yn)
hi(yn+17) + c′216 = hi(yn+12) + hi(yn) + c,

where c, c′ ∈ {0, 1}2 are two carry bits. Hence,

Sn ≡ (lo(yn+17)− lo(yn+12)− lo(yn))216 + hi(yn+17)− hi(yn+12)− hi(yn)
≡ −c′216 + c (mod 232)

Inserting the four possible values for the pair of carry bits (c, c′) results in the
set A. Hence, we have given an explanation for the high probability of Sn ∈ A.

7 An Attack Based on the Small Period of the Lagged
Fibonacci Generator

In this section we describe an attack against SSC2 that exploits the rather small
period of the lagged Fibonacci generator. The attack requires about 252 words



226 D. Bleichenbacher and W. Meier

of known plaintext and the expected time complexity is about T0272.5, where T0
is a constant denoting the work for the innermost loop of our attack. The attack
find the internal state of the LFSR. After the internal state of the LFSR is found,
we can apply the algorithm described in Section 9 to complete the attack.

The algorithm can be described as follows. Note that we describe the attack
in a breadth first version, i.e., here guessing values means choosing all possible
values and performing the remaining operations of the algorithm with all possible
values in parallel. An implementation of this algorithm would most likely be
depth first, but the breadth first version is easier to describe.

1. Let w = 17(217 − 1)231 be the period of the lagged Fibonacci generator.
Then compute

Wi = zi ⊕ zi+w = z′
i ⊕ z′

i+w.

2. For all i do
2.1. LetM = {i, i+ 1, i+ 2, i+ 3, i+ w, i+ w + 1, i+ w + 2, i+ w + 3}.
2.2. LetM′ = {i, . . . , i+ 7, i+ w, . . . , i+ w + 7}.
2.3. For all m ∈M′ guess a carry bit gm for the computation of z′

m.
2.4. For j from 2 to 16 do
2.4.1. For all m ∈ M guess or extend previous guesses on hi(xm), lo(xm)

to the j least significant bits.
2.4.2. Use Equation (1) to compute the j−1 least significant bits of hi(xm)

and lo(xm) for m ∈ {i+4, . . . , i+7, i+w+4, . . . , i+w+7}, and the
j − 2 least significant bits of hi(xm) and lo(xm) for m ∈ {i + 8, i +
9, i+ 10, i+ w + 8, i+ w + 9, i+ w + 10}.

2.4.3. Now compute as many bits as possible of

vm = G(xm+3, xm+2, xm+1, xm, 1, gm, 1).

That is compute the j least significant bits of hi(vm) and lo(vm) for
m ∈ {i, i+ w},
compute the j − 1 least significant bits of hi(vm) and lo(vm) for
m ∈ {i+1, i+2, i+3, i+4, i+w+1, i+w+2, i+w+3, i+w+4},
and compute the j − 2 least significant bits of hi(vm) and lo(vm) for
m ∈ {i+ 5, i+ 6, i+ 7, i+ w + 5, i+ w + 6, i+ w + 7}.

2.4.4. Now, compute as many bits as possible of W ′
m = vm ⊕ vm+w for

i ≤ m ≤ i+ 7.
2.4.5. For all i ≤ m ≤ i + 7 compare the known bits W ′

m with the corre-
sponding bits of Wm. If any of these bits are different then reject the
current guess.

2.5. For all i ≤ m ≤ i+ 7 compute

v̂m = F (xm+3, xm+2, xm+1, xm)
v̂m+w = F (xm+w+3, xm+w+2, xm+w+1, xm+w)
Ŵm = ẑm ⊕ ẑm+w.

2.6. For all i ≤ m ≤ i+7 compare Wm with Ŵm. If any of them are different
then reject the guess.



Analysis of SSC2 227

First, we have to analyse the consequence of the assumption d1 = d3 = 1.
That is, we are looking for the probabilityWm =W ′

m, where as described earlier
Wm is computed using the filter F , butW ′

m is computed using the approximation
G. We have

W ′
m ⊕Wm = ∆m ⊕∆m+w.

Hence we can use the distribution of ∆ to guess the probability of W ′
m = Wm.

Under the heuristic assumption that ∆m and ∆m+w are independently dis-
tributed we find

Prob(W ′
m =Wm) = 0.2318.

Hence, the number of i we have to check before being successful is (0.2318)8 ≈
2−16.9. Therefore the expected number of key stream words we have to examine
before we find such an event is about 217.5. (Note this number is slightly larger
than 216.9 since the events are not independent.)

In Step 2.3 we guess the carry bits gm for the computations of z′
m for all

m ∈M′. Hence, we have to guess 16 bits here.
Now we have to divide the analysis into the two cases j = 2 and j > 2. If

j = 2, then we guess 16 bits in Step 2.4.1. Note that we do not need to guess
the lsb of lo(xi) and lo(xi+w). Hence, we guess 30 bits here. We compute 12 bits
in the following Steps 2.4.2 through 2.4.4, which gives 12 single bit equations in
Step 2.4.5.

If j > 2 we have to guess 16 bits in each step, but we also compute 16 new
bits in the following equations, which does balance the number of guesses.

Hence, the complexity is

217.5 · 216 · 230 · 29 ≈ 272.5,

where the 217.5 come from Step 1, 216 from Step 2.3, 230 from Step 2.4.2 with j =
2 and the 29 is an estimation of the work necessary for every guess in the loop 2.4.
Some optimizations that are not described here are still possible. Furthermore,
bit slice techniques [Bih97] can be used to speed up the computations.

8 Cryptanalysis of the Lagged Fibonacci Generator

In this section we describe an attack on the lagged Fibonacci generator (endowed
with the filter function). The complexity bounds of this attack will be used in
the next section and also yield lower bounds on the complexity to find the whole
initial state in SSC2.

Assume first that only slightly more than 17 consecutive output words z′′
i ,

z′′
i+1, ..., of the generator are known, and that we want to determine the initial
state yi, yi+1, ..., yi+16. After possible reindexing suppose i = 0.
Consider the 17 equations (mod 232), derived by the recurrence relation of the
generator,



228 D. Bleichenbacher and W. Meier

1. y17 = y12 + y0
...
5. y21 = y16 + y4
6. y22 = y12 + y0 + y5
...
17. y33 = y13 + y1 + y6 + y11 + y16

The output words z′′
m are computed using the filter function (2). This function is

nonlinear, but it becomes linear if we apply mod n cryptanalysis as introduced
in [KSW99]. Thereby n = 232 − 1 or a prime factor of 232 − 1 (the prime
factors are 3, 5, 17, 257 and 216 + 1). Recall from [KSW99] that for a 32-bit
word x, x <<< j ≡ 2jx mod 232 − 1. This implies that using one of the prime
factors of 232 − 1 as a modulus, the 16-bit rotation in equation (2) becomes
just multiplication by 1, except for the modulus 216 + 1, where 16-bit rotation
becomes multiplication by -1. The price to pay is an ambiguity in passing from
addition mod 232 to addition mod n, depending on whether there was a carry
in integer addition mod 232:

(x+ y mod 232) modn =
{
x+ y modn if there was no carry out
x+ y − 1 modn if there was a carry out

To get this relationship note that 232 ≡ 1 mod n if n = 232 − 1 or one of its
prime factors.
As a consequence, equation (2) reduces to the two variants

z′′
m = εym + ym+tm mod n or z′′

m = εym + ym+tm mod n, (3)

depending on the carry. Moreover ε = 1 or -1, depending on n. The value of tm
is determined by the 4 most significant bits (msb) of ym+17, which need to be
guessed. Considering the 17 recurrence equations, the 4 msb’s of y17, y18, ..., y33
are guessed, and the equations also hold modulo n if the right sides are subtracted
by the appropriate numbers depending on the carry. For equations 1. to 5. the
carry needs also to be guessed. However from equation 6. onwards, the carry is
mostly determined by the previous choice of the 4 msb’s: Consider an arbitrary
equation C = A+B of integers mod 232. If the integer value determined by the
4 msb’s of C are smaller than the 4 msb of A (or B), there is a carry, if this
value is greater than the 4 msb of A or B, there is no carry. Thus the uncertainty
by the carry bits in the 17 equations is about 6 bits. For every choice of the 4
msb’s and the carry bits we combine the 17 recurrence equations with equations
(3) to get 17 linear equations mod n for y0, y1,..., y16. For every prime factor
n of 232 − 1 one solves the system of equations, and the solution mod 232 − 1
is got by the Chinese remainder theorem. Then the solution found is checked
for contradictions with the 4 msb’s and the carry’s chosen. (In the rare case
of a zero value one has to further check whether this value is indeed zero or
232− 1.) This procedure is repeated until no contradiction occurs anymore. The
remaining candidates are checked by producing one or two further output words
z′′
m, (which are assumed to be known). Solving systems of linear equations with



Analysis of SSC2 229

17 unknowns is of the order of 212 operations. Hence the total complexity of this
analysis is estimated as

268 · 26 · 217 · 212 = 2103.

This analysis can be improved if more output of the generator is assumed to be
known. Suppose that tm = tm+12 = tm+17. Then Sm takes one of the values in A.
Recall that the probability for this event is about 2−8. Let x1 x2, x3 denote the
4-bit integers given by each of the 4 msb’s of ym+17,..., determining tm, tm+12,
tm+17. Because of the recursion, x3 = x1 + x2 or x3 = x1 + x2 + 1, if there is a
carry from less significant bits. Furthermore the corresponding pointer variables
are related by r1 = s1 + 12 mod 17, s2 = s1 + 5 mod 17 and s3 = s1. Therefore
every such pointer variable is expressible in terms of s1 := s. Note that in an
attack s can be assumed to be known. Further recall that 1 ≤ r, s ≤ 17. Hence
arithmetic modulo 17 in the context of the pointers r and s is modified in the
sense that a pointer value is added by the value 17 if it becomes 0 or negative.
We derive the following equations:

tm = ((x1 + s) mod 16) - (s+ 12) mod 17
tm+12 = ((x2 + ((s+ 5) mod 17)) mod 16) - s mod 17
tm+17 = ((x1 + x2 + s) mod 16) -(s+ 12) mod 17

or
tm+17 = ((x1 + x2 + 1 + s) mod 16) -(s+ 12) mod 17

if there is a carry. From tm = tm+17 one thus gets x2 = 0 if there is no carry, and
x2 = 15 if there is a carry. Moreover, the first two equations and tm = tm+12
imply that a given x1 and a known s determine the value of x2. Hence we get a
reduction of uncertainty about x1, x2 from 162 to 2 bits. Further investigation
limits the triple (x1, x2, x3) to the values (0, 0, 0), (15, 15, 15), (1, 0, 1), (15, 0, 15)
and (0, 15, 0). Experiments show that the frequency of each of these triples is
quite different, as different s-values can lead to the same triple. Hence the se-
quence Sn is not only biased but in case Sn ∈ A allows to derive key material.

Suppose now that Sm, Sm+1, Sm+2 and Sm+3 are all elements ofA. This happens
with probability about 2−32. Then the uncertainty of the 4 msb’s of 8 of the 17
yn’s to be found drops from 168 to 24 bits. This is a reduction by a factor 228.

As a consequence, the complexity of our analysis of the filtered lagged Fi-
bonacci generator reduces from 2103 to about 275 operations, if the number of
known plaintexts is of the order of 232 output words.

9 An Attack Based on the Bias in the Lagged Fibonacci
Generator

In this section, we describe briefly an attack against SSC2 that exploits the
bias in the lagged Fibonacci generator. This attack requires on average between
245 and 246 known plaintext words and has an expected time complexity of 2109.
Because of the large time complexity we only describe the idea behind the attack
and omit some details.



230 D. Bleichenbacher and W. Meier

Let zn denote the n-th word of key stream. Then the idea behind the attack
is to scan the key stream and hope that for some m the following happens:

– Sm, Sm+1, Sm+2 and Sm+3 are all elements in the set A.
– For all n ∈ {m, . . . ,m+3,m+12, . . . ,m+15,m+17, . . . ,m+20} the carry

bits that occur during the computation of z′
n satisfy the equations c1+c4 = 1

and c3 + c5 = 1.

The probability that Sm, Sm+1, Sm+2, Sm+3 ∈ A4 is approximately 2−32 and
the probability that the sum of the carry bits during a computation of z′

n are
both 1 is (2/3)2. It follows that all conditions mentioned above are satisfied with
a probability of approximately 2−32(2/3)24 ≈ 2−46. Hence, we expect to find
such an event in 246 words of known key stream.

Thus for all m, let

M = {m, . . . ,m+ 3,m+ 12, . . . ,m+ 15,m+ 17, . . . ,m+ 20}
and do the following:

1. Guess the 5 least significant bits of hi(xj) and lo(xj) for allm+1 ≤ j ≤ m+4.
2. Guess the carry bit c2 for all computations of zn where n ∈M .
3. For i from 6 to 16 do:
3.1. Guess the i-th least significant bits of hi(xj) and lo(xj) for all m+ 1 ≤

i ≤ m+ 4.
3.2. Compute the i−4 least significant bits of hi(xn) and lo(xn) for m ≤ n ≤

m+ 20.
3.3. Use the computation in figure 4 to compute the i − 4 least significant

bits of hi(z′
n) and lo(z′

n) for n ∈M .
3.4. Use the known key stream zn to compute z′′

n for all n ∈M .
3.5. For all m ≤ n ≤ m+ 3 compute the i− 4 least significant bits of hi(Sn)

and lo(Sn). If these bits do not correspond to one of the values in the
set A then reject the guess, otherwise go on with this guess.

4. At this point we have a guess for all the bits in the linear feedback shift
register. Now, compute the real value of the carry bits. If they don not
correspond to the assumptions then reject this guess.

5. Compute more (say 1000) values of Sn and check whether there are more
values that are in the set A. If this is not the case then reject the guess.

6. Now, solve for the internal state of the lagged Fibonacci register, as was done
in the previous section.

The time complexity of this approach can be computed as follows: We have
to go through 246 values for m on average. In step (1) we guess 40 bits. In step
(2) we guess 12 carry bits. Hence, up to here we have to guess 98 bits. Then in
step (3.1) we guess 8 bits, increasing the complexity to 2106, but in step (3.5)
we compute 8 output bits, and hence decrease the complexity at this point to
298 again. Step (4) 272. So the time requirement for step (5) is insignificant.
Hence, the significant part of the complexity comes from step (3). This loop is
performed 11 times for about 2106 different guesses, giving a total complexity of
about 2109.



Analysis of SSC2 231

9.1 Variants

There is a tradeoff possible between the number of known plaintext words and
the complexity of the attack:

Instead of assuming that the carry bits that occur during the computation
of z′

n satisfy the equations c1+ c4 = 1 and c3+ c5 = 1 one may assume this only
for a subset of the 24 equations, or one could even do an exhaustive search over
all the possible values on the right side of these equations. In the latter case we
would need only about 232 (rather than 246) words or known key stream.

On the average, 8 equations are incorrect, i.e., the right side is either 0 or
2 instead of 1. A rough estimate shows that the complexity for the search with
probability 1/2 is not larger than 2

(24
8

)
28 ≈ 228. Thus with probability about

1/2 the complexity of this variant of the attack is not larger than 232 · 240 · 228 ·
212 · 28 · 23 = 2123.

10 Frame Key Generation

For synchronization purposes, SSC2 supplies generation of new keys out of the
master key for every frame. Each frame is given by a 32-bit number, which is
not encrypted. The frame key generation algorithm should satisfy the property
that it is difficult to gain information about a frame key from another frame key
([ZCC00]). This property is not satisfied however. The frame key generation is
illustrated in [ZCC00] by a pseudo-code, to which we refer. Then one sees that the
word B[1] of the key remains constant, i.e. does not depend on the frame number:
In line 7 of the code, B[17− (i+ 8jmod 16)]← S[1]⊕ B[17− (i+ 8jmod 16)],
the index 1 is never reached.

11 Countermeasures

Certainly, various countermeasures are possible. We think that most importantly
the period of the lagged Fibonacci generator should be increased. Even though
we do not know how to use the correlation properties of the LFSR alone for
an attack, we would still recommend to remove those properties. We have used
that the output of the two registers are combined using a simple XOR. Using a
nonlinear function instead might further improve the security of the cipher.

12 Conclusion

We have shown some weaknesses of SSC2 and derived two attacks based on
those weaknesses. These attacks may not be a threat in the applications, for
which SSC2 has been designed. Nonetheless, the results show that the security
margin of SSC2 is smaller than previously believed. It is therefore advisable to
remove the weaknesses described in this paper. The recent attacks by Hawkes,
Quick and Rose [HR01] give even more weight to our opinion.



232 D. Bleichenbacher and W. Meier

Acknowledgement. We are thankful to Muxiang Zhan for reviewing a previous
version of this paper and pointing out the period in the filter of the lagged
Fibonacci generator. We also thank Greg Rose for pointing out an error in a
correlation.

References

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham,
editor, Fast Software Encryption ’97, pages 260–272. Springer Verlag, 1997.

[KSW99] J. Kelsey, B. Schneier, and D. Wagner. Mod n cryptanalysis with applica-
tions against RC5P and M6. In L. Knudsen, editor, Fast Software Encryp-
tion ’99, volume 1636 of Lecture Notes in Computer Science, pages 139–155.
Springer Verlag, 1999.

[HR01] P. Hawkes, F. Quick and G. Rose. A practical cryptanalysis of SSC2. In
S. Vaudenay and A.M. Youssef, editor, Selected Areas in Cryptography’ 01,
volume 2259 of Lecture Notes in Computer Science, pages 27–37, Springer
Verlag, 2001.

[SM91] O. Staffelbach and W. Meier. Cryptographic significance of the carry for
ciphers based on integer addition. In A.J. Menezes and S. A. Vanstone, ed-
itors, Advances in Cryptology – CRYPTO ’90, volume 537 of Lecture Notes
in Computer Science, pages 601–615. Springer Verlag, 1991.

[ZCC00] Muxiang Zhang, Christopher Carroll, and Agnes Chan. The software-
oriented stream cipher SSC2. In Fast Software Encryption ’2000 (prepro-
ceedings), 2000.


	Introduction
	The Structure of SSC2
	The Linear Feedback Shift Register
	The Nonlinear Filter
	Approximation to the Nonlinear Filter
	Lagged Fibonacci Generator
	An Attack Based on the Small Period of the Lagged Fibonacci Generator
	Cryptanalysis of the Lagged Fibonacci Generator
	An Attack Based on the Bias in the Lagged Fibonacci Generator
	Variants

	Frame Key Generation
	Countermeasures
	Conclusion

