
Linear Parametric Model Checking

of Timed Automata?

Thomas Hune1, Judi Romijn2, Mari�elle Stoelinga2, and Frits Vaandrager2

1 BRICS, University of �Arhus, Denmark

baris@brics.dk
2 Computing Science Institute, University of Nijmegen

[judi,marielle,fvaan]@cs.kun.nl

Abstract. We present an extension of the model checker Uppaal ca-

pable of synthesize linear parameter constraints for the correctness of

parametric timed automata. The symbolic representation of the (para-

metric) state-space is shown to be correct. A second contribution of this

paper is the identi�cation of a subclass of parametric timed automata

(L/U automata), for which the emptiness problem is decidable, contrary

to the full class where it is know to be undecidable. Also we present a

number of lemmas enabling the veri�cation e�ort to be reduced for L/U

automata in some cases. We illustrate our approach by deriving linear

parameter constraints for a number of well-known case studies from the

literature (exhibiting a
aw in a published paper).

1 Introduction

During the last decade, there has been enormous progress in the area of timed

model checking. Tools such as Uppaal[11], Kronos [5], and PMC [12] are now

routinely used for industrial case studies. A disadvantage of the traditional ap-

proaches is, however, that they can only be used to verify concrete timing prop-

erties: one has to provide the values of all timing parameters that occur in the

system. For practical purposes, one is often interested in deriving the (symbolic)

constraints on the parameters that ensure correctness. The process of manually

�nding and proving such results is very time consuming and error prone (we have

discovered minor errors in the two examples we have been looking at). Therefore

tool support for deriving the constraints automatically is very important.

In this paper, we study a parameterized extension of timed automata, as well

as a corresponding extension of the forward reachability algorithm.We show the

theoretical correctness of our approach, and its feasibility by application to some

non-trivial case studies. For this purpose, we have implemented a prototype ex-

tension of Uppaal, an eÆcient real-time model checking tool [11]. The algorithm

we propose and have implemented is a semi-decision algorithm which will not

terminate in all cases. In [2] the problem of synthesizing values for parameters

? Research supported by Esprit Project 26270, Veri�cation of Hybrid Systems (VHS),

and PROGRESS Project TES4199, Veri�cation of Hard and Softly Timed Systems

(HaaST). This work was initiated during a visit of the �rst author to Nijmegen.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 189{203, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

190 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

such that a property is satis�ed, was shown to be undecidable, so this is the best

we can hope for.

A second contribution of this paper is the identi�cation of a subclass of pa-

rameterized timed automata, called lower bound/upper bound (L/U) automata,
which appears to be suÆciently expressive from a practical perspective, while it

also has nice theoretical properties. Most importantly, we show that the empty-

ness question for parametric timed automata shown to be undecidable in [2], is

decidable for L/U automata. We also establish a number of lemmas which allow

one to reduce the number of parameters when tackling speci�c veri�cation ques-

tions for L/U automata. The application of these lemmas has already reduced

the veri�cation e�ort drastically in some of our experiments.

Our attempt at automatic veri�cation of parameterized real-time models is

not the only one. Henzinger et al. aim at solving a more general problem with

HyTech [9], a tool for model checking hybrid automata, exploring the state-

space either by partition re�nement, or forward reachability. The tool has been

applied successfully on relatively small examples such as a railway gate controller.

Experience so far has shown that HyTech cannot cope with larger examples,

such as the ones considered in this paper.

Toetenel et al. [12] have made an extension of the PMC real-time model

checking tool [4] called LPMC. LPMC is restricted to linear parameter con-

straints as is our approach, and uses the partition re�nement method, like

HyTech. Other di�erences with our approach are that LPMC also allows for

the comparison of non-clock variables to parameter constraints, and for more

general speci�cation properties (full TCTL with fairness assumptions). Since

LPMC is a quite recent tool, not many applications have been presented yet.

However, a model of the IEEE 1394 root contention protocol inspired by [13]

has been successfully analyzed in [4].

A more general attempt than LPMC and our Uppaal extension has been

made by Annichini et al. [3]. They have constructed and implemented a method

which allows for non-linear parameter constraints, and uses heavier, third-party,

machinery to solve the arising non-linear constraint comparisons. Independently,

we have used the same data-structure (a direct extension of DBMs [8]) for the

symbolic representation of the state space, as in [3]. For speeding up the ex-

ploration, a method for guessing the e�ect of control loops in the model is pre-

sented. It appears that this helps termination of the method, but it is unclear

under what circumstances this technique can or cannot be used. The feasibility

of this approach has been shown on a few rather small case studies.

The remainder of this paper is organized as follows. Section 2 introduces the

notion of parametric timed automata. Section 3 gives the symbolic semantics,

which is the basis for our model checking algorithm, presented in Section 3.5.

Section 4 is an intermezzo that states some helpful lemmas and decidability

results on an interesting subclass. Finally, Section 5 reports on experiments with

our tool. For lack of space, some technical details and all proofs have been

omitted, which can be found in the full version of this paper [10].

Linear Parametric Model Checking of Timed Automata 191

2 Parametric Timed Automata

2.1 Parameters and Constraints

Throughout this paper, we assume a �xed set of parameters P = fp1; : : : ; png. A

linear expression e is either an expression of the form t1p1+ � � �+tnpn+t0, where

t0; : : : ; tn 2 Z, or 1. We write E to denote the set of all linear expressions. A

constraint is an inequality of the form e � e0, with e; e0 linear expressions and �2

f<;�; >;�g. The negation of constraint c, notation :c, is obtained by replacing

relation signs <, �, >, � by �, >, �, <, respectively. A (parameter) valuation
is a function v : P ! R

�0 assigning a nonnegative real value to each parameter.

There is a one-to-one correspondence between valuations and points in (R�0)n.

In fact we often identify a valuation v with the point (v(p1); : : : ; v(pn)) 2 (R�0)n.

If e is a linear expression and v is a valuation, then e[v] denotes the expression

obtained by replacing each parameter p in e with v(p). Likewise, we de�ne c[v] for

c a constraint. Valuation v satis�es constraint c, notation v j= c, if c[v] evaluates

to true. The semantics of a constraint c, notation [[c]], is the set of valuations

(points in (R�0)n) that satisfy c. A �nite set of constraints C is called a constraint
set. A valuation satis�es a constraint set if it satis�es each constraint in the set.

The semantics of a constraint set C is given by [[C]] :=
T
c2C [[c]]. We write >

to denote any constraint set with [[>]] = (R�0)n, for instance the empty set. We

use ? to denote any constraint set with [[?]] = ;, for instance the constraint set

fc;:cg, for some arbitrary c.

Constraint c covers constraint set C, notationC j= c, i� [[C]]� [[c]]. Constraint

set C is split by constraint c i� neither C j= c nor C j= :c.

During the analysis questions arise of the kind: given a constraint set C and

a constraint c, does c hold, i.e., does constraint c cover C? A split occurs when

c holds for some valuations in the semantics of C and :c holds for some other

valuations. We will not discuss methods for answering such questions: in our

implementation we use an oracle to compute the following function.

O(c; C) =

8><
>:
yes if C j= c

no if C j= :c

split otherwise

Observe that using the oracle, we can easily decide semantic inclusion between

constraint sets: [[C]] � [[C0]] i� 8c0 2 C0 : O(c0; C) = yes. The oracle that we

use is a linear programming (LP) solver that was kindly provided to us by the

authors of [4], who built it for their LPMC model checking tool.

2.2 Parametric Timed Automata

Throughout this paper, we assume a �xed set of clocks X = fx0; : : : ; xmg and

a �xed set of actions A = fa1; : : : ; akg. The special clock x0, which is called the

zero clock, always has the value 0.

192 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

A simple guard is an expression f of the form xi � xj � e, where xi; xj
are clocks, �2 f<;�g, and e is a linear expression. We say that f is proper
if i 6= j. We de�ne a guard to be a (�nite) conjunction of simple guards. We

let g range over guards and write G to denote the set of guards. A clock val-
uation is a function w : X ! R

�0 assigning a nonnegative real value to each

clock, such that w(x0) = 0. We will identify a clock valuation w with the point

(w(x0); : : : ; w(xm)) 2 (R�0)m+1. Let g be a guard, v a parameter valuation, and

w a clock valuation. Then g[v; w] denotes the expression obtained by replacing

each parameter p with v(p), and each clock x with w(x). A pair (v; w) of a pa-

rameter valuation and a clock valuation satis�es a guard g, notation (v; w) j= g,

if g[v; w] evaluates to true. The semantics of a guard g, notation [[g]], is the set

of pairs (v; w) such that (v; w) j= g.

A reset is an expression of the form, xi := b where i 6= 0 and b 2 N. A reset
set is a set of resets containing at most one reset for each clock. The set of reset

sets is denoted by R.

We now de�ne an extension of timed automata [1,15] called parametric timed

automata. Similar models have been presented in [2,3,4].

De�nition 1 (PTA). A parametric timed automaton (PTA) over set of clocks
X, set of actions A, and set of parameters P , is a quadruple A = (Q; q0;!; I),
where Q is a �nite set of locations, q0 2 Q is the initial location, !� Q �

A � G � R � Q is a �nite transition relation, and function I : Q ! G assigns
an invariant to each location. We abbreviate a (q; a; g; r; q0) 2! consisting of a

source location, an action, a guard, a reset set, and a target location as q
a;g;r
�! q0.

For a simple guard xi � xj � e to be used in an invariant it must be the case
that xj = x0, that is, the simple guard represents an upper bound on a clock.

Example 1. A parametric timed automaton with clocks x, y and parameters p,

q can be seen in Fig. 1. The initial state is S0 which has invariant x � p, and the

transition from the initial location to S1 has guard y � q and reset set x := 0.

There are no actions on the transitions. Initially the transition from S0 to S1 is

only enabled if p � q, otherwise the system will be deadlocked.

S0

x<=p

S1

y>=q

x:=0

x<=5,
y<=q+3

Fig. 1. A parametric timed automaton

To de�ne the semantics of PTAs, we require two auxiliary operations on clock

valuations. For clock valuation w and nonnegative real number d, w + d is the

clock valuation that adds to each clock (except x0) a delay d. For clock valuation

Linear Parametric Model Checking of Timed Automata 193

w and reset set r, w[r] is the clock valuation that resets clocks according to r.

(w + d)(x) =

�
0 if x = x0
w(x) + d otherwise

(w[r])(x) =

�
b if x := b 2 r

w(x) otherwise:

De�nition 2 (Concrete semantics). Let A = (Q; q0;!; I) be a PTA and v
be a parameter valuation. The concrete semantics of A under v, notation [[A]]v,
is the labeled transition system (LTS) (S; S0;!) over A [R�0 where

S = f(q; w) 2 Q� (X ! R
�0) j w(x0) = 0 ^ (v; w) j= I(q)g;

S0 = f(q; w) 2 S j q = q0 ^w = �x:0g;

and transition predicate ! is speci�ed by the following two rules, for all (q; w),
(q0; w0) 2 S, d � 0 and a 2 A,

{ (q; w)
d
�! (q0; w0) if q = q0 and w0 = w + d.

{ (q; w)
a
�! (q0; w0) if 9g; r : q

a;g;r
�! q0 ^ (v; w) j= g ^w0 = w[r].

2.3 The Problem

In its current version, Uppaal is able to check for reachability properties, in

particular whether certain combinations of locations and constrains on clock

variables are reachable from the initial con�guration. Our parameterized exten-

sion of Uppaal handles exactly the same properties. However, rather than just

telling whether a property holds or not, our tool looks for constraints on the

parameters which ensure that the property holds.

De�nition 3 (Properties). The sets of system properties and state formulas

are de�ned by, respectively,

 ::= 82� j 93� � ::= x� y � b j q j :� j � ^ �

where x; y 2 X, b 2 N and q 2 Q. Let A be a PTA, v a parameter valuation,
s a state of [[A]]v, and � a state formula. We write s j= � if � holds in state s,
we write [[A]]v j= 82� if � holds in all reachable states of [[A]]v, and we write
[[A]]v j= 93� if � holds for some reachable state of [[A]]v.

The problem that we address in this paper can now be stated as follows: Given
a parametric timed automaton A and a system property , compute the set of
parameter valuations v for which [[A]]v j= .

Timed automata [1,15] arise as a special case of PTAs for which the set P

of parameters is empty. If A is a PTA and v is a parameter valuation, then the

structure A[v] that is obtained by replacing all linear expressions e that occur in

A by e[v] is a timed automaton.1 It is easy to see that in general [[A]]v = [[A[v]]].

Since the reachability problem for timed automata is decidable [1], this implies

that, for any A, integer valued v and , [[A]]v j= is decidable.

1 Strictly speaking, A[v] is only a timed automaton if v assigns an integer to each

parameter.

194 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

3 Symbolic State Exploration

Our aim is to use basically the same algorithm for parametric time model check-

ing as for timed model checking. We represent sets of states symbolically in a

similar way and support the same operations used for timed model checking.

In the nonparametrized case, sets of states can be eÆciently represented using

matrices [8]. Similarly, in this paper we represent sets of states symbolically as

(constrained) parametric di�erence-bound matrices.

3.1 Parametric Di�erence-Bound Matrices

In the nonparametrized case, a di�erence-bound matrix is a (m + 1)� (m + 1)

matrix whose entries are elements from (Z [f1g)� f0; 1g. An entry (c; 1) for

Dij denotes a nonstrict bound xi � xj � c, whereas an entry (c; 0) denotes a

strict bound xi � xj < c. Here, instead of using integers in the entries, we will

use linear expressions over the parameters. Also, we �nd it convenient to view

the matrix slightly more abstractly as a set of guards.

De�nition 4 (PDBM). A parametric di�erence-bound matrix (PDBM) is a
set D which contains, for all 0 � i; j � m, a simple guard Dij of the form
xi � xj �ij eij. We require that, for all i, Dii is of the form xi � xi � 0. Given
a parameter valuation v, the semantics of D is de�ned by [[D]]v = [[

V
i;jDij]]v.

We say that D is satis�able for v if [[D]]v is nonempty. If f is a proper guard
of the form xi � xj � e then we write D[f] for the PDBM obtained from D by
replacing Dij by f . If i; j are indices then we write Dij for the pair (eij ;�ij);
we call Dij a bound of D. Clearly, a PDBM is fully determined by its bounds.

De�nition 5 (Constrained PDBM). A constrained PDBM is a pair (C;D)

where C is a constraint set and D is a PDBM. The semantics of a constrained
PDBM is de�ned by [[C;D]] = f(v; w) j v 2 [[C]]^w 2 [[D]]vg.

PDBMs with the tightest possible bounds are called canonical. To formalize

this notion, we view Boolean connectives as operations on relation symbols� and

< by identifying� with 1 and < with 0. Thus we have, for instance, (� ^ �) =�,

(� ^ <) =< and (� =) <) =<. Our de�nition of a canonical form of a

constrained PDBM is essentially equivalent to the one for standard DBMs.

De�nition 6 (Canonical Form). A constrained PDBM (C;D) is in canonical

form i� for all i; j; k, C j= eij (�ij =) �ik ^ �kj) eik + ekj .

The next important lemma, which basically carries over from the unpara-

metrized case, states that canonicity of a constrained PDBM guarantees satis�-

ability.

Lemma 1. Suppose (C;D) is a constrained PDBM in canonical form and v 2
[[C]]. Then D is satis�able for v.

Also the following lemma essentially carries over from the unparametrized

case, see for instance [8]. As a direct consequence, semantic inclusion of con-

strained PDBMs is decidable for canonical PDBMs (using the oracle function).

Lemma 2. Suppose (C;D); (C0; D0) are constrained PDBMs and (C;D) is canon-
ical. Then [[C;D]]� [[C0; D0]] , ([[C]] � [[C0]]^ 8i; j : C j= eij(�ij =)�0ij)e

0
ij).

Linear Parametric Model Checking of Timed Automata 195

3.2 Operations on PDBMs

Our algorithm requires basically four operations to be implemented on con-

strained PDBMs: adding guards, canonicalization, resetting clocks and comput-

ing time successors.

Adding Guards In the case of DBMs, adding a guard is a simple operation.
It is implemented by taking the conjunction of a DBM and the guard (which
is also viewed as a DBM). The conjunction operation just takes the pointwise
minimumof the entries in both matrices. In the parametric case, adding a guard
to a constrained PDBM may result in a set of constrained PDBMs. We de�ne
a relation ; which relates a constrained PDBM and a guard to a collection of
constrained PDBMs that satisfy this guard. For this we need an operation C
that takes a PDBM and a simple guard, and produces a constraint stating that
the bound imposed by the guard is larger than the corresponding bound in the
PDBM, so let Dij = (eij ;�ij) then C(D;xi � xj � e) = eij (�ij =) �) e.
Relation; is de�ned as the smallest relation that satis�es the following rules:

(R1)
O(C(D;f); C) = yes

(C;D)
f
; (C;D)

(R2)
O(C(D; f); C) = no; f proper

(C;D)
f
; (C;D[f])

(R3)
O(C(D;f); C) = split

(C;D)
f
; (C [fC(D;f)g;D)

(R4)
O(C(D; f); C) = split; f proper

(C;D)
f
; (C [f:C(D;f)g;D[f])

(R5)
(C;D)

g
; (C 0;D0) ; (C 0D0)

g0

; (C 00;D00)

(C;D)
g^g0

; (C 00;D00)

Lemma 3. [[C;D]]\ [[g]] =
S
f[[C0; D0]] j (C;D)

g
; (C0; D0)g.

Canonicalization Each DBM can be brought into canonical form using clas-
sical algorithms for computing all-pairs shortest paths, for instance the Floyd-
Warshall (FW) algorithm [6]. In the parametric case, we also apply this approach
except that now we run FW symbolically. Below, we describe the computation
steps of the symbolic FW algorithm in SOS style. Recall that the FW algorithm
consists of three nested for-loops, for indices k, i and j, respectively. Correspond-
ingly, in the SOS description of the symbolic version, we use con�gurations of the
form (k; i; j; C;D), where (C;D) is a constrained PDBM and k; i; j 2 [0;m+ 1]
record the values of indices. In the rules below, k; i; j range over [0;m].

(C;D)
xi�xj �ik^�kj eik+ekj

; (C 0;D0)

(k; i; j; C;D)!FW (k; i; j + 1; C 0;D0)

(k; i;m + 1; C;D)!FW (k; i+ 1; 0; C;D)

(k;m+ 1; 0; C;D)!FW (k + 1; 0; 0; C;D)

196 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

We write (C;D) !c (C
0; D0) if there exists a sequence of !FW steps leading

from con�guration (0; 0; 0; C;D) to con�guration (m+1; 0; 0; C 0; D0). In this case,

we say that (C0; D0) is an outcome of the symbolic Floyd-Warshall algorithm on

(C;D). If the semantics of (C;D) is empty, then the set of outcomes is also

empty. We write (C;D)
g
;c (C0; D0) i� (C;D)

g
; (C 00; D00) !c (C0; D0), for

some C00; D00.

The following lemma says that if we run the symbolic Floyd-Warshall algo-

rithm, the union of the semantics of the outcomes equals the semantics of the

original constrained PDBM.

Lemma 4. [[C;D]] =
S
f[[C0; D0]] j (C;D)!c (C

0; D0)g.

Resetting Clocks A third operation on PDBMs that we need is resetting

clocks. Since we do not allow parameters in reset sets, the reset operation on

PDBMs is essentially the same as for DBMs, see [15]. The following lemma

characterizes the reset operation semantically.

Lemma 5. Let (C;D) be a constrained PDBM in canonical form, v 2 [[C]], and
w a clock valuation. Then w 2 [[D[r]]]v i� 9w

0 2 [[D]]v : w = w0[r].

Time Successors Finally, we need to transform PDBMs for the passage of

time, notation D". As in the DBMs case [8], this is done by setting the xi � x0
bounds to (1; <), for each i 6= 0, and leaving all other bounds unchanged. We

have the following lemma.

Lemma 6. Suppose (C;D) is a constrained PDBM in canonical form, v 2 [[C]],
and w a clock valuation. Then w 2 [[D"]]v i� 9d � 0 9w0 2 [[D]]v : w

0 + d = w.

3.3 Symbolic Semantics

With the four operations on PDBMs, we can describe the semantics of a para-

metric timed automaton symbolically.

De�nition 7 (Symbolic semantics). The symbolic semantics of PTA A =
(Q; q0;!; I) is an LTS. The states are triples (q; C;D) with q a location from
Q and (C;D) a constrained PDBM in canonical form. Let E be the PDBM with

E
ij = (0;�), for all i; j. The set of initial states is f(q0; C;D) j (>;E ")

I(q0)
; c

(C;D)g. The transitions are de�ned by the following rule:

q
a;g;r
�! q0 ; (C;D)

g
;c (C

00;D00) ; (C 00;D00[r]")
I(q0)
; c (C

0;D0)

(q;C;D)! (q0; C 0;D0)
:

Using Lemma 3 and Lemma 4, it follows by a simple inductive argument that if

state (q; C;D) is reachable in the symbolic semantics and (v; w) 2 [[C;D]] then

(v; w) j= I(q). It is also easy to see that the symbolic semantics of a PTA is a

�nitely branching transition system. It may have in�nitely many reachable states

Linear Parametric Model Checking of Timed Automata 197

though. Our search algorithm explores the symbolic semantics in an \intelligent"

manner, and for instance stops whenever it reaches a state whose semantics is

contained in the semantics of a state that has been encountered before. Despite

this, our algorithm need not terminate.

Each run in the symbolic semantics can be simulated by a run in the concrete

semantics.

Proposition 1. For each parameter valuation v and clock valuation w, if there
is a run in the symbolic semantics of A reaching state (q; C;D), with (v; w) 2

[[C;D]], then this run can be simulated by a run in the concrete semantics [[A]]v
reaching state (q; w).

For each path in the concrete semantics, we can �nd a path in the symbolic

semantics such that the �nal state of the �rst path is semantically contained in

the �nal state of the second path.

Proposition 2. For each parameter valuation v and clock valuation w, if there
is a run in the concrete semantics [[A]]v reaching a state (q; w), then this run can
be simulated by a run in the symbolic semantics reaching a state (q; C;D) such
that (v; w) 2 [[C;D]].

3.4 Evaluating Properties

We will now explain the relation
�

j=) which relates a symbolic state and a state

formula � to a collection of symbolic states that satisfy �. For lack of space, we

do not give the full formal de�nition.

In order to check whether a property holds, we break it down into the small

basic formulas, namely checking locations and clock guards. Checking that a

clock guard holds relies on the de�nition given earlier, of adding that clock

guard to the constrained PDBM. We rely on a special normal form of the state

formula, in which all : signs have been pushed down to the basic formulas.

The following lemma gives the soundness of relation
�

j=).

Lemma 7. Let [[�; q]] denote the set f(v; w) j (w; q) j= �g. Then for all properties

� in normal form [[C;D]] \ [[�; q]] =
S
f[[C0; D0]] j (q; C;D)

�

j=) (q; C0; D0)g.

3.5 Algorithm

We are now in a position to present our model checking algorithm for parametric

timed automata. The following algorithm describes how our tool explores the

symbolic state space and searches for constraints on the parameters for which a

reachability formula 93� holds in a PTA A.

198 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

algorithm Reachable(A, �)

Result := ;,Passed := ;,Waiting := f(q0; C;D) j (>;E")
I(q0)
; c (C;D)g

while Waiting 6= ; do

select (q; C;D) from Waiting

Result := Result [f(q0; C 0;D0) j (q;C;D)
�

j=) (q0; C 0;D0)g

False := f(q0; C 0;D0) j (q;C;D)
:�

j=) (q0; C 0;D0)g

for each (q0; C 0;D0) in False do

if for all (q00; C 00;D00) in Passed: (q0; C 0;D0) 6� (q00; C 00;D00) then

add (q0; C 0;D0) to Passed

for each (q00; C 00;D00) such that (q0; C 0; D0)! (q00; C 00;D00) do

Waiting := Waiting [f(q00; C 00;D00)g

return Result

The result returned by the algorithm is a set of symbolic states, all of which

satisfy �, for any valuation of the parameters and clocks in the state. For invari-

ance properties 82�, the tool performs the algorithm on :�, and the result is

then a set of symbolic states, none of which satis�es �. The answer to the model

checking problem, stated in Section 2.2, is obtained by taking the union of the

constraint sets from all symbolic states in the result of the algorithm; in the case

of an invariance property we take the complement of this set.

Some standard operations on symbolic states that help in exploring as little as

possible, have also been implemented in our tool for parametric symbolic states.

We give a short explanation here, and refer to the full version of this paper for the

complete story with technical details. Before starting the state space exploration,

our implementation determines the maximal constant for each clock. This is the

maximal value to which the clock is compared in any guard or invariant in the

PTA. When the clock value grows beyond this value, we can ignore its real value.

This enables us to identify many more symbolic states, and helps termination.

4 Reducing the Complexity

This section introduces the class of lower bound/upper bound automata and

describes several (rather intuitive) observations that simplify the model checking

of PTAs in this class. Our results allow us to eliminate parameters in certain

cases. Since the complexity of parametric model checking grows very fast in

the number of parameters, this is a relevant issue. Secondly, our observations

yield a decidability result for lower bound/upper bound automata whereas the

corresponding problem for general PTAs is undecidable.

Informally, a positive occurrence of a parameter in a PTA enforces (or con-

tributes to) an upper bound on a clock di�erence, for instance p in x� y < 2p.

A negative occurrence of a parameter contributes to a lower bound on a clock

di�erence, for instance q and q0 in y � x > q + 2q0 (� x� y < �q � 2q0) and in

x� y < 2p� q � 2q0.

De�nition 8. A parameter pi 2 P is said to occur in the linear expression
e = t0 + t1 �p1 + � � � tn �pn if ti 6= 0; pi occurs positively in e if ti > 0 and

Linear Parametric Model Checking of Timed Automata 199

pi occurs negatively in e if ti < 0. A lower bound parameter of a PTA A is
a parameter that only occurs negatively in the expressions of A and an upper

bound parameter of A a parameter that only occurs positively in A. We call A a
lower bound/upper bound (L/U) automaton if every parameter is either a lower
bound parameter or an upper bound parameter of A, but not both.

From now on, we work with a �xed set L = fl1; : : : lKg of lower bound

parameters and a �xed set U = fu1; : : :uMg of upper bound parameters with

L \ U = ; and L [U = P .

We consider, apart from parameter valuations, also extended parameter val-
uations. Intuitively, an extended parameter valuation is a parameter valuation

with values in R�0 [f1g, rather than in R�0. We denote an extended valuation

of an L/U automaton by a pair (�; �), which equals the function � on the set

L and � on U and require that � and � do not both assign the value 1 to a

parameter. Then we can extend the notions de�ned for parameter valuations

(Section 2) to extended valuations in the obvious way. We write 0 and1 for the

functions assigning respectively 0 and 1 to each parameter.

The following proposition is based on the fact that weakening the guards in

A (i.e. decreasing the lower bounds and increasing the upper bounds) yields an

automaton whose reachable states include those of A. Dually, strengthening the

guards in A (i.e. increasing the lower bounds and decreasing the upper bounds)

yields an automaton whose reachable states are a subset of those of A. We

claim that this proposition, formulated for L/U automata, can be generalized to

lower bound and upper bound parameters present in general PTAs. It is however

crucial that (by de�nition) state formulae do not contain parameters.

Proposition 3. Let A be an L/U automaton and � a state formula. Then

1. [[A]](�;�) j= 93� () 8�0 � �; � � �0 : [[A]](�0;�0) j= 93�:

2. [[A]](�;�) j= 82� () 8� � �0; �0 � � : [[A]](�0;�0) j= 82�:

The following example illustrates how Proposition 3 can be used to eliminate

parameters from L/U automata.

Example 2. The automaton in Fig. 2 is an L/U automaton. Its location S1 is

reachable irrespective of the parameter values. By setting the parameter min
to 1 and max to 0, one checks with a non-parametric model checker that

A[(1; 0)] j= 93S1. Then Proposition 3 (together with [[A]]v = A[v]) yields that

S1 is reachable in [[A]](�;�) for all extended parameter valuations 0 � �; � � 1.

Clearly, [[A]](�;�) j= 93S2 i� �(min) � �(max) ^ �(min) < 1. We will see

in this running example how we can verify this property completely by non-

parametric model checking. Henceforth, we construct the automaton A0 from

A by substituting the parameter max by the parameter min yielding an (non

L/U) automaton with one parameter, min. If we show that [[A0]]v j= 93S2 for all

valuations v, this essentially means that [[A]](�;�) j= 93S2 for all �; � such that

�(max) = �(min) < 1 and then Proposition 3 implies that [[A]](�;�) j= 93S2

for all �; � with �(min) � �(max) and �(min) <1.

200 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

S0 S1 x<=max

S2

x:=0

x=> min

Fig. 2. Reducing parametric to non-parametric model checking

The question whether there exists a (non-extended) parameter valuation such

that a given (�nal) location q is reachable, is known as the emptiness problem
for PTAs. In [2], it is shown that the emptiness problem is undecidable for

PTAs with three clocks or more. Proposition 3 implies 9�; � : [[A]]�;� j= 93q i�

A[0;1] j= 93q. Here, (�; �) range over extended parameter valuations, but is

not diÆcult to see that the statement also holds for (�; �) just valuations. Since

A[(0;1)] is a non-parametric timed automaton and reachability is decidable

for timed automata ([1]), the emptiness problem is decidable for L/U automata.

Then it follows that the dual problem is also decidable for L/U automata. This is

the universality problem for invariance properties, asking whether an invariance

property holds for all parameter valuations.

Corollary 1. The emptiness problem is decidable for L/U automata.

De�nition 9. A PTA A is fully parametric if clocks are only reset to 0 and
every linear expression in A of the form t1 � p1 + � � �+ tn � pn, where ti 2 Z.

The following proposition is basically the observation in [1], that multiplica-

tion of each constant in a timed automaton and in a system property with the

same positive factor preserves satisfaction.

Proposition 4. Let A be fully parametric PTA. Then

[[A]]
v
j= () 8t 2 R>0 : [[A]]

t � v j= t � ;

where t � v denotes the valuation p 7! t �v(p) and t � the formula obtained from
 by multiplying each number in by t.

Then for fully parametric PTAs with one parameter and system properties

 without constants (except for 0), we have [[A]]v j= for all valuations v of P

if and only if both A[0] j= and A[1] j= .

Corollary 2. For fully parametric PTAs with one parameter and properties
without constants (except 0), it is decidable whether 8v 2 [[C]] : [[A]]v j= .

Example 3. The PTA A0 mentioned in Example 2 is a fully parametric automa-

ton and the property 93S2 is without constants. We establish that A0[0] j= 93S2
and A0[1] j= 93S2. Then Proposition 4 implies that A0[v] j= 93S2 for all v.

As shown in Example 2, this implies that [[A]](�;�) j= 93S2 for all �, � with

�(min) = �(max) <1.

Linear Parametric Model Checking of Timed Automata 201

In the running example, we would like to use the above methods to verify

that [[A]](�;�) 6j= 93S2 if �(min) > �(max). We can in this case not �ll in for

min = max , since the bound in the constraint is strict. The following de�nition

and result allows us to move the strictness of a constraint into the PTA.

De�nition 10. De�ne A< as the automaton obtained by replacing every in-
equality x� y � e in A by a strict inequality x� y < e, provided that e contains
at least one parameter.

Proposition 5. Let A be an L/U automaton. Then

1. [[A<]](�;�) j= 82� () 8� < �0; �0 < � : [[A]](�0;�0) j= 82�.

2. [[A<]](�;�) j= 93� =) 8�0 < �; � < �0 : [[A]](�0;�0) j= 93�.

We claim that we can extend the result above to a more general construction

A
<
P 0 , where we replace a guard x�y � e by x�y < e by if and only if a parameter

p from P 0 occurs in e. Then the proposition generalizes to A<
P 0 , provided that

we replace � < �0 by � <P 0 �0 (and similar replacements for �0 < �, � < �0,

�0 < �). Here, v <P 0 v0 is de�ned as v(p) < v0(p) if p 2 P 0 and v(p) = v0(p)

otherwise.

Example 4. Consider the PTA A<, which equals the PTA in Fig. 2, except that

x � max has been replace by x < max and x � min by x > min. Now, we
construct the automaton A0 from A< by substituting the parameter max by

min. By checking that A0[0] j= 82:S2 and A
0[1] j= 82:S2, Proposition 4 yields

that A0[v] j= 82:S2 for all valuations v. Then we know by Proposition 3 that

[[A0]](�;�) j= 82:S2 if 1 > �(min) � �(max). Now, Proposition 5 concludes

that if 1 > �(min) > �(max) then [[A]]
(�;�)

j= 82:S2 i.e. [[A]]
(�;�)

6j= 93S2.

Combining the results from the examples in this section yields [[A]](�;�) j= 93S2

if and only if �(min) � �(max) ^ �(min) <1.

5 Experiments

In this section, we report on the results of experimenting with a prototype ex-

tension of Uppaal described in the previous sections. For lack of space, we give

a short impression of the experiments, which are described in greater detail in

the full version [10].

The Root Contention Protocol The root contention protocol is part of a leader

election protocol in the physical layer of the IEEE 1394 standard (FireWire/i-

Link), which is used to break symmetry between two nodes contending to be the

root of a tree, spanned in the network topology.

We use the Uppaal models of [14,13], turn the constants used into parame-

ters, and experiment with our prototype implementation (see Fig. 3 for results2).

2 All experiments were performed on a 366 MHz Celeron, except the liveness property

which was performed in a 333 MHz SPARC Ultra Enterprise.

202 Thomas Hune, Judi Romijn, Mari�elle Stoelinga, and Frits Vaandrager

In both models, there are �ve constants, all of which are parameters in our ex-

periments. We have checked for safety and liveness on the parametric models,

and have applied reductions as proposed in Section 4 where this was possible,

to reduce the veri�cation e�ort. In some cases, we could even derive the para-

metric conclusions by non-parametric model checking, which we have done with

standard Uppaal.

model from initial constraints? reduced? property Uppaal time memory

[14] yes no safety param 2.9 h 185 Mb

[14] yes yes safety std 1 s 800 Kb

[13] yes no safety param 1.6 m 36 Mb

[13] yes partly safety param 11 s 13 Mb

[13] yes completely safety std 1 s 800 Kb

[13] yes no liveness param 2.6 h 308 Mb

Fig. 3. Experimental results for the root contention protocol

The Bounded Retransmission Protocol This protocol was designed by Philips for

communication between remote controls and audio/video/TV equipment. In [7]

constraints for the correctness of the protocol are derived by hand, and some

instances are checked using Uppaal. Based on the models in [7], an automatic

parametric analysis is performed in [3], however, no further results are given.

model from initial constraints property Uppaal time memory

[7] yes safety1 param 1.3 m 34 Mb

[7] no safety2 param 11 m 180 Mb

[7] yes safety2 param 3.5 m 64 Mb

Fig. 4. Experimental results for the bounded retransmission protocol

For our analysis we have also used the timed automata models from [7]. In

[7] three di�erent constraints are presented based on three properties which are

needed to satisfy the safety speci�cation of the protocol. We are only able to

check two of these since one of the properties contain a parameter which our

prototype version of Uppaal is not able to handle yet. The results can be found

in Fig. 43. Note that out of the four constants in the model which are candidates

for parameters, the model checked for property `safety1' and `safety2' uses two

and one as parameters respectively. A minor error in [7] was found while checking

`safety 1', which has been corrected by the authors of [7].

3 All experiments run on a 333 MHz SPARC Ultra Enterprise.

Linear Parametric Model Checking of Timed Automata 203

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183{235, 1994.

2. R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In Proc.

25th Annual Symp. on Theory of Computing, pages 592{601. ACM Press, 1993.

3. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric

reasoning about counter and clock systems. In Proc. 12th Int. Conference on

Computer Aided Veri�cation, LNCS 1855, pages 419{434. Springer-Verlag, 2000.

4. G. Bandini, R. Lutje Spelberg, and H. Toetenel. Parametric veri�cation of the

IEEE 1394a root contention protocol using LPMC. http://tvs.twi.tudelft.nl/, July

2000. Submitted.

5. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-

nos: A Model-Checking Tool for Real-Time Systems. In Proc. 10th Int. Confer-

ence on Computer Aided Veri�cation, LNCS 1427, pages 546{550. Springer-Verlag,

June/July 1998.

6. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

McGraw-Hill, Inc., 1991.

7. P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retrans-

mission protocol must be on time! In Proc. Third Workshop on Tools and Algo-

rithms for the Construction and Analysis of Systems, LNCS 1217, pages 416{431.

Springer-Verlag, April 1997.

8. D. Dill. Timing assumptions and veri�cation of �nite-state concurrent systems. In

Proc. Int. Workshop on Automatic Veri�cation Methods for Finite State Systems,

LNCS 407, pages 197{212. Springer-Verlag, 1990.

9. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for

Hybrid Systems. In Proc. 9th Int. Conference on Computer Aided Veri�cation,

LNCS 1254, pages 460{463. Springer-Verlag, 1997.

10. T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W. Vaandrager. Linear para-

metric model checking of timed automata. Report CSI-R0102, CSI, University of

Nijmegen, January 2001.

11. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on

Software Tools for Technology Transfer, 1(1{2):134{152, October 1997.

12. R.F. Lutje Spelberg, W.J. Toetenel, and M. Ammerlaan. Partition re�nement

in real-time model checking. In Proc. FTRTFT'98, LNCS 1486, pages 143{157.

Springer-Verlag, 1998.

13. D.P.L. Simons and M.I.A. Stoelinga. Mechanical veri�cation of the IEEE 1394a

root contention protocol using Uppaal2k. Technical Report CSI-R0009, CSI, Uni-

versity of Nijmegen, May 2000. Conditionally accepted for STTT.

14. M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In Proc.

5th Int. AMAST Workshop on Formal Methods for Real-Time and Probabilistic

Systems, LNCS 1601, pages 53{74. Springer-Verlag, 1999.

15. S. Yovine. Model checking timed automata. In Lectures on Embedded Systems,

LNCS 1494, pages 114{152. Springer-Verlag, October 1998.

	Introduction
	Parametric Timed Automata
	Parameters and Constraints
	Parametric Timed Automata
	The Problem

	Symbolic State Exploration
	Parametric Difference-Bound Matrices
	Operations on PDBMs
	Symbolic Semantics
	Evaluating Properties
	Algorithm

	Reducing the Complexity
	Experiments

