
Axioms for Recursion in Call-by-Value
(Extended Abstract)

Masahito Hasegawa and Yoshihiko Kakutani

Research Institute for Mathematical Sciences, Kyoto University
{hassei,kakutani}@kurims.kyoto-u.ac.jp

Abstract. We propose an axiomatization of fixpoint operators in typed
call-by-value programming languages, and give its justifications in two
ways. First, it is shown to be sound and complete for the notion of
uniform T -fixpoint operators of Simpson and Plotkin. Second, the axioms
precisely account for Filinski’s fixpoint operator derived from an iterator
(infinite loop constructor) in the presence of first-class controls, provided
that we define the uniformity principle on such an iterator via a notion
of effect-freeness (centrality). We also investigate how these two results
are related in terms of the underlying categorical models.

1 Introduction

While the equational theories of fixpoint operators in call-by-name programming
languages and in domain theory have been extensively studied and now there are
some canonical axiomatizations (including the iteration theories [1] and Conway
theories, equivalently traced cartesian categories [9] – see [18] for the latest ac-
count), there seems no such widely-accepted result in the context of call-by-value
(cbv) programming languages. In this paper we propose a candidate of such an
axiomatization, which consists of three simple axioms.

A type-indexed family of closed values fixv
σ→τ : ((σ → τ) → σ → τ) → σ → τ is

called a stable uniform call-by-value fixpoint operator if the following conditions
are satisfied:

1. (cbv fixpoint) For any value F : (σ → τ) → σ → τ
fixv

σ→τ F = λxσ.F (fixv
σ→τ F) x

2. (stability) For any value F : (σ → τ) → σ → τ
fixv

σ→τ F = fixv
σ→τ (λfσ→τ .λxσ.F f x)

3. (uniformity) For values F : (σ → τ) → σ → τ , G : (σ′ → τ ′) → σ′ → τ ′

and H : (σ → τ) → σ′ → τ ′, if H(λxσ.M x) = λyσ′
.H M y holds for any

M : σ → τ (such an H is called rigid) and H ◦ F = G ◦ H holds, then
H (fixv

σ→τ F) = fixv
σ′→τ ′ G

The first axiom is known as the call-by-value fixpoint equation; the eta-expansion
in the right-hand-side means that fixv

σ→τ F is equal to a value. The second axiom

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 246–260, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Axioms for Recursion in Call-by-Value 247

says that, though the functionals F and λf.λx.F f x may behave differently, their
fixpoints, when applied to values, satisfy the same fixpoint equation and cannot
be distinguished. The last axiom is a call-by-value variant of Plotkin’s uniformity
principle; here the rigid functionals (the word “rigid” was coined by Filinski in
[4]) play the rôle of strict functions in the uniformity principle for the call-by-
name fixpoint operators. Intuitively, a rigid functional uses its argument exactly
once, and it does not matter whether the argument is evaluated beforehand or
evaluated at its actual use. Our uniformity axiom can be justified by the fact
that H (fixv

σ→τ F) satisfies the same fixpoint equation as fixv
σ′→τ ′ G when H is

rigid and H ◦ F = G ◦ H holds:

H (fixv
σ→τ F) = H (λxσ.F (fixv

σ→τ F) x) cbv fixpoint equation for fixv
σ→τ F

= λyσ′
.H (F (fixv

σ→τ F)) y H is rigid
= λyσ′

.G (H (fixv
σ→τ F)) y H ◦ F = G ◦ H

We give two main results on these axioms.

1. The λc-calculus (computational lambda calculus) [12] with a stable uniform
cbv fixpoint operator is sound and complete for the models based on the
notion of uniform T -fixpoint operators of Simpson and Plotkin [18].

2. In the call-by-value λµ-calculus [17] (= the λc-calculus plus first-class con-
tinuations) there is a bijective correspondence between stable uniform cbv
fixpoint operators and uniform iterators, via Filinski’s construction of recur-
sion from iteration [4].

In fact, we distill our axioms from the uniform T -fixpoint operators, so the
first result is not an unexpected one. A surprise is the second one, in that the
axioms precisely account for Filinski’s cbv fixpoint operator derived from an
iterator (infinite loop constructor) and first-class continuations, provided that
we refine Filinski’s notion of uniformity, for which the distinction between values
and effect-free programs [19,7] is essential.

So here is an interesting coincidence of a category-theoretic axiomatics (of
Simpson and Plotkin) with a program construction (of Filinski). However, we
also show that, after sorting out the underlying categorical semantics, Filinski’s
construction combined with the Continuation-Passing Style (CPS) translation
can be understood within the abstract setting of Simpson and Plotkin.

Construction of this paper. In Section 2 we recall the λc-calculus and the
call-by-value λµ-calculus, which will be used as our working languages in this
paper. Section 3 demonstrates how our axioms are used for establishing the
Filinski’s correspondence between recursion and iteration (which can be seen as
a syntactic proof of the second main result). Up to this section, all results are
presented in an entirely syntactic manner. In Section 4 we start to look at the
semantic counterpart of our axiomatization, by recalling the categorical models
of the λc-calculus and the call-by-value λµ-calculus. We then recall the notion
of uniform T -fixpoint operators on these models in Section 5, and explain how

248 M. Hasegawa and Y. Kakutani

our axioms are distilled from the uniform T -fixpoint operators (the first main
result). In Section 6, we specialise the result in the previous section to the models
of the call-by-value λµ-calculus, and give a semantic proof of the second main
result. Section 7 gives some concluding remarks.

2 The Call-by-Value Calculi

The λc-calculus (computational lambda calculus) [12], an improvement of the
call-by-value λ-calculus [14], is sound and complete for

1. categorical models based on strong monads [12]
2. Continuation-Passing Style translation into the λβη-calculus [16]

and has been proved useful for reasoning about call-by-value programs. In par-
ticular, it can be seen as the theoretical backbone of (the typed version of)
the theory of A-normal forms [6], which enables us to optimise call-by-value
programs directly without performing the CPS translation.

For these reasons, we take the λc-calculus as a basic calculus for typed call-by-
value programming languages. We also use an extension of the λc-calculus with
first-class controls, called the call-by-value λµ-calculus, for which the soundness
and completeness results mentioned above have been extended by Selinger [17].

2.1 The λc-Calculus

The syntax, typing rules and axioms on the well-typed terms of the λc-calculus
are summarised in Figure 1. The types, terms and typing judgements are those
of the standard simply typed lambda calculus (including the unit > and binary
products ×). cσ ranges over the constants of type σ. As an abbreviation, we
write let xσ be M in N for (λxσ.N)M . FV(M) denotes the set of free variables
in M . The crucial point is that we have the notion of values, and the axioms are
designed so that the above-mentioned completeness results hold. Below we may
call a term a value if it is provably equal to a value defined by the grammar.

Centre and focus. In call-by-value languages, we often regard values as rep-
resenting effect-free (finished or suspended) computation. While this intuition is
valid, the converse may not always be justified; in fact, the answer depends on
the computational effects under consideration [7]. In a λc-theory (where we may
have additional constructs and axioms), we say that a term M : σ is central if it
commutes with any other computational effect, that is,

let xσ be M in let yτ be N in L = let yτ be N in let xσ be M in L : θ

holds for any N : τ and L : θ, where x and y are not free in M and N . In addition,
we say that M : σ is focal if it is central and moreover copyable and discardable,
i.e., let xσ be M in 〈x, x〉 = 〈M, M〉 : σ ×σ and let xσ be M in ∗ = ∗ : > hold. It
is worth emphasising that a value is always focal, but the converse is not true. A
detailed analysis of these concepts in several λc-theories is found in [7]; see also
discussions in Section 4.

Axioms for Recursion in Call-by-Value 249

Types σ, τ ::= b | σ → τ | > | σ × τ where b ranges over base types
Terms M, N ::= x | cσ | λxσ.M | M N | ∗ | 〈M, N〉 | π1 M | π2 M
Values V, U ::= x | cσ | λxσ.M | ∗ | 〈V, U〉 | π1 V | π2 V

Typing Rules:

Γ ` x : σ
x :σ∈Γ

Γ ` cσ : σ

Γ, x : σ ` M : τ

Γ ` λxσ.M : σ→τ
Γ ` M : σ→τ Γ ` N : σ

Γ ` M N : τ

Γ ` ∗ : >
Γ ` M : σ Γ ` N : τ

Γ ` 〈M, N〉 : σ × τ

Γ ` M : σ × τ

Γ ` π1 M : σ

Γ ` M : σ × τ

Γ ` π2 M : τ

Axioms:

let xσ be V in M = M [V/x]
λxσ.V x = V (x 6∈ FV(V))
V = ∗ (V : >)
πi〈V1, V2〉 = Vi

〈π1 V, π2 V 〉 = V
let xσ be M in x = M
let yτ be (let xσ be L in M) in N = let xσ be L in let yτ be M in N (x 6∈ FV(N))
M N = let fσ→τ be M in let xσ be N in f x (M : σ→τ, N : σ)
〈M, N〉 = let xσ be M in let yτ be N in 〈x, y〉 (M : σ, N : τ)
πi M = let xσ×τ be M in πi x (M : σ × τ)

Fig. 1. The λc-calculus

2.2 The Call-by-Value λµ-Calculus

Our call-by-value λµ-calculus, summarised in Figure 2, is the version due to
Selinger [17]. We regard it as an extension of the λc-calculus with first-class
continuations and sum types (the empty type ⊥ and binary sums +). We write
¬σ for the type σ → ⊥ (“negative type”).

Remark 1. We have chosen the cbv λµ-calculus as our working language firstly
because we intend the results in this paper to be compatible with the duality
result of the second author [11] (see Section 7) which is based on Selinger’s
work on the λµ-calculus [17], and secondly because it has a well-established
categorical semantics, again thanks to Selinger. However our results are not
specific to the λµ-calculus; they apply also to any other language with similar
semantics – for example, we could have used Hofmann’s axiomatization of control
operators [10]. Also, strictly speaking, the inclusion of sum types (coproducts)
is not necessary in the main development of this paper, though they enable us
to describe iterators more naturally (as general feedback operators, see Remark
2 in Section 3) and are also used in some principles on iterators like diagonal
property (see Section 7), and crucially needed for the duality result in [17,11].

The typing judgements take the form Γ ` M : σ | ∆ where ∆ = α1 :
τ1, . . . , αn : σn is a sequence of names (ranged over by α, β,. . .) with their
types. A judgement x1 : σ1, . . . , xm : σm ` M : τ | α1 : τ1, . . . , αn : τn represents

250 M. Hasegawa and Y. Kakutani

Types σ, τ ::= · · · | ⊥ | σ + τ
Terms M, N ::= · · · | [α]M | µασ.M | [α, β]M | µ(ασ, βτ).M
Values V, U ::= · · · | µ(ασ, βτ).[α]V | µ(ασ, βτ).[β]V where α, β 6∈ FN(V)

Additional Typing Rules:

Γ ` M : σ | ∆

Γ ` [α]M : ⊥ | ∆
α :σ∈ ∆

Γ ` M : ⊥ | α : σ, ∆

Γ ` µασ.M : σ | ∆

Γ ` M : σ + τ | ∆

Γ ` [α, β]M : ⊥ | ∆
α :σ, β :τ ∈ ∆

Γ ` M : ⊥ | α : σ, β : τ, ∆

Γ ` µ(ασ, βτ).M : σ + τ | ∆

Additional Axioms:

V (µασ.M) = µβτ .M [[β](V (−))/[α](−)] (V : σ → τ)
[α′](µασ.M) = M [α′/α]
µασ.[α]M = M (α 6∈ FN(M))
[α′, β′](µ(ασ, βτ).M) = M [α′/α, β′/β]
µ(ασ, βτ).[α, β]M = M (α, β 6∈ FN(M))
[α]M = M (M : ⊥)
[α]M = let xσ be M in [α]x (M : σ)
[α, β]M = let xσ+τ be M in [α, β]x (M : σ + τ)

Fig. 2. The call-by-value λµ-calculus

a well-typed term M with at most m free variables x1, . . . , xm and n free names
α1, . . . , αn. We write FN(M) for the set of free names in M . In this judgement,
M can be thought as a proof of the sequent σ1, . . . , σm ` τ, τ1, . . . , τn or the
proposition (σ1 ∧ . . . ∧ σm) → (τ ∨ τ1 ∨ . . . ∨ τn) in the classical propositional
logic. Among the additional axioms, the first one involves the mixed substitution
M [C(−)/[α](−)] for a term M , a context C(−) and a name α, which is the result
of recursively replacing any subterm of the form [α]N by C(N) and any subterm
of the form [α1, α2]N (with α = α1 or α = α2) by C(µα.[α1, α2]N). See [17] for
further details on these syntactic conventions.

Centre and focus. In the presence of first-class controls, central and focal
terms coincide [19,17], and enjoy a simple characterisation (thunkability [19]).

Lemma 1. In a cbv λµ-theory, the following conditions on a term M : σ are
equivalent.

1. M is central.
2. M is focal.
3. (thunkability) let xσ be M in λk¬σ.k x = λk¬σ.k M : ¬¬σ holds.

We also note that central terms and values agree at function types [17].

Lemma 2. In a cbv λµ-theory, a term M : σ → τ is central if and only if it is
a value, i.e., M = λxσ.M x holds.

Axioms for Recursion in Call-by-Value 251

3 Recursion from Iteration

For grasping the rôle of our axioms, it is best to look at the actual construction in
the second main result: the correspondence of recursors and iterators under the
presence of first-class continuations due to Filinski [4]. For ease of presentation,
we write g◦f for the composition λx.g (f x) of values f and g, and idσ for λxσ.x.

A type-indexed family of closed values loopσ : (σ → σ) → ¬σ is called a
uniform iterator if the following conditions are satisfied:

1. (iteration) For any value f : σ → σ, loopσ f = λxσ.loopσ f (f x)
2. (uniformity) For values f : σ → σ, g : σ′ → σ′ and h : σ → σ′, if h is total

and h ◦ f = g ◦ h holds, then (loopσ′ g) ◦ h = loopσ f

where a value h : σ → τ is called total if h v : τ is central (see Section 2) for
any value v : σ. The word “total” is due to Filinski [4], though in his original
definition h v is asked to be a value rather than a central term.1

Remark 2. The expressive power of an iterator is not so weak, as we can derive
a general feedback operator feedbackσ,τ : (σ → σ + τ) → σ → τ from an iterator
using sums and first-class controls, which satisfies (with a syntax sugar for sums)
feedbackσ,τ f a = case f a of (in1 xσ ⇒ feedbackσ,τ f x | in2 yτ ⇒ y) for values
f : σ → σ + τ and a : σ.

Surprisingly, in the presence of first-class continuations, there is a bijective cor-
respondence between the stable uniform cbv fixpoint operators and the uniform
iterators. We recall the construction which is essentially the same as that in
[4]. Sample codes are found in Figure 3 (in SML/NJ [8]) and 4 (in the cbv
λµ-calculus).

The construction is divided into two parts. For the first part, we introduce a
pair of “inside-out” (contravariant) constructions{

stepσ,τ : (¬τ → ¬σ) → σ → τ
petsσ,τ = λfσ→τ .λk¬τ .λxσ.k (f x) : (σ → τ) → ¬τ → ¬σ

so that stepσ,τ ◦petsσ,τ = idσ→τ and petsσ,τ ◦stepσ,τ = λF¬τ→¬σ.λk¬τ .λxσ.F k x
hold; here we need first-class continuations to implement stepσ,τ . We are then
able to see that, if loop is a uniform iterator, the composition

loopσ ◦ stepσ,σ : (¬σ → ¬σ) → ¬σ

yields a stable uniform fixpoint operator restricted on the negative types ¬σ.
In particular, the cbv fixpoint axiom is verified as (by noting the equation
k¬τ (stepσ,τ F¬τ→¬σ xσ) = F k x)

(loopσ ◦ stepσ,σ) F = loopσ (stepσ,σ F)
= λxσ.loopσ (stepσ,σ F) (stepσ,σ F x)
= λxσ.F (loopσ (stepσ,σ F))x
= λxσ.F ((loopσ ◦ stepσ,σ) F) x

1 Our use of the word “total” can be misleading, as there is a more general and
perhaps more sensible notion of “totality” used in Thielecke’s analysis [20]. However
in this paper we put our priority on the compatibility with Filinski’s development
in [4].

252 M. Hasegawa and Y. Kakutani

Conversely, if fixv is a stable uniform fixpoint operator,

fixv
¬σ ◦ petsσ,σ : (σ → σ) → ¬σ

gives a uniform iterator:

(fixv
¬σ ◦ petsσ,σ) f = fixv

¬σ (petsσ,σ f)
= λxσ.(petsσ,σ f) (fixv

¬σ (petsσ,σ f))x
= λxσ.(λk¬σ.λyσ.k (f y)) (fixv

¬σ (petsσ,σ f))x
= λxσ.(fixv

¬σ (petsσ,σ f)) (f x)
= λxσ.(fixv

¬σ ◦ petsσ,σ) f (f x)

One direction of the bijectivity of these constructions is guaranteed by the sta-
bility axiom (while the other direction follows from stepσ,σ ◦ petsσ,σ = idσ→σ):

fixv
¬σ ◦ petsσ,σ ◦ stepσ,σ = λF.fixv

¬σ(λk.λx.F k x) = λF.fixv
¬σ F = fixv

¬σ

We note that step sends a rigid function to a total one, while pets sends a total
function to a rigid one, and moreover they are (contravariantly) functorial. These
facts imply that the two notions of uniformity for recursors and iterators are in
perfect harmony.

The second part is to reduce fixpoints on an arrow type σ → τ to those
on a negative type ¬(σ × ¬τ). This is possible because we can implement an
isomorphism (again using first-class continuations)

switchσ,τ : ¬(σ × ¬τ) '→ σ → τ

which is rigid (switchσ,τ (λxσ.M x) = λyσ×¬τ . switchσ,τ M y holds) and we have

fixv
σ→τ F = switchσ,τ (fixv

¬(σ×¬τ) (switch−1
σ,τ ◦ F ◦ switchσ,τ))

by the uniformity (switchσ,τ ◦ (switch−1
σ,τ ◦ F ◦ switchσ,τ) = F ◦ switchσ,τ). So we

conclude that, under the presence of first-class continuations, stable uniform cbv
fixpoint operators are precisely those derived from uniform iterators, and vice
versa:

fixv
σ→τ F = switchσ,τ (loopσ×¬τ (stepσ×¬τ,σ×¬τ (switch−1

σ,τ ◦ F ◦ switchσ,τ)))
loopσ f = fixv

¬σ(petsσ,σ f)

Behind syntax. As noted by Filinski, the CPS-transform of an iterator is
a usual (call-by-name) fixpoint operator on the types of the form RA in the
target λβη-calculus, where R is the answer type. If we let T be the continuation
monad RR(−)

, then the uniform T -fixpoint operator of Simpson and Plotkin [18]
precisely amounts to the uniform fixpoint operator on the types RA.

Since our first main result (Section 5, Theorem 1) is that the stable uniform
cbv fixpoint operator is sound and complete for uniform T -fixpoint operators, it
turns out that Filinski’s construction combined with the CPS translation can be
regarded as a consequence of the general categorical axiomatics. By specialising
it to the setting with a continuation monad, we obtain a semantic version of the
recursion from iteration construction (Section 6, Theorem 2 and 3).

Axioms for Recursion in Call-by-Value 253

(* an empty type "bot" with an initial map "abort" A : bot -> ’a *)
datatype bot = VOID of bot;
fun A (VOID v) = A v;
(* the C operator, C : ((’a -> bot) -> bot) -> ’a *)
fun C f = SMLofNJ.Cont.callcc

(fn k => A (f (fn x => (SMLofNJ.Cont.throw k x) : bot)));

(* basic combinators *)
fun step F x = C (fn k => F k x);
fun pets f k x = k (f x) : bot;
fun switch l x = C (fn q => l (x,q));
fun switch_inv f (x, k) = k (f x) : bot;
(* step : ((’a -> bot) -> ’b -> bot) -> ’b -> ’a

pets : (’a -> ’b) -> (’b -> bot) -> ’a -> bot
switch : (’a * (’b -> bot) -> bot) -> ’a -> ’b
switch_inv : (’a -> ’b) -> ’a * (’b -> bot) -> bot *)

(* an iterator, loop : (’a -> ’a) -> ’a -> bot *)
fun loop f x = loop f (f x) : bot;

(* recursion from iteration *)
fun fix F = switch (loop (step (switch_inv o F o switch)));
(* fix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b *)

Fig. 3. Coding in SML/NJ (versions based on SML ’97)

4 Categorical Semantics

4.1 Models of the λc-Calculus

Let C be a category with finite products and a strong monad T = (T, η, µ, θ).
We write CT for the Kleisli category of T , and J : C → CT for the associated left
adjoint functor. We assume that C has Kleisli exponentials, i.e., for every X in
C the functor J((−) × X) : C → CT has a right adjoint X ⇒ (−) : CT → C. This
gives the structure for modelling computational lambda calculus [12]. Following
Moggi, we call such a structure a computational model.

stepσ,τ = λF ¬τ→¬σ.λxσ.µβτ .F (λyτ .[β]y)x : (¬τ → ¬σ) → σ → τ
petsσ,τ = λfσ→τ .λk¬τ .λxσ.k(f x) : (σ → τ) → ¬τ → ¬σ

switchσ,τ = λl¬(σ×¬τ).λxσ.µβτ .l〈x, λyτ .[β]y〉 : ¬(σ × ¬τ) → σ → τ
switch−1

σ,τ = λfσ→τ .λ〈xσ, k¬τ 〉.k(f x) : (σ → τ) → ¬(σ × ¬τ)

Fig. 4. Coding in the call-by-value λµ-calculus

254 M. Hasegawa and Y. Kakutani

4.2 Models of the Call-by-Value λµ-Calculus

Let C be a distributive category, i.e., a category with finite products and co-
products so that (−) × A : C → C preserves finite coproducts for each A. We
call an object R a response object if there exists an exponential RA for each A,
i.e., C(− × A, R) ' C(−, RA) holds. Given such a structure, we can model the
cbv λµ-calculus in the Kleisli category CT of the strong monad T = RR(−)

[17].
Following Selinger, we call C a response category and the Kleisli category CT

a category of continuations and write RC for CT (though in [17] a category of
continuations means the opposite of RC).

4.3 Centre and Focus

We have already seen the notion of centre and focus in the λc-calculus and the
cbv λµ-calculus in a syntactic form (Section 2). However, these concepts origi-
nally arose from the analysis on the category-theoretic models given as above.
Following the discovery of the premonoidal structure on the Kleisli category part
CT (RC) of these models [15], Thielecke [19] proposed a direct axiomatization of
RC not depending on the base category C (which may be seen as a chosen cate-
gory of “values”) but on the subcategory of “effect-free” morphisms of RC , which
is the focus (equivalently centre) of RC . Führmann [7] carries out further study
on models of the λc-calculus along this line.

For lack of space we do not describe the details of these analyses. However, we
will soon see that these concepts naturally arise in our analysis of the uniformity
principles for recursors and iterators. In particular, a total value h : σ → τ
(equivalently the term x : σ ` h x : τ) precisely corresponds to the central
morphisms in the semantic models. In the case of the models of the cbv λµ-
calculus, the centre can be characterised in terms of the category of algebras, for
which our uniformity principles are defined; that is, we have

Proposition 1. f ∈ RC(A, B) ' C(RB , RA) is central if and only if its coun-
terpart in C is an algebra morphism from the canonical algebra structure on RB

(see Section 6) to that on RA.

We note that this result has been observed in various forms in [19,17,7].

5 Uniform T -Fixpoint Operators

In this section we shall consider a computational model with the base category
C and a strong monad T .

Definition 1. [18] A T -fixpoint operator on C is a family of functions

(−)∗ : C(TX, TX) → C(1, TX)

such that, for any f : TX → TX, f ◦ f∗ = f∗ holds. It is called uniform if, for
any f : TX → TX, g : TY → TY and h : TX → TY , h ◦ µ = µ ◦ Th and
g ◦ h = h ◦ f imply g∗ = h ◦ f∗.

Axioms for Recursion in Call-by-Value 255

Thus a T -fixpoint operator is given as a fixpoint operator restricted on the
objects of the form TX. However, this is sufficient to model a call-by-value
fixpoint operator. To see this, suppose that we are given an object A with an
arrow α : TA → A so that α◦η = id (in fact it is more natural to ask (A, α) to be
a T -algebra, see Proposition 2 below). Given f : A → A, we have α◦ (η ◦f ◦α)∗ :
1 → A and

α ◦ (η ◦ f ◦ α)∗ = α ◦ η ◦ f ◦ α ◦ (η ◦ f ◦ α)∗

= f ◦ α ◦ (η ◦ f ◦ α)∗

Therefore we can extend (−)∗ to be a fixpoint operator on A.

Definition 2. [18] Suppose that S and D are categories with finite products
and the same objects, and I : S → D is a functor which strictly preserves finite
products and is the identity on objects. A parameterized fixpoint operator on
D is a family of functions (−)† : D(X × A, A) → D(X, A) which is natural in
X and satisfies f† = f ◦ 〈idX , f†〉. It is parametrically uniform with respect to
I : S → D if, for any f : X × A → A, g : X × B → B in D and h : A → B in
S, Ih ◦ f = g ◦ (idX × Ih) implies g† = Ih ◦ f†.

Proposition 2. [18] Let CT be the category of T -algebras and algebra mor-
phisms. Let D be the category whose objects are T -algebras and hom-sets are
given by D((A, α), (B, β)) = C(A, B), and let I : CT → D be the inclusion. Then
a uniform T -fixpoint operator on C induces a parametrically uniform parameter-
ized fixpoint operator on D with respect to I : CT → D, and vice versa.

(The reader is invited to check that the standard domain-theoretic situations
arise by taking T as the lifting monad on a category of predomains.) In particular,
Kleisli exponentials X ⇒ Y fit in this scheme, where the algebra structure
αX,Y : T (X ⇒ Y) → X ⇒ Y is given as the adjoint mate of

T (X ⇒ Y) × X
θ→ T ((X ⇒ Y) × X) T ev→ T 2Y

µ→ TY

where ev : (X ⇒ Y) × X → TY is the counit of the adjunction. We note that
η ◦ αX,Y : T (X ⇒ Y) → T (X ⇒ Y) corresponds to an eta-expansion in the λc-
calculus. That is, if a term Γ ` M : X → Y represents an arrow f : A → T (X ⇒
Y) in C, then Γ ` λxX .M x : X → Y represents η ◦ αX,Y ◦ f : A → T (X ⇒ Y).
This observation is frequently used in distilling the axioms of the stable uniform
cbv fixpoint operators below.

5.1 Axiomatization in the λc-Calculus

Using the λc-calculus as an internal language of CT , the equation f∗ = f ◦ f∗ on
X ⇒ Y can be represented as

F ∗ = λxX .F F ∗ x where F = λfX→Y .λxX .F f x : (X → Y) → X → Y

The side condition F = λfX→Y .λxX .F f x means that F corresponds to an
arrow in C(X ⇒ Y, X ⇒ Y), not CT (X ⇒ Y, X ⇒ Y). However, the operator

256 M. Hasegawa and Y. Kakutani

(−)∗ : C(X ⇒ Y, X ⇒ Y) → C(1, X ⇒ Y) can be equivalently axiomatized by a
slightly different operator

(−)‡ : C(X ⇒ Y, T (X ⇒ Y)) → C(1, X ⇒ Y)

subject to f‡ = αX,Y ◦f ◦f‡, with an additional condition f‡ = (η◦αX,Y ◦f)‡. In
fact, we can define such a (−)‡ as (αX,Y ◦(−))∗ and conversely (−)∗ by (η◦(−))‡,
and it is easy to see that these are in bijective correspondence. The condition
f‡ = αX,Y ◦ f ◦ f‡, equivalently η ◦ f‡ = η ◦ αX,Y ◦ f ◦ f‡, is axiomatized in the
λc-calculus as (by recalling that η ◦ αX,Y ◦ (−) gives an eta-expansion)

F ‡ = λx.F F ‡ x for any value F : (X → Y) → X → Y

which is precisely the cbv fixpoint axiom. The additional condition f‡ = (η ◦
αX,Y ◦ f)‡ is axiomatized as

F ‡ = (λf.λx.F f x)‡ where F is a value

This is no other than the stability axiom. We thus obtain the first two axioms
of our stable uniform cbv fixpoint operators, which are precisely modelled by
T -fixpoint operators.

5.2 Uniformity Axiom

Finally, we shall see how the uniformity condition on T -fixpoint operators can
be represented in the λc-calculus. By Proposition 2, we define uniformity with
respect to I : CT → D; that is, we regard H ∈ C(X ⇒ Y, X ′ ⇒ Y ′) as “strict” (or
“rigid” in our terminology) if it is an algebra morphism from (X ⇒ Y, αX,Y) to
(X ′ ⇒ Y ′, αX′,Y ′).2 Spelling out this condition, we ask H to satisfy H ◦ αX,Y =
αX′,Y ′ ◦T (H), equivalently T (H) ◦ η ◦αX,Y = η ◦αX′,Y ′ ◦T (H). In terms of the
λc-calculus, this means that an eta-expansion commutes with the application of
H; therefore, in the λc-calculus, we ask H : (X → Y) → X ′ → Y ′ to be a value
such that

H(λxX .M x) = λyX′
.H M y : X ′ → Y ′

holds for any M : X → Y . We have called such an H rigid, and defined the
uniformity condition with respect to such rigid functionals.

Theorem 1. The computational models with a uniform T -fixpoint operator pro-
vide a sound and complete class of models of the computational lambda calculus
with a stable uniform call-by-value fixpoint operator.

2 A characterisation of rigid functions (on computation types) in the same spirit is
given in Filinski’s thesis [5] (Section 2.2.2) though unrelated to the uniformity of
fixpoint operators.

Axioms for Recursion in Call-by-Value 257

6 Recursion from Iteration Revisited

6.1 Iteration in the Category of Continuations

Let C be a response category with a response object R. An iterator on the
category of continuations RC is a family of functions (−)∗ : RC(A, A) → RC(A, 0)
so that f∗ = f∗◦f holds for f ∈ RC(A, A). Spelling out this definition in C, to give
an iterator on RC is to give a family of functions (−)∗ : C(RA, RA) → C(1, RA)
so that f∗ = f ◦ f∗ holds for f ∈ C(RA, RA). Thus an iterator on RC (hence in
the cbv λµ-calculus) is no other than a fixpoint operator on C (hence the target
call-by-name calculus) restricted on objects of the form RA (“negative objects”).

Example 1. We give a simple-minded model of the cbv λµ-calculus with an iter-
ator. Let C be the category of ω-cpos (possibly without bottom) and continuous
maps, and let R be an ω-cpo with bottom. Since C is a cartesian closed category
with finite coproducts, it serves as a response category with the response object
R. Moreover there is a least fixpoint operator on the negative objects RA be-
cause RA has a bottom element, thus we have an iterator on RC (which in fact
is a unique uniform iterator in the sense below).

6.2 Relation to Uniform T -Fixpoint Operators

For any object A, the negative object RA canonically has a T -algebra structure

αA = λmRRRA

.λxA.m (λfRA

.f x) : RRRA → RA for the monad T = RR(−)
. Thus

the consideration on the uniform T -fixpoint operators applies to this setting: if
this computational model has a uniform T -fixpoint operator, then we have a
fixpoint operator on negative objects, hence we can model an iterator of the cbv
λµ-calculus in the category of continuations.

Conversely, if we have an iterator on RC , then it corresponds to a fixpoint
operator on negative objects in C, which of course include objects of the form
TA = RRA

. Therefore we obtain a T -fixpoint operator. It is then natural to
expect that, if the iterator satisfies a suitable uniformity condition, then it bijec-
tively corresponds to a uniform T -fixpoint operator. This uniformity condition
on an iterator must be determined again with respect to the category of alge-
bras CT . So we regard h ∈ RC(A, B) ' C(RB , RA) as “strict” (“total” in our
terminology) when its counterpart in C(RB , RA) is an algebra morphism from
(RB , αB) to (RA, αA), i.e., h◦αB = αA ◦RRh

holds in C. We say that an iterator
(−)∗ on RC is uniform if f∗ = g∗ ◦ h holds for f : A → A, g : B → B and total
h : A → B such that h ◦ f = g ◦ h.

Theorem 2. Given a response category C with a response object R, to give a
uniform RR(−)

-fixpoint operator on C is to give a uniform iterator on RC.

Fortunately, the condition to be an algebra morphism is naturally represented
in a cbv λµ-theory. A value h : A → B represents an algebra morphism if and
only if

x : A ` let yB be h x in λk¬B .k y = λk¬B .k(h x) : ¬¬B

258 M. Hasegawa and Y. Kakutani

holds – in fact, the CPS translation of this equation is no other than the equation
h◦αB = αA◦RRh

. By Lemma 1, in a cbv λµ-theory, this requirement is equivalent
to saying that h x is a central term for each value x (this also implies Proposition
1). Therefore we obtain the uniformity condition for an iterator in Section 3.

Theorem 3. In a cbv λµ-theory, there is a bijective correspondence between the
stable uniform cbv fixpoint operators and the uniform iterators.

6.3 On Filinski’s Uniformity

In [4] Filinski introduced uniformity principles for both cbv fixpoint operators
and iterators, for establishing a bijective correspondence between them. While
his definitions turn out to be sufficient for his purpose, in retrospect they seem
to be somewhat ad hoc and are strictly weaker than our uniformity principles.
Here we give a brief comparison.

First, Filinski calls a value h : σ → τ “total” when h v is a value for each value
v : σ. However, while a value is always central, the converse is not true. Note
that, while the notion of centre is uniquely determined for each cbv λµ-theory
(and category of continuations), the notion of value is not canonically determined
(a category of continuations can arise from different response categories [17]).
Since the uniformity principle is determined not in terms of the base category C
but in terms of the category of algebras CT , it seems natural that it corresponds
to the notion of centre which is determined not by C but by CT .

Second, Filinski calls a value H : (σ → τ) → σ′ → τ ′ “rigid” when there are
total h1 : σ′ → τ → τ ′ and h2 : σ′ → σ such that

H = λfσ→τ .λyσ′
.h1 y (f (h2 y)) : (σ → τ) → σ′ → τ ′

holds. It is easily checked that if H is rigid in the sense of Filinski, it is also rigid
in our sense – but the converse does not hold, even if we change the notion of
total values to ours (for instance, switchσ,τ in Section 3 is not rigid in the sense
of Filinski). By closely inspecting the correspondence of rigid functionals and
total functions via the step/pets and switch constructions, we can strengthen
Filinski’s formulation to match ours:

Proposition 3. In a cbv λµ-theory, H : (σ → τ) → σ′ → τ ′ is rigid if and
only if there are total h1 : σ′ → τ → τ ′ and h2 : (σ′ × ¬τ ′) → σ such that
H = λfσ→τ .λyσ′

.µγτ ′
.[γ](h1 y (f (h2 〈y, λzτ ′

.[γ]z〉))) holds.

This subsumes Filinski’s rigid functionals as special cases where h2 does not use
the second argument.

Remark 3. Filinski’s uniformity principle in [4] takes the following form: if H is
rigid and H ◦ (λf.λx.F f x) = G ◦ H holds, then H (fixvF) = fixv G. It follows
that this condition is equivalent to our stability and uniformity axioms.

Axioms for Recursion in Call-by-Value 259

7 Conclusion and Further Work

We have proposed an axiomatization of fixpoint operators in typed call-by-value
programming languages, and have shown that it can be justified in two different
ways: as a sound and complete axiomatization for uniform T -fixpoint operators of
Simpson and Plotkin [18], and also by Filinski’s bijective correspondence between
recursion and iteration under the presence of first-class continuations [4]. We also
have shown that these results are closely related, by inspecting the semantic
structure behind Filinski’s construction, which turns out to be a special case of
the uniform T -fixpoint operators.

Towards practical principles for call-by-value recursion. We think that
our axioms are reasonably simple, and we expect they can be a practical tool for
reasoning about call-by-value programs involving recursion, just in the same way
as the equational theory of the computational lambda calculus is the theoretical
basis of the theory of A-normal forms [16,6].

It is an interesting challenge to strengthen the axioms in some system-
atic ways. For instance, by adding other natural axioms on an iterator un-
der the presence of first-class controls, one may derive the corresponding ax-
ioms on the cbv fixpoint operator. In particular, we note that the dinaturality
loop (g ◦ f) = loop (f ◦ g) ◦ f on an iterator loop precisely amounts to the axiom
fixv (G ◦ F) = λx.G (fixv (F ◦ G))x on the corresponding cbv fixpoint operator
fixv. Similarly, the diagonal property on the iterator loop (λx.µα.[α, α](f x)) =
loop (λx.µα.loop (λy.µβ.[α, β](f y))x) corresponds to that on the fixpoint opera-
tor fixv (λf.F f f) = fixv (λf.fixv (λg.F f g)). These can be seen axiomatizing the
call-by-value counterpart of the Conway theories [1,9]. One may further consider
the call-by-value version of the Bekic̆ property (another equivalent axiomatiza-
tion of these properties [9]) along this line, which could be used for reasoning
about mutual recursion.

Another promising direction is the approach based on fixpoint objects [2], as a
uniform T -fixpoint operator is canonically derived from a fixpoint object whose
universal property implies strong proof principles. For instance, in Example 1,
a uniform iterator is unique because the monad RR(−)

has a fixpoint object. For
the setting with first-class controls, it might be fruitful to study the implications
of the existence of a fixpoint object of continuation monads.

Relating recursion in call-by-name and in call-by-value. The results
reported here can be nicely combined with Filinski’s duality [3] between call-
by-value and call-by-name languages with first-class control primitives. In his
MSc thesis [11], the second author demonstrates that recursion in the call-by-
name λµ-calculus [13] exactly corresponds to iteration in the call-by-value λµ-
calculus via this duality, by extending Selinger’s work [17]. Together with the
observation in this paper, we obtain a bijective correspondence between call-
by-name recursion and call-by-value recursion, which seems to open a way to
relate the reasoning principles on recursive computations under these two calling
strategies.

Acknowledgements. We thank Shin-ya Katsumata for helpful discussions,
and the anonymous reviewers for numerous suggestions.

260 M. Hasegawa and Y. Kakutani

References

1. Bloom, S. and Esik, Z. (1993) Iteration Theories. EATCS Monographs on Theo-
retical Computer Science, Springer-Verlag.

2. Crole, R.L. and Pitts, A.M. (1992) New foundations for fixpoint computations:
FIX-hyperdoctrines and the FIX-logic. Inform. and Comput. 98(2), 171–210.

3. Filinski, A. (1989) Declarative continuations: an investigation of duality in pro-
gramming language semantics. In Proc. Category Theory and Computer Science,
Springer Lecture Notes in Comput. Sci. 389, pp. 224–249.

4. Filinski, A.(1994) Recursion from iteration. Lisp and Symbolic Comput.7(1),11–38.
5. Filinski, A. (1996) Controlling Effects. PhD thesis, Carnegie Mellon University,

CMU-CS-96-119.
6. Flanagan, C., Sabry, A., Duba, B.F. and Felleisen, M. (1993) The essence of com-

piling with continuations. In Proc. ACM Conference on Programming Languages
Design and Implementation, pp. 237–247.

7. Führmann, C. (2000) The Structure of Call-by-Value. PhD thesis, University of
Edinburgh.

8. Harper, R., Duba, B.F. and MacQueen, D. (1993) Typing first-class continuations
in ML. J. Funct. Programming 3(4), 465–484.

9. Hasegawa, M. (1997) Models of Sharing Graphs: A Categorical Semantics of let
and letrec. PhD thesis, University of Edinburgh, ECS-LFCS-97-360; also in Distin-
guished Dissertation Series, Springer-Verlag, 1999.

10. Hofmann, M. (1995) Sound and complete axiomatisations of call-by-value control
operators. Math. Structures Comput. Sci. 5(4), 461–482.

11. Kakutani, Y. (2001) Duality between Call-by-Name Recursion and Call-by-Value
Iteration. MSc thesis, Kyoto University.

12. Moggi, E. (1989) Computational lambda-calculus and monads. In Proc. 4th Annual
Symposium on Logic in Computer Science, pp. 14–23.

13. Parigot, M. (1992) λµ-calculus: an algorithmic interpretation of classical natural
deduction. In Proc. International Conference on Logic Programming and Auto-
mated Reasoning, Springer Lecture Notes in Comput. Sci. 624, pp. 190–201.

14. Plotkin, G.D. (1975) Call-by-name, call-by-value, and the λ-calculus. Theoret.
Comput. Sci. 1(1), 125–159.

15. Power, A.J. and Robinson, E.P. (1997) Premonoidal categories and notions of
computation. Math. Structures Comput. Sci. 7(5), 453–468.

16. Sabry, A. and Felleisen, M. (1992) Reasoning about programs in continuation-
passing style. In Proc. ACM Conference on Lisp and Functional Programming, pp.
288–298; extended version in Lisp and Symbolic Comput. 6(3/4), 289–360, 1993.

17. Selinger, P. (2001) Control categories and duality: on the categorical semantics of
the lambda-mu calculus. To appear in Math. Structures Comput. Sci.

18. Simpson, A.K. and Plotkin, G.D. (2000) Complete axioms for categorical fixed-
point operators. In Proc. 15th Annual Symposium on Logic in Computer Science.

19. Thielecke, H. (1997) Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, ECS-LFCS-97-376.

20. Thielecke, H. (1999) Using a continuation twice and its implications for the ex-
pressive power of call/cc. Higher-Order and Symbolic Comput. 12(1), 47–73.

	Introduction
	The Call-by-Value Calculi
	The {relax mathversion {bold}$lambda _c$}-Calculus
	The Call-by-Value {relax mathversion {bold}$lambda mu $}-Calculus

	Recursion from Iteration
	Categorical Semantics
	Models of the relax mathversion {bold}$lambda _c$-Calculus
	Models of the Call-by-Value relax mathversion {bold}$lambda mu $-Calculus
	Centre and Focus

	Uniform relax mathversion {bold}T-Fixpoint Operators
	Axiomatization in the relax mathversion {bold}$lambda _c$-Calculus
	Uniformity Axiom

	Recursion from Iteration Revisited
	Iteration in the Category of Continuations
	Relation to Uniform relax mathversion {bold}T-Fixpoint Operators
	On Filinski's Uniformity

	Conclusion and Further Work

