
Encoding Intensional Type Analysis

Stephanie Weirich?

Department of Computer Science, Cornell University
Ithaca, NY 14850

sweirich@cs.cornell.edu

Abstract. Languages for intensional type analysis permit ad-hoc poly-
morphism, or run-time analysis of types. However, such languages re-
quire complex, specialized constructs to support this operation, which
hinder optimization and complicate the meta-theory of these languages.
In this paper, we observe that such specialized operators need not be
intrinsic to the language, and in fact, their operation may be simulated
through standard encodings of iteration in the polymorphic lambda cal-
culus. Therefore, we may more easily add intensional analysis operators
to complicated languages via translation, instead of language extension.

1 Introduction

Consider a well-known inductive datatype (presented in Standard ML syntax [14]
augmented with explicit polymorphism):

datatype Tree = Leaf | Node of Tree * Tree
Treerec : ∀a. Tree -> a -> (a * a -> a) -> a

Leaf and Node are introduction forms, used to create elements of type Tree.
The function Treerec is an elimination form, iterating computation over an
element of type Tree, creating a fold or a catamorphism. It accepts a base case
(of type a) for the leaves and an inductive case (of type a * a -> a) for the
nodes . For example, we may use Treerec to define a function to display a Tree.
First, we explicitly instantiate the return type a with [string]. For the leaves,
we provide the string "Leaf", and for the nodes we concatenate (with the infix
operator ˆ) the strings of the subtrees.

val showTree = fn x : Tree =>
Treerec [string] x

"Leaf"
(fn (s1:string, s2:string) => "Node(" ˆ s1 ˆ "," ˆ s2 ")")

? This paper is based on work supported in part by the National Science Foundation
under Grant No. CCR-9875536. Any opinions, findings and conclusions or recom-
mendations expressed in this publication are those of the author and do not reflect
the views of this agency.

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 92–106, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Encoding Intensional Type Analysis 93

As Tree is an inductive datatype, it is well known how to encode it in the
polymorphic lambda calculus [1]. The basic idea is to encode a Tree as its
elimination form — a function that iterates over the tree. In other words, a Leaf
is a function that accepts a base case and an inductive case and returns the
base case. Because we do not wish to constrain the return type of iteration, we
abstract it, explicitly binding it with Λa.

val Leaf = Λa. fn base:a => fn ind:a * a -> a => base

Likewise, a Node, with two subtrees x and y, selects the inductive case, passing
it the result of continuing the iteration through the two subtrees.

val Node (x:Tree) (y:Tree) =
Λa. fn base:a => fn ind:a * a -> a =>

ind (Treerec [a] x base ind) (Treerec [a] y base ind)

However, as all of the iteration is encoded into the data structure itself, the
elimination form only needs to pass it on.

val Treerec = Λa. fn x : Tree => fn base : a =>
fn ind : a * a -> a => x [a] base ind

Consequently, we may write Node more simply as

val Node (x:Tree) (y:Tree) =
Λa. fn base:a => fn ind:a * a -> a =>

ind (x [a] base ind) (y [a] base ind)

Now consider another inductive datatype:

datatype Type = Int | Arrow of Type * Type
Typerec : ∀a. Type -> a -> (a * a -> a) -> a

Ok, so we just changed the names. However, this datatype (or at least the in-
troductory forms of it) is quite common in typed programming languages. It is
the inductive definition of the types of the simply-typed lambda calculus.

τ ::= int | τ → τ

Just as we may write functions in ML to create and manipulate Trees, in
some languages, we may write functions (or type constructors) that create and
manipulate Types. These functions over Types must themselves be typed (we
use the word kind for the types of types). If we use Type (notated by Ω) as the
base kind, we get what is starting to look like the syntax of the kinds and type
constructors of Girard’s language Fω [8].

(kinds) κ ::= Ω | κ → κ
(type constructors) τ ::= int | τ → τ | α | λα:κ.τ | ττ

The language λML
i [9] adds the elimination form Typerec to this type con-

structor language. Because Typerec may determine the structure of an abstract

94 S. Weirich

(kinds) κ ::= Ω | κ1 → κ2

(type constructors) c, τ ::= α | λα:κ.c | c1c2 | int | τ1 → τ2 |
| Typerec[κ] τ ci c→

(types) σ ::= T (τ) | R(τ) | σ1 → σ2 | ∀α:κ.σ

(terms) e ::= i | x | λx:σ.e | e1e2

| Λα:κ.e | e[c] | Ri | R→
| typerec[c] e ei e→

Fig. 1. Syntax of of the source language, λR

type, its operation is called intensional analysis. Furthermore, λML
i also allows

the definition of a fold over a Type to create a term, with the special term
typerec. With this term, λML

i supports run-time type analysis, as the identities
of type constructors affect run-time execution. For example, just as we defined
a function to print out trees, we can define a function to print out types at run
time.

val showType = Λa:Ω.
typerec [string] a

"int"
(fn (s1:string, s2:string) => "(" ˆ s1 ˆ " -> " ˆ s2 ˆ ")"

Even though the type constructor Typerec and the term typerec are very
specialized operators in λML

i , they are just folds over an inductive data struc-
ture. And just as we can encode folds over Trees in the polymorphic lambda
calculus, we can encode folds over Types. Note that to encode the type construc-
tor Typerec, we will need to add kind polymorphism to the type constructor
language.

In the rest of this paper, we will demonstrate how to encode a language
with intensional type analysis operators into a variant of Fω augmented with
kind polymorphism. The fact that such an encoding exists means that the spe-
cialized operators typerec and Typerec do not need to be an intrinsic part of a
programming language for it to support intensional type analysis. Therefore, we
may more easily add these operators to complicated languages via a translation
semantics, instead of through language extension.

The rest of the paper is organized as follows. Formal descriptions of the
source and target languages appear in Section 2, and we present the embedding
between them in Section 3. Section 4 describes the limitations of the translation
and discusses when one might want an explicit iteration operator in the target
language. Section 5 discusses related work and concludes.

Encoding Intensional Type Analysis 95

Constructor Typerec Term typerec

Formation Formation

∆ ` τ : Ω
∆ ` ci : κ

∆ ` c→ : κ → κ → κ

∆ ` Typerec[κ] τ ci c→ : κ

∆; Γ ` c : Ω → Ω
∆; Γ ` e : R(τ)

∆; Γ ` ei : T (c(int))
∆; Γ ` e→ : ∀α:Ω.∀β:Ω.T (cα → cβ → c(α → β))

∆; Γ ` typerec[c] e ei e→ : T (cτ)

Constructor equivalence Operational semantics

∆ ` Typerec[κ] int ci c→ = ci : k typerec[c] Ri ei e→ 7→ ei

∆ ` Typerec[κ](τ1 → τ2) ci c→ =
c→ (Typerec[κ] τ1 ci c→)

(Typerec[κ] τ2 ci c→) : k

typerec[c] (R→[τ1][τ2] v1 v2) ei e→ 7→
e→ [τ1][τ2] (typerec[c] v1 ei e→)

(typerec[c] v2 ei e→)

Fig. 2. Typerec and typerec

2 The Languages

Instead of directly presenting a translation of λML
i , we instead choose as the

source language Crary et al .’s λR [5]. Because we will define two elimination
forms, typerec and Typerec, we will need to separate type information used at
the term level for run-time type analysis from that used at the type constructor
level for static type checking. The language λR exhibits this separation by using
terms that represent type constructors for analysis at run time, reserving type
constructors for type-level analysis. A translation from λML

i into λR provides term
representations (suitable for typerec) for each type constructor abstracted by the
source program.

To avoid analyzing quantified types, the core of λR is a predicative variant of
Fω. The quantifier ∀α:κ.σ ranges only over “small” types which do not include
the quantified types. Therefore, the syntax (Figure 1) is divided into four syn-
tactic categories: type constructors described by kinds, and terms described by
types. By convention we use the meta-variable τ for constructors of kind Ω (those
equivalent to unquantified types) and c for arbitrary constructors. A constructor
τ of kind Ω may be explicitly coerced to a type with T (τ).

The semantics of λR includes judgments for type constructor formation ∆ `
c : k, type constructor equality ∆ ` c1 = c2 : k, type formation ∆ ` σ, type
equality ∆ ` σ1 = σ2, term formation ∆;Γ ` e : σ and small-step operational
semantics e 7→ e′. In these judgments, ∆ and Γ are contexts describing the kinds
and types of the free constructor and term variables.

The semantics of the type constructor Typerec and term typerec appears in
Figure 2. Unlike λML

i , the argument to typerec is a term representing a type
constructor, not the type constructor itself. The type R(τ) describes such a

96 S. Weirich

term representing τ . The type is singular; for any τ , only one term inhabits
R(τ). Therefore, once the identity of a term of type R(τ) is determined, so is
the identity of τ . For example, if x : R(α) and x matches the representation of
the type int , denoted Ri , then we know α must be int .

Arrow types in λR are represented by the R→ term. This term requires the
two types of the subcomponents of the arrow type and the two terms representing
those types.

R→ : ∀α:Ω.∀β:Ω.R(α) → R(β) → R(α → β)

For example, the type int → int is represented by the term

R→[int][int]Ri Ri

One extremely useful property of typerec not illustrated by the showType
example from Section 1, is that the types of the ei and e→ branches to typerec
may depend on the identity of the analyzed type. If the argument to typerec is
a term of type R(τ), the result type of the expression is T (cτ), where c may
be an arbitrary type constructor. (The typerec term is annotated by c to permit
syntax-directed type checking.) However, instead of requiring that the ei be of
type T (cτ), it may be of type T (c int), reflecting the fact that in ei branch we
know τ is int . Likewise, the return type of the e→ is T (c(α → β)), for some α
and β.

There are several differences between λR presented in this paper and the
language of Crary et al . [5]. To simplify presentation, this version is call-by-
name instead of call-by-value. Also, here the result of typerec is annotated with
a type constructor, instead of a type. However, we make two essential changes to
support the embedding presented in this paper. First, we prevent R-types from
appearing as an argument to typerec or Typerec, by making R a part of the type
language, and not a type constructor. We discuss in the next section why this
restriction is necessary.

Second, although typerec and Typerec usually define a primitive recursive fold
over kind Ω (also called a paramorphism [12,11]), in this language we replace
these operators with their iterative cousins (which define catamorphisms). The
difference between iteration and primitive recursion is apparent in the kind of
c→ and the type of e→. With primitive recursion, the arrow branch receives four
arguments: the two subcomponents of the arrow constructor and two results
of continuing the fold through these subcomponents. In iteration, on the other
hand, the arrow branch receives only two arguments, the results of the continued
fold.1 We discuss this restriction further in Section 4.1.

The remainder of the static and operational semantics for this language, and
for the primitive recursive versions, typerecpr and Typerecpr, appear in Appen-
dices A.1 and B. For space reasons, we omit the formation rules for types and
type constructors, as they may be inferred from the rules for equality.
1 Because we cannot separate type constructors passed for static type checking, from

those passed for dynamic type analysis in λML
i , we must provide the subcomponents

of the arrow type to the arrow branch of typerec. Therefore, we cannot define an
iterative version of typerec for that language.

Encoding Intensional Type Analysis 97

(kinds) κ :: = Ω | κ1 → κ2 | χ | ∀χ.κ

(con′s) c, τ :: = α | λα:κ.c | c1c2 | Λχ.c | c[κ]
| int | τ1 → τ2 | ∀α:κ.τ

(terms) e :: = i | x | λx:τ.e | e1e2

| Λα:κ.e | e[c]

Fig. 3. Syntax of the target language, λU−

The target language of the translation is λU−, the language Fω augmented
with kind polymorphism at the type constructor level (Figure 3). As the target
language is impredicative, both types and type constructors are in the same
syntactic class. In Section 4.2 we discuss why we might want alternate target
languages not based on impredicative polymorphism. The static and operational
semantics of λU− appear in Appendices A.2 and C.

3 The Translation

The translation of λR into λU− can be thought of as two separate translations:
A translation of the kinds and constructors of λR into the kinds and constructors
of λU− and a translation of the types and terms of λR into the constructors and
terms of λU−. For reference, the complete translation appears in Figure 4.

3.1 Defining Iteration

To define the translation of Typerec we use the traditional encoding of inductive
datatypes in impredicative polymorphism. As before, we encode τ , of kind Ω as
its elimination form: a function that chooses between two given branches — one
for ci , one for c→. Then Typerec[κ] τ ci c→ can be implemented with

[[τ]][[[κ]]] [[ci]] [[c→]]

As τ is of kind type, we define [[Ω]] to reflect the fact that [[τ]] must accept
an arbitrary kind and the two branches.

[[Ω]] = ∀χ.χ → (χ → χ → χ) → χ

Accordingly, the encoding of the type constructor int just returns its first argu-
ment (the kinds of the arguments have been elided)

[[int]] = (Λχ.λι.λα.ι)

Now consider the constructor equality rule when the argument to Typerec is
an arrow type. The translation of the arrow type constructor →, should apply

98 S. Weirich

the second argument (the c→ branch) to the result of continuing the recursion
through the two subcomponents.

[[τ1 → τ2]] = Λχ.λι.λα.α([[τ1]][χ] ι α)([[τ2]][χ] ι α)

A critical property of this translation is that it preserve the equivalences that
exist in the source language. For example, one equivalence we must preserve from
the source language is that

[[Typerec[κ] (τ1 → τ2) ci c→]] = [[c→(Typerec[κ] τ1 ci c→)(Typerec[κ] τ2 ci c→)]]

If we expand the left side, we get

(Λχ.λι.λα.α([[τ1]][χ] ι α)([[τ2]][χ] ι α)) [[[κ]]] [[ci]] [[c→]]

This term is then β-equivalent to the expansion of the right hand side.

[[c→]] ([[τ1]][[[κ]]][[ci]][[c→]]) ([[τ2]][[[κ]]][[ci]][[c→]])

Because type constructors are a separate syntactic class from types, we must
define [[T (τ)]], the coercion between them. We convert [[τ]] of kind [[Ω]] into a
λU− constructor of kind Ω using the iteration built into [[τ]].

[[T (τ)]] = [[τ]] [Ω] int (λα:Ω.λβ:Ω.α → β)

For example,

[[T (int)]] = [[int]][Ω] int (λα:Ω.λβ:Ω.α → β)
= (Λχ.λι.λα.ι)[Ω] int (λα:Ω.λβ:Ω.α → β)
=β int

We use a very similar encoding for typerec at the term level, as we do for
Typerec. Again, we wish to apply the translation of the argument to the trans-
lation of the branches, and let the argument select between them.

[[typerec[c]e ei e→]] as [[e]] [[[c]]] [[ei]] [[e→]]

The translations of Ri and R→ are analogous to those of the type con-
structors int and →. However, there is a subtle point about the definition of
R(τ), the type of the argument to typerec. To preserve typing, we define [[R(τ)]]
as:

∀γ:[[Ω → Ω]].[[T (γ int)]]
→ [[∀α:Ω.∀β:Ω.T (γα) → T (γβ) → T (γ(α → β))]]
→ [[T (γτ)]]

Here we see why R cannot be a type constructor; if it were, we would have
an additional branch for it in the translation of T mapping the R constructor
to the R type. So the definition would be

[[T (τ)]] = [[τ]] [Ω] int (λα:Ω.λβ:Ω.α → β) (λα:Ω.R(α)) (WRONG)

causing the definition of [[R(τ)]] to be recursive.

Encoding Intensional Type Analysis 99

Kind Translation

[[Ω]] = ∀χ.χ → (χ → χ → χ) → χ
[[κ1 → κ2]] = [[κ1]] → [[κ2]]

Constructor Translation

[[α]] = α
[[λα:κ.c]] = λα:[[κ]].[[c]]
[[c1c2]] = [[c1]][[c2]]
[[int]] = Λχ.λι:χ.λα:χ → χ → χ.ι
[[τ1 → τ2]] = Λχ.λι:χ.λα:χ → χ → χ.

α ([[τ1]] [χ] ι α) ([[τ2]] [χ] ι α)
[[Typerec[κ] τ ci c→]] = [[τ]] [[[κ]]] [[ci]] [[c→]]

Type Translation

[[T (τ)]] = [[τ]] [Ω] int (λα:Ω.λβ:Ω.α → β)
[[R(τ)]] = ∀γ:[[Ω → Ω]].[[T (γ int)]]

→ [[∀α:Ω.∀β:Ω.T (γα) → T (γβ) → T (γ(α → β))]]
→ [[T (γτ)]]

[[int]] = int
[[σ1 → σ2]] = [[σ1]] → [[σ2]]
[[∀α:κ.σ]] = ∀α:[[κ]].[[σ]]

Term Translation

[[x]] = x
[[λx:σ.e]] = λx:[[σ]].[[e]]
[[e1e2]] = [[e1]][[e2]]
[[Λα:κ.e]] = Λα:[[κ]].[[e]]
[[e[c]]] = [[e]][[[c]]]
[[Ri]] = (Λγ:[[Ω → Ω]].λi:[[T (γ int)]].

λa:[[∀α:Ω.∀β:Ω.T (γα) → T (γβ) → T (γ(α → β))]].i)
[[R→]] = Λα:[[Ω]].Λβ:[[Ω]].λx1:[[R(α)]].λx2:[[R(β)]]

(Λγ:[[Ω → Ω]].λi:[[T (γ int)]].
λa:[[∀α:Ω.∀β:Ω.T (γα) → T (γβ) → T (γ(α → β))]].

a [α][β](x1[γ] i a) (x2[γ] i a))
[[typerec[c] e ei e→]] = [[e]][[[c]]][[ei]] [[e→]]

Fig. 4. Translation of λR into λU−

100 S. Weirich

3.2 Properties of the Embedding

The translation presented above enjoys the following properties. Define [[∆]] as
{α:[[∆(α)]] | α ∈ Dom(∆)} and [[Γ]] as {x:[[Γ (x)]] | x ∈ Dom(Γ)}.

Theorem 1 (Static Correctness).

1. ∅ ` [[κ]]
2. If ∆ ` c : κ then [[∆]] ` [[c]] : [[κ]].
3. If ∆ ` c = c′ : κ then [[∆]] ` [[c]] = [[c′]] : [[κ]].
4. If ∆ ` σ then [[∆]] ` [[σ]] : Ω.
5. If ∆ ` σ = σ′ then [[∆]] ` [[σ]] = [[σ′]] : Ω
6. If ∆;Γ ` e : σ then [[∆;Γ]] ` [[e]] : [[σ]].

Proof is by induction on the appropriate derivation.

Theorem 2 (Dynamic Correctness). If ∅ ` e : σ and e 7→ e′ then [[e]] 7→∗

[[e′]].

Proof is by induction on ∅ ` e : σ.

4 Discussion

Despite the simplicity and elegance of this encoding, it falls short for two reasons,
which we discuss in this section.

4.1 Extension to Primitive Recursion

At the term level we could extend the previous definition of typerec to a primitive
recursive version typerecpr by providing terms of type R(α) and R(β) to e→. In
that case, [[R(τ)]] must be a recursive definition:

∀γ:[[Ω → Ω]].[[T (γ int)]]
→ [[∀α:Ω.∀β:Ω.R(α) → R(β) → T (γα) → T (γβ) → T (γ(α → β))]]
→ [[T (γτ)]]

We have defined [[R(τ)]] in terms of [[R(α)]] and [[R(β)]]. We might expect that
a realistic term language include parameterized recursive types. In that case, the
definition of typerecpr is no more difficult than that of typerec; just supply the
extra arguments to the arrow branch. In other words,

[[R→]] = Λα:[[Ω]].Λβ:[[Ω]].λx1:[[R(α)]].λx2:[[R(β)]].
Λγ:[[Ω → Ω]].λi.λa.

a[α][β] x1 x2 (x1[γ]ia)(x2[γ]ia)

However, we cannot add recursive kinds to implement primitive recursion at
the type constructor level without losing decidable type checking. Even with-
out resorting to recursive types, there is a well known technique for encoding

Encoding Intensional Type Analysis 101

primitive recursion in terms of iteration, by pairing the argument with the result
in the iteration.2 Unfortunately, this pairing trick only works for closed expres-
sions, and only produces terms that are βη−equivalent in the target language.
Therefore, at the term level, our strong notion of dynamic correctness does not
hold. Using this technique, we must weaken it to:

If ∅ ` e : σ and e 7→ e′ then [[e]] is βη-convertible with [[e′]].
At the type-constructor level, βη-equivalence is sufficient. However, for type

checking, we need the equivalence to extend to constructors with free-variables.
The reason that this trick does not work is that λU− can encode iteration over
datatypes only weakly; there is no induction principle for this encoding provable
in λU−. Therefore, we cannot derive a proof of equality in the equational theory
of the target language that relies on induction. This weakness has been encoun-
tered before. In fact, it is conjectured that it is impossible to encode primitive
recursion in System F using βη-equality [22]. A stronger equational theory for
λU−, perhaps one incorporating a parametricity principle [19], might solve this
problem. However, a simpler way to support primitive recursion would be to
include an operator for primitive recursion directly in the language [13,18,3,4].

4.2 Impredicativity and Non-termination

Another issue with this encoding is that the target language must have impred-
icative polymorphism at the type and kind level. In practice, this property is
acceptable in the target language. Although, impredicativity at the kind level
destroys strong-normalization [2],3 intensional polymorphism was designed for
typed-compilation of Turing-complete language [9], and impredicativity at the
type level is vital for such transformations as typed closure conversion. Further-
more, Trifonov et al . show that impredicative kind polymorphism allows the
analysis of quantified types [23]. Allowing such impredicativity in the source lan-
guage does not prevent this encoding; we can similarly encode the type-erasure
version of their language [21].

However, the source language of this paper, λR, is predicative and strongly-
normalizing, and the fact that this encoding destroys these properties is unsat-
isfactory. It seems reasonable, then, to look at methods of encoding iteration
within predicative languages [16,7]. In adding iteration to the kind level, strict
positivity (the recursively bound variable may not appear to the left of an arrow)
may be required [3], to prevent the definition of an equivalent paradox.

5 Related Work and Conclusions

Böhm and Berarducci [1] showed how to to encode any covariant datatype in
the polymorphic lambda calculus. A variant of this idea, called dictionary pass-
ing, was used to implement ad-hoc polymorphism in the language Haskell [17]
2 See the tutorials in Meertens [11] and Mitchell [15] Section 9.3
3 Coquand [2] originally derived a looping term by formalizing a paradox along the

lines of Reynolds’ theorem [20], forming an isomorphism between a set and its double
power set. Hurkens [10] simplified this argument and developed a shorter looping
term, using a related paradox.

102 S. Weirich

through type classes [24]. In Standard ML [14], Yang [25] similarly used it to
encode type-specialized functions (such as type-directed partial evaluation [6]).
Because core ML does not support higher-order polymorphism, he presented his
encoding within the ML module system.

At the type constructor level, Crary and Weirich [4] encoded the Typerec
construct with a language supporting product, sum and inductive kinds. Their
aim was to support type analysis in type-preserving compilation. Because various
intermediate languages do not share the same type system, they needed some
way to express the analysis of source-level types within the target language.

In this paper we demonstrate that all of these encodings are related, and
have the implementation of iteration at their core. While intensional type anal-
ysis seems to require highly specialized operators, here we observe that it is no
more complicated to include than iteration over inductive datatypes. Though we
have implemented such iteration via the standard encoding into the polymorphic
lambda calculus, other constructs supporting iteration suffice. In fact, alterna-
tive operations for iteration may be necessary in situations where impredicative
polymorphism is not desirable.
Acknowledgments. Thanks to Robert Harper, Bratin Saha, Karl Crary and
Greg Morrisett for much helpful discussion.

References

1. C. Böhm and A. Berarducci. Automatic synthesis of typed Λ-programs on term
algebras. Theoretical Computer Science, 39:135–154, 1985.

2. Thierry Coquand. A new paradox in type theory. In Dag Prawitz, Brian Skyrms,
and Dag Westerst̊ahl, editors, Logic, methodology and philosophy of science IX :
proceedings of the Ninth International Congress of Logic, Methodology, and Philos-
ophy of Science, Uppsala, Sweden, August 7-14, 1991, Amsterdam, 1994. Elsevier.

3. Thierry Coquand and Christin Paulin. Inductively defined types. In P. Martin-Löf
and G. Mints, editors, COLOG-88 International Conference on Computer Logic,
volume 417 of Lecture Notes in Computer Science, pages 50–66, Tallinn, USSR,
December 1988. Springer-Verlag.

4. Karl Crary and Stephanie Weirich. Flexible type analysis. In 1999 ACM Interna-
tional Conference on Functional Programming, pages 233–248, Paris, September
1999.

5. Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism
in type erasure semantics. In 1998 ACM International Conference on Functional
Programming, volume 34 of ACM SIGPLAN Notices, pages 301–313, Baltimore,
MD, September 1998. Extended Version is Cornell University Computer Science
TR98-1721.

6. Olivier Danvy. Type-directed partial evaluation. In Twenty-Third ACM Sympo-
sium on Principles of Programming Languages, January 1996.

7. Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-
theoretic semnatics. In Gerard Huet and Gordon Plotkin, editors, Logical Frame-
works, pages 280–306. Prentice Hall, 1991.

8. Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

9. Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Twenty-Second ACM Symposium on Principles of Programming
Languages, pages 130–141, San Francisco, January 1995.

Encoding Intensional Type Analysis 103

10. A. J. C. Hurkens. A simplification of girard’s paradox. In Mariangiola Dezani-
Ciancaglini and Gordon Plotkin, editors, Second International Conference on Typed
Lambda Calculi and Applications, TLCA ’95, volume 902 of Lecture Notes in Com-
puter Science, Edinburgh, United Kingdom, April 1995. Springer-Verlag.

11. Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413–424, 1992.

12. E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In FPCA91: Functional Programming
Languages and Computer Architecture, volume 523 of Lecture Notes in Computer
Science, pages 124–144. Springer-Verlag, 1991.

13. Paul Francis Mendler. Inductive Definition in Type Theory. PhD thesis, Depart-
ment of Computer Science, Cornell University, Ithaca, New York, September 1987.

14. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, Cambridge, Massachusetts, 1997.

15. John C. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.
16. C. Paulin-Mohring. Inductive definitions in the system Coq - rules and properties.

In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, number 664 in Lecture Notes in Computer Science, 1993.
LIP research report 92-49.

17. Simon L. Peyton Jones and J. Hughes (editors). Report on the programming
language Haskell 98, a non-strict purely functional language. Technical Report
YALEU/DCS/RR-1106, Yale University, Department of Computer Science, Febru-
ary 1999. Available from http://www.haskell.org/definition/.

18. F. Pfenning and C. Paulin-Mohring. Inductively defined types in the Calculus
of Constructions. In Proceedings of Mathematical Foundations of Programming
Semantics, volume 442 of Lecture Notes in Computer Science. Springer-Verlag,
1990.

19. Gordon Plotkin and Mart́ın Abadi. A logic for parametric polymorphism. In
International Conference on Typed Lambda Calculi and Applications, pages 361–
375, 1993.

20. John C. Reynolds. Polymorphism is not set-theoretic. In Proceedings of the Inter-
national Symposium on Semantics of Data Types, volume 173 of Lecture Notes in
Computer Science. Springer-Verlag, 1984.

21. Bratin Saha, Valery Trifonov, and Zhong Shao. Fully reflexive intensional type
analysis in type erasure semantics. In Third Workshop on Types in Compilation,
Montreal, September 2000.

22. Zdzis law Sp lawski and Pawe l Urzyczyn. Type fixpoints: Iteration vs. recursion. In
Fourth ACM International Conference on Functional Programming, pages 102–113,
Paris, France, September 1999.

23. Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive intensional type
analysis. In Fifth ACM International Conference on Functional Programming,
pages 82–93, Montreal, September 2000. Extended version is YALEU/DCS/TR-
1194.

24. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc.
In Sixteenth ACM Symposium on Principles of Programming Languages, pages
60–76. ACM, 1989.

25. Zhe Yang. Encoding types in ML-like languages. In 1998 ACM International
Conference on Functional Programming, volume 34 of ACM SIGPLAN Notices,
pages 289 – 300, Baltimore, MD, September 1998.

104 S. Weirich

A Operational Semantics

A.1 λR

(λα:x.e)e′ 7→ e[e′/x]

(Λα:κ.e)[c] 7→ (e[c/α])

e1 7→ e′
1

e1e2 7→ e′
1e2

e 7→ e′

e[c] 7→ e′[c]

typerecpr[c] Ri ei e→ 7→ ei

typerecpr[c] (R→[τ1][τ2]e1 e2) ei e→ 7→
e→[τ1][τ2] e1 e2

(typerecpr[c] e1 ei e→)
(typerecpr[c] e2 ei e→)

e 7→ e′

typerecpr[c] e ei e→ 7→
typerecpr[c] e′ ei e→

A.2 λU−

(λx:c.e)e′ 7→ e[e′/x]

e1 7→ e′
1

e1e2 7→ e′
1e2

(Λα:κ.e)[c] 7→ (e[c/α])

e 7→ e′

e[c] 7→ e′[c]

Encoding Intensional Type Analysis 105

B Static Semantics of λR

B.1 Constructor Equivalence

∆ ` c1 = c2 : κ

∆, α:κ′ ` c1 : κ ∆ ` c2 : κ′

α 6∈ Dom(∆)

∆ ` (λα:κ′.c1)c2 = c1[c2/α] : κ

∆ ` c : κ1 → κ2

α 6∈ Dom(∆)

∆ ` λα:κ1.c α = c : κ1 → κ2

∆, α:κ ` c = c′ : κ′

∆ ` λα:κ.c = λα:κ.c′ : κ → κ′

∆ ` c1 = c′
1 : κ′ → κ ∆ ` c2 = c′

2 : κ′

∆ ` c1c2 = c′
1c

′
2 : κ

∆ ` c1 = c′
1 : κ′ → κ ∆ ` c2 = c′

2 : κ′

∆ ` c1 → c2 = c′
1 → c′

2 : Ω

∆ ` c : κ
∆ ` c = c : κ

∆ ` c′ = c : κ

∆ ` c = c′ : κ

∆ ` c = c′ : κ ∆ ` c′ = c′′ : κ

∆ ` c = c′′ : κ

∆ ` ci : κ
∆ ` c→ : Ω → Ω → κ → κ → κ

∆ ` Typerecpr[κ](int) (ci , c→) = ci : κ

∆ ` c1 : Ω ∆ ` c2 : Ω ∆ ` ci : κ
∆ ` c→ : Ω → Ω → κ → κ → κ

∆ ` Typerecpr[κ](c1 → c2) (ci , c→) =
c→ c1 c2 (Typerecpr[κ]c1 (ci , c→))

(Typerecpr[κ]c2 (ci , c→)) : κ

∆ ` c = c′ : Ω
∆ ` ci = c′

i : κ
∆ ` c→ = c′

→ : Ω → Ω → κ → κ → κ

∆ ` Typerecpr[κ] c (ci , c→) =
Typerecpr[κ] c′ (c′

i , c
′
→) : κ

B.2 Type Equivalence

∆ ` σ1 = σ2

∆ ` c1 = c2 : κ

∆ ` T (c1) = T (c2)

∆ ` c1 = c2 : κ

∆ ` R(c1) = R(c2)

∆ ` σ1 = σ′
1 ∆ ` σ2 = σ′

2

∆ ` σ1 → σ2 = σ′
1 → σ′

2

∆ ` T (int) = int

∆ ` σ1 = T (c1) ∆ ` σ2 = T (c2)
∆ ` σ1 → σ2 = T (c1 → c2)

∆, α:κ ` σ = σ′

∆ ` ∀α:κ.σ = ∀α:κ.σ′

∆ ` σ
∆ ` σ = σ

∆ ` σ′ = σ

∆ ` σ = σ′

∆ ` σ = σ′ ∆ ` σ′ = σ′′

∆ ` σ = σ′′

B.3 Term Formation

∆; Γ ` e : σ

∆; Γ ` i : int

Γ (x) = σ

∆; Γ ` x : σ

∆; Γ, x:σ2 ` e : σ1

∆; Γ ` σ2 x 6∈ Dom(Γ)

∆; Γ ` λx:σ2.e : σ2 → σ1

∆; Γ ` e1 : σ2 → σ1 ∆; Γ ` e2 : σ2

∆; Γ ` e1e2 : σ1

∆; Γ ` e : ∀α:κ.σ ∆; Γ ` c : κ

∆; Γ ` e[c] : σ[c/α]

∆; Γ, α:κ ` e : σ x 6∈ Dom(Γ)
∆; Γ ` Λα:κ.e : ∀α:κ.σ

∆; Γ ` e : σ2 ∆; Γ ` σ1 = σ2

∆; Γ ` e : σ1

∆; Γ ` Ri : R(int)

106 S. Weirich

∆; Γ ` R→ : ∀α:Ω.∀β:Ω.

R(α) → R(β) → R(α → β)

∆; Γ ` c : Ω → Ω
∆; Γ ` e : R(τ)

∆; Γ ` ei : T (c(int))
∆; Γ ` e→ : ∀α:Ω.∀β:Ω.R(α) → R(β)

→ T (c(α) → c(β) → c(β → γ))

∆; Γ ` typerecpr[c] e ei e→ : T (cτ)

C Static Semantics of λU−

C.1 Kind Formation

E ` κ

E, χ ` χ

E ` Ω

E ` κ1 E ` κ2

E ` κ1 → κ2

E, χ ` κ

E ` ∀χ.κ

C.2 Constructor Equivalence

E; ∆ ` c = c′ : κ

E; ∆, α:κ′ ` c1 : κ
E; ∆ ` c2 : κ′

α 6∈ Dom(∆)

E; ∆ ` (λα:κ′.c1)c2 = c1[c2/α] : κ

E; ∆ ` c : κ1 → κ2α 6∈ Dom(∆)
E; ∆ ` λα:κ1.c α = c : κ1 → κ2

E; ∆, α:κ ` c = c′ : κ′

E; ∆ ` λα:κ.c = λα:κ.c′ : κ → κ′

E; ∆ ` c1 = c′
1 : κ′ → κ

E; ∆ ` c2 = c′
2 : κ′

E; ∆ ` c1c2 = c′
1c

′
2 : κ

E, χ; ∆ ` c : κ′

E; ∆ ` Λχ.c[κ] = c[κ/χ] : κ′[κ/χ]

E; ∆ ` c : ∀χ′.κ

E; ∆ ` Λχ.c[χ] = c : ∀χ′.κ

E, χ; ∆ ` c = c′ : κ

E; ∆ ` Λχ.c = Λχ.c′ : ∀χ.κ

E; ∆ ` c = c′ : ∀χ.κ

E; ∆ ` c[κ] = c′[κ] : κ′[κ/χ]

E; ∆ ` c1 = c′
1 : κ′ → κ

E; ∆ ` c2 = c′
2 : κ′

E; ∆ ` c1 → c2 = c′
1 → c′

2 : Ω

E; ∆, α:κ ` σ = σ′

E; ∆ ` ∀α:κ.σ = ∀α:κ.σ′

E; ∆ ` c : κ

E; ∆ ` c = c : κ

E; ∆ ` c′ = c : κ

E; ∆ ` c = c′ : κ

E; ∆ ` c = c′ : κ E; ∆ ` c′ = c′′ : κ

E; ∆ ` c = c′′ : κ

C.3 Term Formation

∆; Γ ` e : σ

∆; Γ ` i : int

Γ (x) = σ

∆; Γ ` x : σ

∆; Γ, x:σ2 ` e : σ1

∆; Γ ` σ2 x 6∈ Dom(Γ)

∆; Γ ` λx:σ2.e : σ2 → σ1

∆; Γ ` e1 : σ2 → σ1 ∆; Γ ` e2 : σ2

∆; Γ ` e1e2 : σ1

∆; Γ ` e : ∀α:κ.σ ∆; Γ ` c : κ

∆; Γ ` e[c] : σ[c/α]

∆; Γ, α:κ ` e : σ x 6∈ Dom(Γ)
∆; Γ ` Λα:κ.e : ∀α:κ.σ

∆; Γ ` e : σ2 ·; ∆ ` σ1 = σ2 : Ω

∆; Γ ` e : σ1

	Introduction
	The Languages
	The Translation
	De ning Iteration
	Properties of the Embedding

	Discussion
	Extension to Primitive Recursion
	Impredicativity and Non-termination

	Related Work and Conclusions
	Operational Semantics
	Static Semantics of R
	Static Semantics of U

