
Modal Transition Systems: A Foundation for
Three-Valued Program Analysis

Michael Huth1, Radha Jagadeesan?2, and David Schmidt??1

1 Computing and Information Sciences, Kansas State University,
{huth,schmidt}@cis.ksu.edu, WWW home page:

http://www.cis.ksu.edu/{˜huth,˜schmidt}
2 Department of Mathematics and Computer Science, Loyola University of Chicago,

radha@cs.luc.edu, WWW home page: http://www.cs.luc.edu/˜radha

Abstract. We present Kripke modal transition systems (Kripke MTSs),
a generalization of modal transition systems [27,26], as a foundation
for three-valued program analysis. The semantics of Kripke MTSs are
presented by means of a mixed power domain of states; soundness and
consistency are proved. Two major applications, model checking partial
state spaces and three-valued program shape analysis, are presented as
evidence of the suitability of Kripke MTSs as a foundation for three-
valued analyses.

1 Introduction

A modal transition system (MTS) [27,26] labels each of its state transitions
with a modality — may or must — expressing transition behaviors that (i)
necessarily occur (must modality), (ii) possibly occur (may modality), and (iii)
not possibly occur (absence of a transition). Figure 1 shows an example MTS — a
specification of a slot machine, where some behaviors of the final implementation
are fixed (the must-transitions) and some are uncertain (the may-transitions).

Conventional state-transition modellings are over-approximations made by
adding more computation paths [8,7], thereby limiting validation to safety prop-
erties (“nothing bad will happen”). MTSs, however, perform both over- and
under-approximation, admitting both safety and liveness properties (“something
good will happen”) to be deduced. As a bonus, the outcomes of analyses of MTSs
are three-valued, meaning that validation, refutation, and conditional reasoning
can be undertaken in the framework. Abstractions of both control and data can
be modelled with MTSs.

The paper proceeds as follows: Section 2 reviews doubly labeled transition
systems [12] and characterizes their behaviors by logics of “liveness” and “safety.”
Section 3 introduces Kripke MTSs, their refinement relation, and their semantics
for the modal mu-calculus [25]. Sections 4 and 5 show how to apply Kripke MTSs
to two analyses that rely on three-valued logic: (i) Bruns and Godefroid’s partial
? Supported by NSF CCR-9901071.

?? Supported by NSF CCR-9970679 and INT-9981558.

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 155–169, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

156 M. Huth, R. Jagadeesan, and D. Schmidt

winning
winCoin

must

must
may

active

may
acceptCoin

must
loseCoin

reset

winAnotherCoin

inactive

Fig. 1. Slot machine specification in modal transition format

Kripke structures [3] and extended transition systems [29,39] and (ii) the pointer
shape-graph analysis of Sagiv, Reps, and Wilhelm [35]. Section 6 concludes.

2 Doubly Labeled Transition Systems

We begin with the definition of a doubly labeled transition system [12]:

Definition 1 (Doubly labeled transition systems). A doubly labeled tran-
sition system (DLTS), K, is a tuple (ΣK , Act, AP,−→, L), where ΣK is a set of
states, Act is a (countable) set of action symbols, AP is a (countable) set of atomic
propositions, −→ is a transition relation that is a subset of ΣK ×Act×ΣK , and
L is a labeling function L : ΣK → P(AP). We call K finitely-branching if for
each s ∈ ΣK and a ∈ Act, the sets L(s) and {s′ ∈ ΣK | s →a s′} are finite. 1

As Figure 2 shows, each state is annotated with the set of primitive properties
that hold for it. Behaviors are compared by means of simulations:

Definition 2 (Simulation). Let C and A be doubly labeled transition systems,
where for simplicity ActC = ActA. A relation, Q ⊆ ΣC × ΣA, is a simulation
if, for all s ∈ ΣC , t ∈ ΣA, Q(s, t) holds iff: for all a ∈ ActC and s′ ∈ ΣC with
s →a s′, there is some t′ ∈ ΣA with t →a t′ and Q(s′, t′).

Given C and A, we can compute the greatest simulation, ≺, on ΣC × ΣA, a
preorder, by a standard fixed-point argument. The intuition behind a simulation
is that a transition made by C can be “mimicked” by one in A. In practice,
one of C or A is an “implementation” and the other is its “abstraction” or
“specification” or “model,” which must be analyzed for correctness properties.
As noted in [36], there are natural connections between simulations and Galois
connections [8] on such transition systems.

Live Simulations. Simulations should respect atomic properties. A simulation,
Q ⊆ ΣC ×ΣA, is a live simulation if Q(s, t) implies L(s) ⊆ L(t), for all s ∈ ΣC

and t ∈ ΣA. It is easy to prove that there is a greatest live simulation, ≺live, on
ΣC ×ΣA. There is a crucial connection between live simulations and modal logic:

1 Making L(s) finite as well prevents inconsistencies if we convert state propositions
into action labels.

Modal Transition Systems 157

winning
active

acceptCoinloseCoin

inactive reset
∅

{wonCoin}
{hasCoin}

winCoin

Fig. 2. Slot machine implementation as a doubly labeled transition system

Consider the following modal logic, Lpos, which expresses liveness or “possibility”
properties [33], where p ∈ AP and a ∈ Act:

φ ::= > | p | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ (1)

The diamond modality denotes the possibility of an a-transition. For a DLTS,
K, we define [| φ |] ⊆ ΣK by induction on the grammar for φ:

[| > |] def= ΣK ,
[| p |] def= {s ∈ ΣK | p ∈ L(s)},
[| φ1 ∧ φ2 |] def= [| φ1 |] ∩ [| φ2 |],
[| φ1 ∨ φ2 |] def= [| φ1 |] ∪ [| φ2 |],
[| 〈a〉φ |] def= {s ∈ ΣK | for some s′, s →a s′ and s′ ∈ [| φ |]}.

Proposition 1 (Logical characterization). [18] Let C and A be finitely-
branching DLTSs and s ∈ ΣC , t ∈ ΣA. Then s≺livet iff for all φ ∈ Lpos,
[s ∈ [| φ |] ⇒ t ∈ [| φ |]].

Thus, to calculate liveness properties of an implementation, A, we construct a
model, C, and calculate the greatest live simulation. Then, liveness properties
that are deduced to hold for C’s states will hold for the corresponding states in
A. Dually, we might model an implementation, C, by an abstract model, A, and
use the latter to refute liveness properties of C.

Safe simulations. The dual of a live simulation is a safe one: a simulation,
Q ⊆ ΣC ×ΣA, is safe if Q(s, t) implies L(s) ⊇ L(t), for all s ∈ ΣC and t ∈ ΣA.
There is a greatest safe simulation, ≺safe, on ΣC ×ΣA. The logic Lnec expresses
safety or “necessarily” properties [33], where p ∈ AP and a ∈ Act:

φ ::= > | p | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ (2)

We define [| φ |] ⊆ ΣK for the first four clauses in the same manner as for the logic
Lpos, and we define [| [a]φ |] def= {s ∈ ΣK | for all s′, s →a s′ implies s′ ∈ [| φ |]}
as the meaning of the box modality.

Proposition 2 (Logical characterization). Let C and A be finitely-branching
DLTSs and s ∈ ΣC , t ∈ ΣA. Then s≺safet iff for all φ ∈ Lnec, [t ∈ [| φ |] ⇒ s ∈
[| φ |]].

158 M. Huth, R. Jagadeesan, and D. Schmidt

Thus, to calculate safety properties of an implementation, C, we construct A and
calculate a safe simulation. Then, safety properties that hold for A’s states will
hold for the corresponding states in C. (This is the standard approach in abstract
interpretation studies [8,36].) Dually, we might model an implementation, A, by
an abstract model, C, and use the latter to refute safety properties of A.

3 Modal Transition Systems

Kripke MTSs allow us to freely combine safety and liveness properties in prop-
erty validation and refutation. An MTS’s “loose” transitions — that is, transi-
tions that may or may not be present in the final implementation — are labeled
as may-transitions, and “tight” transitions, which must be preserved in the final
implementation, are labeled as must-transitions [27]. Review Figure 1. With this
intuition, every must-transition is by definition a may-transition. These ideas also
apply to the atomic properties that label an MTS’s states, giving us the modal
version of DLTSs, which we call a Kripke MTS:

Definition 3 (Kripke MTS). A Kripke MTS is a tuple K =
〈ΣK , Act, AP,

must−→ ,
may−→, Lmust, Lmay〉, where both 〈ΣK , Act, AP,

must−→ , Lmust〉 and
〈ΣK , Act, AP,

may−→, Lmay〉 are DLTSs with must−→ ⊆ may−→ and Lmust(s) ⊆ Lmay(s),
for all s ∈ ΣK .

Note the pairings: must−→ and Lmust are paired, because they define a system
of transitions and properties that must be preserved in any implementation of
the Kripke MTS;

may−→ and Lmay are paired, because they define a system of
transitions and properties that may be preserved in any implementation. For
a Kripke MTS C to be a refinement of a Kripke MTS A, it must preserve all
must-aspects of A and it may selectively discard A’s may-aspects:

Definition 4 (Refinement). A refinement between Kripke MTSs C and A is
a relation Q ⊆ ΣC ×ΣA such that, for all s ∈ ΣC and t ∈ ΣA, if Q(s, t), then

1. if t →must
a t′, then for some s′ ∈ ΣC , s →must

a s′ and Q(s′, t′);
2. if s →may

a s′, then for some t′ ∈ ΣA, t →may
a t′ and Q(s′, t′);

3. Lmust(t) ⊆ Lmust(s); and
4. Lmay(s) ⊆ Lmay(t).

A Kripke MTS such that must−→ =
may−→ and Lmust = Lmay is concrete, that is, it

is a doubly labeled transition system [12], a “final implementation.” As usual,
for Kripke MTSs C and A, there is a greatest refinement relation ≺r.

Next, consider the logic L:

φ ::= > | p | φ1 ∧ φ2 | 〈a〉φ | [a]φ (3)

where p ∈ AP and a ∈ Act.

Modal Transition Systems 159

Definition 5 (Semantics of modal logic). For a Kripke MTS K and any φ ∈
L, we define a semantics [| φ |] ∈ P(ΣK)×P(ΣK), where P(ΣK) is the powerset
of ΣK , ordered by set inclusion, and [| φ |]nec and [| φ |]pos are the projection of
[| φ |] to its first and second component, respectively:

1. [| > |] def= 〈ΣK , ΣK〉;
2. [| p |] def= 〈{s ∈ ΣK | p ∈ Lmust(s)}, {s ∈ ΣK | p ∈ Lmay(s)}〉;
3. [| φ1 ∧ φ2 |] def= 〈[| φ1 |]nec ∩ [| φ2 |]nec, [| φ1 |]pos ∩ [| φ2 |]pos〉;
4. [| 〈a〉φ |] def= 〈{s ∈ ΣK | for some s′, s →a

must s
′ and s′ ∈ [| φ |]nec},

{s ∈ ΣK | for some s′, s →a
may s

′ and s′ ∈ [| φ |]pos}〉
5. [| [a]φ |] def= 〈{s ∈ S | for all s′, s →a

may s
′ implies s′ ∈ [| φ |]must},

{s ∈ S | for all s′, s →a
must s

′ implies s′ ∈ [| φ |]may}〉,

The “necessarily” interpretation, [| φ |]nec, is an under-approximation of those
states for which a proposition necessarily holds true (that is, the states for which
the proposition holds for all future refinements/implementations). Dually, the
“possibly” interpretation, [| φ |]pos, is an over-approximation of those states for
which there is some refinement for which the proposition holds. The semantics
[| φ |]nec is the one given by Larsen [26]; it produces this result:

Proposition 3 (Logical characterization). [26] 2 Let C and A be finitely-
branching3 Kripke MTSs and s ∈ ΣC , t ∈ ΣA. Then s≺rt iff for all φ ∈ L,
[t ∈ [| φ |]nec ⇒ s ∈ [| φ |]nec].

This result tells us to build an MTS, A, that abstracts an implementation, C.
Both safety and liveness properties can be validated on A, and they carry over
to C. Using the “possibly” interpretation, a new logical characterization follows,
allowing us to refute safety and liveness properties of an implementation, C, by
refuting them on A:

Proposition 4 (Logical characterization). Let C and A be finitely-branching
Kripke MTSs and s ∈ ΣC , t ∈ ΣA. Then s≺rt iff for all φ ∈ L, [s ∈ [| φ |]pos ⇒
t ∈ [| φ |]pos].

Negation and Invariants. We can retain both validation and refutation on
Kripke MTSs if we add negation and recursive definition to our logic, giving the
modal-mu calculus [25,2], ActMu:

φ ::= > | p | Z | ¬φ | φ1 ∧ φ2 | 〈a〉φ | [a]φ | µZ.φ (4)

where p ranges over AP, Z over a (countable) set of variables, a ∈ Act, and the
bodies φ in µZ.φ are formally monotone. Disjunction (∨) and implication (→) are
derived as ¬(¬φ∧¬ψ) and ¬(φ∧¬ψ), respectively. This logic is very expressive,
2 Larsen’s results were proved for MTSs.
3 For all s ∈ ΣK and a ∈ Act, the sets {s′ ∈ ΣK | s →may

a s′} and Lmay(s) are finite.

160 M. Huth, R. Jagadeesan, and D. Schmidt

and important specification logics like CTL* can be embedded into it [10]. We
require environments, ρ, mapping variables Z to elements of P(ΣK) × P(ΣK).
The semantics, [| φ |]ρ ∈ P(ΣK) × P(ΣK), is defined as for L, but parametric in
an environment ρ; this semantics is essentially the one in [19]. Given the must-
and may-aspects of an MTS, the semantics of negation is delicate, and we follow
Kelb [24] and Levi [28]. The semantics of the remaining clauses, Z and µZ.φ,
are dealt with in a standard manner:

1. [| Z |]ρ def= ρ(Z);
2. [| ¬φ |]ρ def= 〈ΣK \ [| φ |]pos

ρ , ΣK \ [| φ |]nec
ρ 〉;

3. [| µZ.φ |]ρ is the least fixed point of the monotone functional
d 7→ [| φ |]ρ[Z 7→d] : P(ΣK) × P(ΣK) → P(ΣK) × P(ΣK).

Note the semantics of negation: ”necessarily ¬φ” is “not possibly φ,” and “pos-
sibly ¬φ” is “not necessarily φ”.

Theorem 1 (Soundness and consistency of semantics). For any Kripke
MTS K, φ, ψ ∈ ActMu, and environment ρ:

1. [| φ |]nec
ρ ⊆ [| φ |]pos

ρ ;
2. [| φ ∧ ¬φ |]nec

ρ = ∅; and [| φ ∨ ¬φ |]pos
ρ = ΣK . That is, the semantics is consis-

tent for [| |]nec and “complete” for [| |]pos;
3. if s≺rt, then t ∈ [| φ |]nec

ρ implies s ∈ [| φ |]nec
ρ ; and s ∈ [| φ |]pos

ρ implies
t ∈ [| φ |]pos

ρ . That is, the semantics is sound;
4. if K is concrete, then [| φ |]nec

ρ = [| φ |]pos
ρ and corresponds to the standard

semantics for doubly labeled transition systems (as given for CTL* in [12]).

The semantics of negation behaves classically, that is, [| ¬¬φ |] = [| φ |] and
[| ¬〈a〉φ |] = [| [a]¬φ |] hold. The underlying interpretations [| φ |]nec and [| φ |]pos,
however, are not classical, but three valued, in the sense that a state, s, can
possess a property, φ, in only three possible ways:

1. s ∈ [| φ |]nec (and hence, s ∈ [| φ |]pos): “φ necessarily holds for s.”
2. s ∈ [| φ |]pos and s 6∈ [| φ |]nec (s ∈ [| φ ∧ ¬φ |]pos): “φ possibly holds for s.”
3. s 6∈ [| φ |]pos (hence, s 6∈ [| φ |]nec): “φ does not possibly hold for s.”

Note the loss of precision in the second case above: s ∈ [| φ ∧ ¬φ |]pos; there
cannot be a final implementation which satisfies φ ∧ ¬φ. For the partial Kripke
structures of Section 4, a more precise analysis is possible [4].

To finish the technical development, we note that the Kripke MTS seman-
tics and its properties adapt to the scenario where ΣK is no longer flat. For
finite-state models, meanings [| φ |]ρ are elements of the mixed power domain
M[ΣK] [15,17,20].4 This lets us adapt standard abstract interpretation studies
4 Elements of M[ΣK] are pairs 〈H, S〉, where H is a Scott-closed lower subset and S a

Scott-compact upper subset of ΣK such that H equals {s ∈ ΣK | ∃s′ ∈ H ∩ S : s ≤
s′}. This consistency condition replaces the inclusion requirement (H ⊆ S) of the
discrete case.

Modal Transition Systems 161

and even lets us define and manipulate a fully abstract domain of MTSs by the
isomorphism, D ∼= ∏

a∈Act M[D] [20].

Abstract Kripke MTSs. Let C = (ΣK , Act, AP,−→, L) be a possibly infinite-
state DLTS. Given a finite set of boolean predicates {p1, p2, . . . , pn}, we can
derive a finite-state abstract Kripke MTS A: abstract states, a, are equiva-
lence classes of states that satisfy exactly the same predicates pi in C; abstract
transitions are defined, as in [11], by (i) [s] →a

must [s′] iff for all s∗ ∈ [s],
there exists s′

∗ ∈ [s′] such that s∗ →a s′
∗ and (ii) [s] →a

may [s′] iff there ex-
ist s∗ ∈ [s] and s′

∗ ∈ [s′] such that s∗ →a s′
∗; finally, propositions are defined as

Lmust([s]) def=
⋂

s′∈[s] L(s′) and Lmay([s]) def=
⋃

s′∈[s] L(s′).
This refinement relationship is well behaved and induces two Galois connec-

tions [8], one between the concrete model C and the may-component of A, and
one between C and A’s must-component. This phemonemon is foreshadowed by
the universal (α∀) and existential (α∃) abstraction maps of Cousot and Cousot
[9], which extract may- and must-behaviors from linear-time models.

It is immediate that C is a refinement of A, giving us a sound tool for verifying
and refuting all properties expressed in the modal mu-calculus. With some effort,
this approach applies to refinements to non-concrete Kripke MTSs as well.

4 Abstracting Control and Data

Partial Kripke Structures. For model checking partial state spaces, Bruns
and Godefroid devised partial Kripke structures [3]:

Definition 6. A partial Kripke structure5 is a 4-tuple, K = (ΣK , AP,−→, L),
where ΣK is a set of states, AP is a set of atomic propositions, −→ ⊆ ΣK ×ΣK

is a set of transitions, and L : ΣK × AP → 3 is a labeling function, where 3 is
the set {⊥, F, T} endowed with the information ordering ⊥ ≤ F and ⊥ ≤ T.

Figure 3 depicts three partial Kripke structures with initial states s1, s2, and s3,
respectively [3]. We write p = v at a state s to denote L(s, p) = v. These systems
have different information regarding the truth of p at their initial states and their
rightmost successor states. At their leftmost successor states, all three systems
leave the truth status of p unresolved. Below, we show that these systems, their
abstraction notion and temporal logic semantics are special instances of the
corresponding notions for Kripke MTSs. Partial Kripke structures are related in
the following fashion:

Definition 7 (Completeness order). A completeness order [3] on two partial
Kripke structures is a binary relation Q ⊆ ΣC ×ΣA such that Q(s, t) implies

1. for all p ∈ AP, L(s, p) ≤ L(t, p) in the information ordering,
2. if s −→ s′, then there is some t′ ∈ ΣA with t −→ t′ and Q(s′, t′), and
3. if t −→ t′, then there is some s′ ∈ ΣC with s −→ s′ and Q(s′, t′).
5 We assume that these structures are finitely branching.

162 M. Huth, R. Jagadeesan, and D. Schmidt

Fig. 3. Three partial Kripke structures [3]

In usual fashion, we write s/t if there is a completeness order Q in which Q(s, t)
holds. Properties of states of partial Kripke structures are expressed in the logic
PML: φ ::= p | ¬φ | φ ∧ φ | 3φ. Bruns and Godefroid require a second, truth
ordering on the set {⊥, F, T} for defining a three-valued semantics for this logic:
F < ⊥ < T. Denotations [s |= φ] are elements of {F < ⊥ < T}:

[s |= p] def= L(s, p) (5)

[s |= ¬φ] def= neg[s |= φ]

[s |= φ1 ∧ φ2]
def= min([s |= φ1], [s |= φ2])

[s |= 3φ] def= max{[s′ |= φ] | s −→ s′},

where neg is strict logical complement and min and max are meet and join in
the truth ordering, respectively. Bruns and Godefroid logically characterize the
completeness preorder: For partial Kripke structures C and A, s ∈ ΣC , t ∈ ΣA,
s / t iff for all φ in PML, [s |= φ] ≤ [t |= φ] in the truth ordering.

The embedding of partial Kripke structures into Kripke MTS rests on the
order-isomorphism Ψ : (E → 3) → M[E] between the mixed power domain
M[E] and the set of all functions E → 3, ordered pointwise in the informa-
tion ordering — if E is discrete; identify a function f : E → 3 with the pair
Ψf

def= 〈f−1{T}, f−1{⊥, T}〉. We then translate a partial Kripke structure, K,
into the Kripke MTS, K′ = (ΣK , {∗}, AP,−→,−→, Lmust, Lmay),6 where the
propositional component (Lmust(s), Lmay(s)) is defined as ΨL.

Proposition 5 (Correspondence of semantics). For partial Kripke struc-
ture, K, and its Kripke MTS translation, K′, for all s ∈ ΣK and φ in PML,
[| φ |] = Ψ(λs.[s |= φ]). The inverse /−1 of the greatest completeness order / on
K is the greatest refinement of its Kripke MTS translation K′.

The full MTS formulation, unlike partial Kripke structures, allows for modalities
on transitions and remains well defined when the domain of states is nonflat,
making it applicable to conventional abstraction frameworks [8,7]. To illustrate
6 We identify ΣK × ΣK with ΣK × {∗} × ΣK .

Modal Transition Systems 163

model checks on such systems, consider φ def= µZ.p ∨ ([∗]Z ∧ 〈∗〉 >), saying “p
holds eventually on all paths” [2], on the systems of Figure 3.7 Our semantics
computes s1 ∈ [| φ |]nec, since p is true at s1; s2 ∈ [| φ |]pos, since p may be true
at s′

2; and s3 6∈ [| φ |]pos, since there is a path on which p is never true.

Partial Bisimulations. Partial Kripke structures abstract propositional in-
formation only. Bruns and Godefroid also studied systems that abstract state
transitions, the so-called extended transition systems [3], and their partial bisim-
ulation [29,39]:

Definition 8. An extended transition system (ETS)8 [3] is a 4-tuple E =
(ΣE , Act,−→, ↑), where ΣE is a set of states, −→ ⊆ ΣE × Act × ΣE is a
set of transitions, and ↑ ⊆ ΣE × Act is a divergence relation.

Read s ↑ a as “some of the a-transitions from s in the full model may be missing
at s in the ETS” [3]. We write s ↓ a when s ↑ a fails to hold, meaning that all
a-transitions from s in the full state space are present at s in the ETS.

Definition 9. Given ETSs, E and F , a partial bisimulation [29,39] (divergence
preorder [3]) is a subset, Q, of ΣE ×ΣF such that Q(s, t) implies

1. whenever s →a s
′, there exists some t′ ∈ ΣF such that t →a t

′ and Q(s′, t′);
2. if s ↓ a, then (i) t ↓ a, and (ii) whenever t →a t

′, there exists some s′ ∈ ΣE

such that s →a s
′ and Q(s′, t′).

Every ETS has a greatest partial bisimulation, v. We embed E into a Kripke
MTS T[E] def= (ΣE , Act, ∅,must−→ ,

may−→, ∅, ∅) by (i) s →must
a s′ iff s →a s

′ and (ii)
s →may

a s′ iff (s →a s′ or s ↑ a). Note how ↑ makes E three-valued in may-
transitions.

Theorem 2. Given an ETS E, T[E] is an MTS satisfying, for all s ∈ ΣE,
(∃s′ ∈ ΣE : s →a

may s
′ ∧ 6s →a

must s
′) → (∀s′′ ∈ ΣE : s →a

may s
′′). The inverse

v−1 of the greatest partial bisimulation v on E is ≺r, the greatest refinement on
T[E]. The intuitionistic semantics for Hennessy-Milner logic in [29] corresponds
to the semantics [| · |]nec of that fragment of ActMu on T[E].

5 Abstracting Data: Shape-Based Pointer Analysis

An important form of pointer analysis is shape analysis [6,14,22,35,40], where
the contents of heap storage is approximated by a graph whose nodes denote
objects and whose arcs denote the values of the objects’ fields. Local (“stack”)
variables that point into the heap are drawn as arcs pointing to the nodes.

Figure 4 displays the syntax of such shape graphs. The example in the Figure
depicts an approximation to a singly linked list of length at least two: Objects are
circles; a double-circled object is a “summary node,” meaning that it possibly
7 We use ∗ in φ to denote the sole action type.
8 We assume that all such structures are finitely branching.

164 M. Huth, R. Jagadeesan, and D. Schmidt

next

xy

u1u0

next x(u0) = 0 next(u0, u0) = 0
x(u1) = 1 next(u0, u1) = 1
y(u0) = 1 next(u1, u0) = 0
y(u1) = 0 next(u1, u1) = 1/2
sm(u0) = 0
sm(u1) = 1

Fig. 4. Shape graph and its coding as predicates

T [x = y] : x′(v) = y(v); all other predicates p′ = p
T [x.next = y] : next′(v1, v2) = next(v1, v2) ∧ (sm(v1) ∨ ¬x(v1)) ∨ (x(v1) ∧ y(v2);

all other p′ = p
T [x = y.next] : x′(v) = ∃v1.y(v1) ∧ next(v1, v); all other p′ = p
T [x = new Node()] : let vnew be a fresh node, in x′(v) = (v = vnew);

all other p′(v) = (p(v) ∧ (v 6= vnew))

Effect of x = y on Figure 4: Effect of x.next = y on Figure 4:

next

y

u1u0

next
x

next

xy

u1u0

next

next

Fig. 5. Transfer functions on shape graphs

represents more than one concrete object. Since the objects were constructed
from a class/struct that owns a next field, objects have next-labeled arcs. For
discussion, the objects are named u0 and u1, and local variables x and y point
to the objects. A solid arc denotes that a field definitely points to an object; a
dotted arc means the field possibly points to it. Thus, the self-arc on u1 must
be dotted because u1 possibly denotes multiple nodes, meaning that a next
dereference possibly points to one of the concrete objects denoted by the node.

Shape graphs can be encoded in various ways; in Figure 4, we display a
coding due to Sagiv, Reps, and Wilhelm [35], who define local-variable points-to
information with unary predicates and field points-to information with binary
ones. The predicates produce the answers “necessarily points to” (1), “possibly
points to” (1/2), and “not points to” (0), where the values are ordered 0 ≤ 1/2 ≤
1. The predicate, sm, notes which nodes are summary nodes.

Shape graphs can be used as data values for a data-flow analysis, where
a program’s transfer functions transform an input shape graph to an output
one. The transfer functions for assignment and object construction appear in
Figure 5, where p′ denotes predicate p updated by the transfer function, T [C],
for command C. The transfer functions are written as predicate-logic formulas,
where conjunction is interpreted as meet; disjunction as join; and negation as
strict complement. A data-flow analysis is assembled in the usual way [8,16,23,
31,32]:

Modal Transition Systems 165

1. a control-flow graph is extracted from the source program, where transfer
functions annotate the arcs of the graph;

2. a finite-height sup-semilattice of data-flow values (here, based on shape
graphs) is defined, where values from the semilattice will be collected at
the nodes (program points) of the control-flow graph.

3. a least fixed-point calculation is undertaken on the flow equations induced
by the control-flow graph.

Step 2 is the most interesting, in that a single shape graph might be collected at
each node (“independent attribute” analysis, e.g., [40]) or a set of shape graphs
might be collected (“relational” analysis, e.g., [35]). In the former case, the join
operation weakens solid arcs into dotted ones when dissimilar graphs are joined;
in the latter case, a bounded set union (widening [8]) operation is employed so
that no infinite set of graphs is constructed.

Modal Shape Graphs. The dotted and solid arcs of shape graphs strongly
suggest that modal transition systems lurk in the foundations, and so they do:

Definition 10 (Modal shape graph). A modal shape graph (MSG) is a
Kripke MTS M def= (ΣM , Act, AP,

must−→ ,
may−→, Lmust, Lmay), where AP is a set of

local variables along with the distinguished predicate, sm, Act is a set of field
names, and ΣM is a set of heap objects.

Our modelling sets x ∈ Lmust(s) when a solid arc shows that x points to object
s. Similarly, Lmay(s) collects the names of local variables that possibly point to
it. When s is a summary node, then sm ∈ Lmust(s). Of course, must−→ and

may−→
model the solid and dotted field-labeled arcs, respectively. It is easy to translate
shape graphs, like that in Figure 4, into MTS format:

ΣM = {u0, u1} Act = {next} AP = {x, y, sm}
must−→ = {(u0, next, u1)} may−→ = {(u1, next, u1)}
Lmust(u0) = {y}, Lmust(u1) = {x, sm}
Lmay(u0) = ∅, Lmay(u1) = ∅

A concrete, run-time execution state is coded as a concrete modal shape graph.9

Transfer Functions. There is little challenge in writing the transfer functions
for modal shape graphs: Given a modal shape graph M, let M[C] be the graph
obtained from M by executing command C. We only specify those aspects of
M[C] that are different from M:

1. x = y: For all s ∈ ΣM , x ∈ L[C]must(s) iff y ∈ Lmust(s); and x ∈ L[C]may(s)
iff y ∈ Lmay(s).

2. x = y.n: For all s ∈ ΣM , x ∈ L[C]must(s) iff (∃s′ ∈ S) y ∈ Lmust(s′) and
s′ must−→n s; and x ∈ L[C]may(s) iff (∃s′ ∈ S) y ∈ Lmay(s′) and s′ may−→n s.

9 Where every local variable, x, belongs to at most one Lmust(s).

166 M. Huth, R. Jagadeesan, and D. Schmidt

3. x.n = y: For all s ∈ ΣM , (i) if x ∈ Lmust(s) and there is some s′′ with

s
must−→n s′′, then, for all s′ ∈ S, y ∈ L[C]must(s′) implies s

must[C]−→ n s′; and
(ii) if x ∈ Lmay(s) and there is some s′′ with s

may−→n s′′, then, for all s′ ∈ S,

y ∈ L[C]may(s′) implies s
may[C]−→ n s′. If sm ∈ Lmust(y), then all transitions

from y are preserved.
4. x = new Node(): Creates a fresh object that is labeled with x. Set ΣM [C]

def=
ΣM ∪ {snew} (snew 6∈ ΣM); and for all s ∈ ΣM , x 6∈ L[C]may(s), and x ∈
L[C]must(snew).

Properties as Temporal Formulas. Once a data-flow analysis builds a shape
graph, we check the graph for correctness properties that are expressible in the
CTL-subset [5,10] of the modal mu-calculus. In [35], such properties are encoded
in predicate logic augmented with a transitive closure operator.

Here are examples: The direction relationship [14], stating that an access
path exists from the object named by x to an object named by y, is written
D(x, y) def= EFnext(x∧EFnexty) — an object, s, has atomic property x iff x points to
s. Recall that EFaφ states, “there exists a path of a-labeled transitions such that,
at some state in the future, φ holds true.” To validate that there is necessarily
(possibly) a path from s, we check if s ∈ [| D(x, y) |]nec (s ∈ [| D(x, y) |]pos); to
refute existence of a path, we check s ∈ [| ¬D(x, y) |]nec.

The interference relationship [14], saying that pointers x and y have access
paths to a common heap node, is written with inverse transition relationships
of must−→ : I(x, y) def= (EFnext−1x) ∧ (EFnext−1y). We check s ∈ [| I(x, y) |]pos to see if
aliasing of object s by x and y is possible.

Aliasing of pointers can be expressed: For aliasing
def= EFnext(

∨
x6=y x ∧ y),

the formulas (a) AGnext¬aliasing, (b) AGnext¬(x∧∨
x6=y y), and (c) AGnext¬(x∧y)

can then be used to check: (a) the absense of any kind of aliasing; (b) that x has
no alias; and that (c) x and y never point to the same heap node. (Recall that
AGaφ states, “for all a-paths, it is globally true for all states along the path, that
φ holds.”)

We can check for possibly cyclic data structures. The predicate cyclic
def=∨

x∈AP x ∧ EXnextEFnextx states that a heap node is pointed to by some x that
has an access path to, presumably the same, heap node pointed to by x. (Recall
that EXaφ says, “there exists an a-transition to a next state where φ holds.”)

Improving Precision: The Embedding Theorem and Focus Operation.
For improving the analysis’s precision (e.g., “strong updates”), Sagiv, Wilhelm,
and Reps employ a focus operation [35], which refines a shape graph into a set
of shape-graph variants, such that a predicate that formerly evaluated to 1/2
(“possibly holds”) in the original graph now evaluates to 0 or to 1 in every
variant. The set of variants must be consistent and complete with regards to the
original graph, and an Embedding Theorem is used to make this argument. A
more precise, relational, data-flow analysis is the result.

Modal Transition Systems 167

Within the representation of modal shape graphs, the hypotheses of the Em-
bedding Theorem ensure a refinement relation, and the consequences of the
Theorem follow from the soundness of refinement (Theorem 1).

The focus operation itself defines a cover: A set of MTSs, SA, covers an MTS,
A, iff (i) for all K ∈ SA, K≺rA; (ii) for every concrete MTS, C, such that C≺rA,
there exists some K ∈ SA such that C≺rK. Any property that necessarily holds
true for all the MTSs in SA holds true for all concrete refinements of A; dually,
any property that possibly holds for any MTS in SA holds true for A; thus, SA
is consistent and complete regarding the concrete MTSs represented by A.

The focus operation in [35] generates one particular shape-graph cover by
examining a may-transition reachable from a program variable and refining it to
a must-transition in one graph variant, removing it in another graph variant, and
splitting the transition’s source or destination summary node in a third variant.
Of course, there can exist other forms of focus operations; in all cases, a cover
must be defined.

6 Conclusions

The case studies demonstrate how modal transition systems provide a foundation
for development of analyses whose outcomes take the form, “necessarily” (yes),
“possibly” (maybe), and “not possibly” (no). These applications go beyond the
traditional use for MTSs (proving properties of loose specifications). In addition
to the two examples in this paper, there are other program analyses that are
neatly expressed via Kripke MTSs; two noteworthy ones are

– Whaley and Rinard’s points-to escape analysis [40], where multi-threaded
programs are analyzed for object sharing. Shape graphs are generated, where
solid arcs represent assignments made by the thread being analyzed, and dot-
ted arcs represent assignments made by other threads executing in parallel.
Jackson’s Z-like Alloy logic [21] is used to model check the graphs.

– Interprocedural data-flow analysis [34,36], where graphs are used to denote
control flow. Those program transitions that must occur (e.g., intraprocedu-
ral transitions) are denoted by solid arcs; transitions that might occur (e.g.,
procedure call- and return-arcs, where the exact procedure invoked or the
exact invocation point is uncertain) are denoted by may-arcs.

Other applications await discovery (e.g., cartesian abstraction in the SLAM
project [1]), and the relationship of our semantic framework to earlier stud-
ies of 3-valued modal logic [13,30,37] and intuitionistic modal logic [38] deserves
examination as well.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for
Model Checking C Programs. Personal communication, December 2000.

2. J. C. Bradfield. Verifying Temporal Properties Of Systems. Birkhäuser, Boston,
Mass., 1991.

168 M. Huth, R. Jagadeesan, and D. Schmidt

3. G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued
Temporal Logics. In Proceedings of the 11th Conference on Computer Aided Verifi-
cation, volume 1633 of Lecture Notes in Computer Science, pages 274–287. Springer
Verlag, July 1999.

4. G. Bruns and P. Godefroid. Gernalized Model Checking: Reasoning about Partial
State Spaces. In Proceedings of CONCUR’2000 (11th International Conference on
Concurrency Theory), volume 1877 of Lecture Notes in Computer Science, pages
168–182. Springer Verlag, August 2000.

5. J. R. Burch, E. M. Clarke, D. L. Dill K. L. McMillan, and J. Hwang. Symbolic
model checking: 1020 states and beyond. Proceedings of the Fifth Annual Sympo-
sium on Logic in Computer Science, June 1990.

6. D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
SIGPLAN Conf. on Prog. Lang. Design and Implementation, pages 296–310. ACM
Press, 1990.

7. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs. In Proc. 4th ACM Symp. on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

9. P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 12–25, Boston, Mass., January 2000. ACM Press,
New York, NY.

10. M. Dam. CTL* and ECTL* as Fragments of the Modal mu-Calculus. Theoretical
Computer Science, 126:77–96, 1994.

11. D. Dams. Abstract interpretation and partition refinement for model chec king.
PhD thesis, Technische Universiteit Eindhoven, The Netherlands, 1996.

12. R. de Nicola and F. Vaandrager. Three Logics for Branching Bisimulation. Journal
of the Association of Computing Machinery, 42(2):458–487, March 1995.

13. M. Fitting. Many-valued modal logics. Fundamenta Informaticae, 17:55–73, 1992.
14. R. Ghiya and L. J. Hendren. Is it a Tree, a DAG, or a Cyclic Graph? A Shape Anal-

ysis for Heap-Directed Pointers in C. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 1–15, 1996.

15. C. Gunter. The mixed power domain. Theoretical Computer Science, 103:311–334,
1992.

16. M. Hecht. Flow Analysis of Computer Programs. Elsevier, 1977.
17. R. Heckmann. Power domains and second order predicates. Theoretical Computer

Science, 111:59–88, 1993.
18. M. C. B. Hennessy and Robin Milner. Algebraic laws for non-determinism and

concurrency. JACM, 32:137–161, 1985.
19. M. Huth. A Unifying Framework for Model Checking Labeled Kripke Structures,

Modal Transition Systems, and Interval Transition Systems. In Proceedings of
the 19th International Conference on the Foundations of Software Technology &
Theoretical Computer Science, Lecture Notes in Computer Science, pages 369–380,
IIT Chennai, India, December 1999. Springer Verlag.

20. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: new founda-
tions and new applications. To appear as a KSU-CIS Techreport, August 2000.

21. D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer. In
Proc. International Conference on Software Engineering, Limerick, Ireland, 2000.

Modal Transition Systems 169

22. N.D. Jones and S. Muchnick. Flow analysis and optimization of LISP-like struc-
tures. In Proc. 6th. ACM Symp. Principles of Programming Languages, pages
244–256, 1979.

23. J. Kam and J. Ullman. Global data flow analysis and iterative algorithms. J.
ACM, 23:158–171, 1976.

24. P. Kelb. Model checking and abstraction: a framework preserving both truth
and failure information. Technical Report Technical report, OFFIS, University of
Oldenburg, Germany, 1994.

25. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.

26. K. G. Larsen. Modal Specifications. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, number 407 in Lecture Notes in Computer Sci-
ence, pages 232–246. Springer Verlag, June 12–14 1989. International Workshop,
Grenoble, France.

27. K. G. Larsen and B. Thomsen. A Modal Process Logic. In Third Annual Sympo-
sium on Logic in Computer Science, pages 203–210. IEEE Computer Society Press,
1988.

28. F. Levi. A symbolic semantics for abstract model checking. In Static Analysis
Symposium: SAS’98, volume 1503 of Lecture Notes in Computer Science. Springer
Verlag, 1998.

29. R. Milner. A modal characterisation of observable machine behaviours. In G. Aste-
siano and C. Böhm, editors, CAAP ‘81, volume 112 of Lecture Notes in Computer
Science, pages 25–34. Springer Verlag, 1981.

30. O. Morikawa. Some modal logics based on a three-valued logic. Notre Dame J. of
Formal Logic, 30:130–137, 1989.

31. S. Muchnick and N.D. Jones, editors. Program Flow Analysis: Theory and Appli-
cations. Prentice-Hall, 1981.

32. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer
Verlag, 1999.

33. A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In J.W. de Bakker, editor, Current
Trends in Concurrency, volume 224 of Lecture Notes in Computer Science, pages
510–584. Springer-Verlag, 1985.

34. T. Reps. Program analysis via graph reachability. In J. Maluszynski, editor, Proc.
Int’l. Logic Prog. Symp.’97, pages 5–19. MIT Press, 1997.

35. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
programming languages, pages 105–118, January 20-22, San Antonio, Texas 1999.

36. D. A. Schmidt. Binary relations for abstraction and refinement. Elsevier Elec-
tronic Notes in Computer Science, November 1999. Workshop on Refinement and
Abstraction, Osaka, Japan. To appear.

37. K. Segerberg. Some modal logics based on a three-valued logic. Theoria, 33:53–71,
1967.

38. C. Stirling. Modal logics for communicating systems. Theoretical Computer Sci-
ence, 39:331–347, 1987.

39. D. J. Walker. Bisimulation and divergence. Information and Computation,
85(2):202–241, 1990.

40. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Proc. OOPSLA’99, pages 187–206. ACM, 1999.

	Introduction
	Doubly Labeled Transition Systems
	Modal Transition Systems
	Abstracting Control and Data
	Abstracting Data: Shape-Based Pointer Analysis
	Conclusions

