
Robust Multi-scale Extraction of Blob Features

Per-Erik Forssén and Gösta Granlund

Computer Vision Laboratory, Linköping University,
SE-581 83 Linköping, Sweden
{perfo, gosta}@isy.liu.se
http://www.isy.liu.se/cvl/

Abstract. This paper presents a method for detection of homogeneous
regions in grey-scale images, representing them as blobs. In order to be
fast, and not to favour one scale over others, the method uses a scale
pyramid. In contrast to most multi-scale methods this one is non-linear,
since it employs robust estimation rather than averaging to move through
scale-space. This has the advantage that adjacent and partially overlap-
ping clusters only affect each other’s shape, not each other’s values. It
even allows blobs within blobs, to provide a pyramid blob structure of
the image.

1 Introduction

In signal processing it is useful to attach a confidence measure to each mea-
surement [1]. Such algorithms usually work with a measurement–confidence
pair, but there are advantages with using the channel representation [2, 3].
The channel representation of a measurement–confidence pair (p, c) is a vec-
tor h = c(H1(p) H2(p) . . . HK(p))T of channel values hk, computed using a set
of localised kernel functions Hk. The kernels should be symmetric, non-negative,
and preferably have a compact, localised support. In this paper we will use a
family of integer displaced, windowed cos2() functions

Hk(p) =

{
cos2(π/3(p− k)) if |p− k| ≤ 3/2
0 otherwise.

(1)

This setup gives us at most 3 non-zero channels for any signal value. Other
common choices of kernels are B-splines [4], and Gaussians [5]. The values rep-
resented in a channel vector may be recovered using a local decoding [3]. That is,
we cut out an interval of channel values from the vector, and decode the (p, c)
pair using only these. A local decoding allows several (p, c) pairs to be retrieved
without their interfering, provided that the measurement values are sufficiently
different. For a channel representation according to (1), the local decoding has to
involve at least N = 3 adjacent channel values {hl, hl+1, hl+2}, and is calculated
as

p̂l(h) = l +
3
2π

arg

[
l+N−1∑

k=l

hkei2π/3(k−l)

]
and ĉl(h) =

2
3

l+N−1∑
k=l

hk. (2)

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 11−18, 2003.
 Springer-Verlag Berlin Heidelberg 2003

To decode a channel vector, we simply go through all such adjacent groups,
and sort the decoded (p̂, ĉ) pairs, according to the confidence measures ĉ.

1.1 Channel Smoothing

If we combine a set of measurements using an average of their channel vectors
h = 1

L

∑L
l=1 hl, the decoding with the largest confidence measure can be shown

to be a robust weighted average [4].1 In other words, similar measurements are
averaged, but the influence of a measurement on the result drops as a function
of its distance to the cluster centre.

If we channel encode each pixel, p(x, y), in a grey-scale image with c(x, y) = 1,
we obtain a set of channel images. If we then perform low-pass filtering on the
channel images, and reconstruct an image using the local decoding (2), in each
pixel, we obtain the result shown in figure 1. This operation is called channel
smoothing. A low-pass filtering directly on the image is also shown for compari-
son. The behaviour of channel smoothing is similar to selective binomial filtering
[6], and non-linear Gaussian filtering [7]. In fact, non-linear Gaussian filtering
can be shown to correspond to the first iteration of an M-estimation, which is
a robust estimation technique [8]. Thus, iterated Gaussian filtering will yield
very similar results to channel smoothing. One thing missing in the non-linear
Gaussian filtering is the confidence measure, which we will need later in this
paper.

Input Output Output confidence Low-pass output

Fig. 1. Illustration of channel smoothing.

For this example we have used K = 8 channel images, and averaged each
channel image with two one-dimensional Gaussian filters of σ = 1.18 and 7
coefficients each. A channel representation according to (1) can represent mea-
surements p ∈ [3/2,K − 1/2], and thus we have scaled the image intensities
i(x, y) ∈ [rl, rh] using a linear mapping p(x, y) = t1i(x, y) + t0 with

t1 =
K − 2
rh − rl

and t0 = 3/2− t1rl. (3)

For large amounts of smoothing, the channel smoothing output looks almost
like a segmented image, and this is what lead us to develop the blob extraction
algorithm presented in this paper.

1 This result actually only holds when the decoding formula is linear, as is the case
for B-spline kernels. For other kernel functions the result is however very similar.

12 P.-E. Forssén and G. Granlund

2 A Blob Extraction Algorithm

Homogeneity features are called blobs in scale-space theory [9]. In contrast to
segmentation, blob detection has a more modest goal—we do not attempt to
segment out exact shapes of objects, instead we want to extract robust and
repeatable features. A blob representation discards exact shapes, and thin con-
nections between patches are neglected.

Blob features have been used as texture descriptors [10] and as features for
image database search [11]. For a discussion of the similarities and differences of
other approaches and the one presented here, the reader is directed to [6].

The blob estimation procedure uses a scale pyramid. Each position and scale
in the pyramid contains a measurement and confidence pair (p, c). The confidence
is a binary variable i.e. c ∈ {0, 1}. It signifies the absence or presence of a
dominant measurement in the local image region. Consequently, when c = 1,
the dominant measurement is found in p. This representation is obtained by
non-linear means, in contrast to most scale-space methods, which are linear [9],
and thus obtain the average measurement.

The pyramid is used to generate a region image, from which we then extract
a list of homogeneous regions. The shape of each region is approximated by its
moments of orders 0, 1 and 2. These moments are conveniently visualised as
ellipses, see figure 2 (right). The following sections will each in turn describe the
different steps of the algorithm, starting with the clustering procedure.

⇒ ⇒ ⇒

Image Clustering Region Ellipse
pyramid image approximation

Fig. 2. Steps in blob extraction.

2.1 Building a Clustering Pyramid

To build the clustering pyramid, we view each image pixel as a measurement
p with confidence c = 1, and expand the image into a set of channel images.
For each of these channel images we generate a low-pass pyramid. The channels
obtained from the input image constitute scale 1, and successively coarser scales
are obtained by low-pass filtering, followed by sub-sampling. The low-pass filter
used consists of a horizontal and a vertical 4-tap binomial kernel [1 3 3 1]/8.

When the filter sums to 1, the confidence values of the reconstructed measure-
ments correspond fractions of the area covered by the filter. Thus, we construct
the low-pass pyramids, reconstruct the dominant (p, c) pair in each position, and
finally make the confidence binary by setting values below cmin to zero, and val-
ues above or equal to cmin to 1. Typically we use the area threshold cmin = 0.5.
Row A in figure 3 shows such a pyramid for an aerial image.

13Robust Multi-scale Extraction of Blob Features

A

B

Fig. 3. A: Clustering pyramid. B: Result of the pruning operation on clustering pyra-
mid. Positions with confidence c = 0 are indicated with crosses.

2.2 Pruning the Pyramid

If we look at the clustering pyramid in row A of figure 3, we can see that there
is a great deal of redundancy, which will now be removed. We do this via a
top-down reconstruction of the image. Starting from the top pixel, we expand it
to cover its children (the four pixels below) by nearest neighbour up-sampling,
i.e. duplication. Children which are similar to the parent are set to zero, and
the others get to substitute the parent description in the reconstruction. This
process is repeated until the finest level is reached.

The purpose of this stage is to remove all pixels that have parents (or par-
ent’s parents etc. if the parent has zero confidence) with a similar dominant
component. By similar, we mean |pk − pl| ≤ dmax, where dmax = 2t1 (see (3)),
i.e. the approximate boundary between averaging and rejection (see [5]).

The result of this operation is shown in figure 3, row B. It bears some similar-
ity to the old quad-tree image representation (see e.g. [9], chapter 2). The main
differences from quad-trees are that we integrate information over more than a
2× 2 region, and that we are representing the dominant component rather than
the average.

As we go through the pyramid top down, we also compute two neighbour
maps, one signifying that the pixel to the right is similar to this one, and one
signifying that the pixel below is similar to this one. These maps will be used in
the region image generation.

14 P.-E. Forssén and G. Granlund

3 Region Image Generation

If we look at figure 3, row B, we see that the pixels left in the pyramid can be
used as seeds for blob extraction. We start at the top scale, and generate a label
image, where each seed is given an integer label. We then proceed to expand
each region using the neighbour maps extracted at the previous stage. We then
do a nearest neighbour up-sampling of the label image, and crop the result to
the image size at the finer level. Finally we expand our regions once more, using
the neighbour maps. To summarise, the algorithm for region image generation
looks like this:

step 1 Generate an empty label image at the top scale.
step 2 Assign new labels to all pixels with c = 1, and expand each new region

with its neighbours, if the neighbour maps say so.
step 3 Do a nearest neighbour up-sampling of the label image, and crop it to

the image size at the finer level.
step 4 Expand all regions with their neighbours, whenever the neighbour maps

say so.
step 5 If we are at the finest scale, we are done. Otherwise go back to step 2.

During the region expansion (step 4 above), a region with a lower label
number is allowed to expand over one with a higher, if there is a conflict. This
will cause large regions to “eat” most of the small regions with similar colour
that will otherwise appear near the object boundaries. Note that the algorithm
only moves through the pyramid once, and is thus quite fast.

The algorithm above does not quite produce a conventional segmentation.
Occasionally it splits homogeneous regions into two or more regions. In most
cases this is in line with the shape constraint on the region shapes mentioned in
section 2, but sometimes regions which are really better described as one blob
are split. This will however be dealt with in a later stage of the blob extraction.

4 Ellipse Approximation

The raw moments of a binary mask vn(x, y) : Z
2 → {0, 1} are defined by the

weighted sum

µkl =
∑

x

∑
y

ykxlvn(x, y). (4)

See e.g. [12] for a more extensive discussion on moments of binary masks. For
all the regions {vn(x, y)}N

1 in the image we will now compute the raw moments
of order 0 to 2, i.e. µ00, µ01, µ10, µ02, µ11, and µ20. Note that this can be done
using only one for-loop over the region image.

The raw moments are then converted to measures of the area an, the centroid
vector mn, and the inertia matrix In

an = µ00, mn =
1

µ00

(
µ01

µ10

)
and In =

1
µ00

(
µ02 µ11

µ11 µ20

)
− mnmT

n . (5)

15Robust Multi-scale Extraction of Blob Features

Using the input image p(x, y) we also compute and store the average mea-
surements for all regions,

pn =
1

µ00

∑
x

∑
y

p(x, y)vn(x, y). (6)

From the eigenvalue decomposition I = λ1ê1ê
T
1 + λ2ê2ê

T
2 with λ1 ≥ λ2 we

can find the axes of the ellipse as 2
√

λ1ê1 and 2
√

λ2ê2 respectively. Since I = IT ,
each blob can be represented by 1 + 2 + 3 + 1 = 7 parameters.

4.1 Merge and Cleanup

For different translations and rotations of the image, the detection scale for a
blob may change, and this will cause a blob to sometimes be split in two, or
several. To reduce this effect, we will make use of the fact that the moments of a
combined mask v(x, y) can be computed from the moments of its parts (e.g. v1

and v2 with v1 + v2 = v), and merge blobs whenever appropriate.
Since det |I| = λ1λ2, the ellipse area is given by en = 4π

√
det |In|. Unless all

pixels in the mask lie on a line, this is an overestimate of the actual mask area,
and rn = an/en ≤ 1 is thus a measure of how ellipse-like a blob is. We will merge
two blobs if they have similar dominant measurements, and the result becomes
more ellipse-like, i.e. if |pm−pn| ≤ dmax and em+en ≥ emn/α. The parameter α
can be set to > 1 to cause more mergers. Here we have used α = 1.005. Finally,
we remove blobs with areas below a threshold amin = 20.

Figure 4 shows an aerial image and two blob representations of the image. The
clustering pyramid has been created using K = 26 channels, spaced according to
(3). The input image is a 348× 287 image, and the blob representation initially
contains 146 blobs, which after merging and cleanup drops to 57. This gives a
total of 399 parameters for the entire image–a factor 250 of data reduction.

5 Noise Sensitivity

The purpose of the robust estimation scheme is to obtain robustness to noise.
To evaluate noise sensitivity we have subjected our test image to three common
kinds of noise.

1. Salt&pepper noise. This consists of randomly setting pixel intensity to 1
or 0. The density of corrupted pixels chosen is 5%.

2. White rectangular noise. This noise is additive white noise with rect-
angular distribution and amplitude 0.08 i.e. i(x, y) = i0(x, y) + ε where
ε ∈ 0.08[−1, 1].

3. 1/f noise. This noise is correlated additive noise, i.e. white rectangular noise
ε0(x, y) ∈ [−1, 1], weighted with 1/r in the Fourier domain. Formally we have
i(x, y) = i0(x, y) + ε(x, y) with ε(x, y) = 0.06IDFT{d(r)DFT{ε0}/r}. Here
r =

√
u2 + v2 and the frequency coordinates are u, v ∈ [−π, π], and d(r) is

a function which is zero for r = 0 and 1 otherwise. I.e. it discards the DC
component.

16 P.-E. Forssén and G. Granlund

Fig. 4. Aerial image, blobs from scales 3-8, and blobs after merge and cleanup step.
Number of blobs are 146 and 57 respectively.

Fig. 5. Top row: noisy input images. Bottom row: corresponding blob images. Columns
left to right: salt&pepper noise, white rectangular noise, and 1/f noise. Number of blobs
for the three cases are 66, 76, and 72 respectively.

As can be seen in figure 5, all three kinds of noise are handled fairly well.
There is a small change in number of blobs, we originally had 57 blobs, and
afterwards we got 66, 76, and 72 respectively. As can be seen this is mainly due
to similar neighbouring blobs being merged, or blobs being split into two.

The robust estimation causes salt&pepper pixels to be rejected as outliers.
This will cause small reductions in the blob areas and slight changes of blob
shapes, but will not affect the resultant measurements pk at all. White noise will
be averaged if it has an amplitude below dmax. For K = 26 we have dmax = 0.083.
1/f noise is a common model of atmospheric distortion, and moderate amounts
of this distortion appears to be handled as well.

6 Concluding Remarks

We wish to stress that this is just a first attempt at robust blob detection,
and a rigorous evaluation of the performance is still in progress. Similar results

17Robust Multi-scale Extraction of Blob Features

could probably be obtained if the pyramid generation using channel smoothing
is replaced by another robust estimation technique. The blob features presented
in this paper are intended for view based object recognition using learning,
something which will hopefully be facilitated by the dramatic data reduction
(we typically get 200 times less data).

Acknowledgements

The work presented in this paper was supported by WITAS, the Wallenberg lab-
oratory on Information Technology and Autonomous Systems, which is gratefully
acknowledged.

References

1. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer
Academic Publishers (1995) ISBN 0-7923-9530-1.

2. Granlund, G.H.: An Associative Perception-Action Structure Using a Localized
Space Variant Information Representation. In: Proceedings of Algebraic Frames
for the Perception-Action Cycle (AFPAC), Kiel, Germany (2000)

3. Forssén, P.E.: Sparse Representations for Medium Level Vision. Lic. Thesis LiU-
Tek-Lic-2001:06, Dept. EE, Linköping University, SE-581 83 Linköping, Sweden
(2001) Thesis No. 869, ISBN 91-7219-951-2.

4. Felsberg, M., Scharr, H., Forssén, P.E.: The B-spline channel representation: Chan-
nel algebra and channel based diffusion filtering. Technical Report LiTH-ISY-R-
2461, Dept. EE, Linköping University, SE-581 83 Linköping, Sweden (2002)

5. Forssén, P.E.: Observations Concerning Reconstructions with Local Support.
Technical Report LiTH-ISY-R-2425, Dept. EE, Linköping University, SE-581 83
Linköping, Sweden (2002)

6. Forssén, P.E., Granlund, G.: Blob Detection in Vector Fields using a Clustering
Pyramid. Technical Report LiTH-ISY-R-2477, Dept. EE, Linköping University,
SE-581 83 Linköping, Sweden (2002)

7. Godtliebsen, F., Spjøtvoll, E., Marron, J.: A nonlinear gaussian filter applied to
images with discontinuities. J. Nonpar. Statist. 8 (1997) 21–43

8. Winkler, G., Liebscher, V.: Smoothers for discontinuous signals. J. Nonpar. Statis-
tics 14 (2002) 203–222

9. Lindeberg, T.: Scale-space Theory in Computer Vision. Kluwer Academic Pub-
lishers (1994) ISBN 0792394186.

10. Lindeberg, T., G̊arding, J.: Shape from texture in a multi-scale perspective. In:
Proc. 4th International Conference on Computer Vision, Berlin, Germany (1993)
683–691

11. Belongie, S., Carson, C., Greenspan, H., Malik, J.: Color- and texture-based image
segmentation using EM and its application to content based image retrieval. In:
Proceedings of the 6:th ICCV. (1998) 675–682

12. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
International Thomson Publishing Inc. (1999) ISBN 0-534-95393-X.

18 P.-E. Forssén and G. Granlund

	1 Introduction
	1.1 Channel Smoothing

	2 A Blob Extraction Algorithm
	2.1 Building a Clustering Pyramid
	2.2 Pruning the Pyramid

	3 Region Image Generation
	4Ellipse Approximation
	4.1 Merge and Cleanup

	5 Noise Sensitivity
	6 Concluding Remarks

