
A Modified Fast Marching Method

Per-Erik Danielsson and Qingfen Lin

Computer Vision Laboratory,
Dept. of Electrical Engineering,

Linköping University, 581 83 Sweden
ped, qingfen@isy.liu.se

Abstract. In most, if not all fast marching methods published hitherto,
the input cost function and the output arrival time are sampled on ex-
actly the same grid. But since the input data samples are differences of
the output samples we found it natural to separate the input and output
grid half a sampling unit in all coordinates (two or three). We also employ
8-neighborhood (26-neighborhood in the 3D-case) in the basic updating
step of the algorithm. Some simple numerical experiments verify that the
modified method improves the accuracy considerably. However, we also
feel the modified method leads itself more naturally to image processing
applications like tracking and segmentation.

1 Introduction

The minimum-cost path problem has been considered in different research com-
munities such as robotics, geometric optics, geographic information system, wire
routing. One common form of the problem, which has been discussed extensively
in the graph theory literature, is to find the least expensive path on a finite graph
where different weights (costs) are assigned to every arc linking two vertices.

In image processing applications of this kind, the cost function τ(x) is given
as samples, typically on a 2D or 3D Cartesian grid. The goal is to find a path
that minimizes the cumulative traveling time from a given point A to some
destination point B, which means that we interpret the cost as a delay. The
accumulated cost u(x), which may be interpreted as arrival time, is computed
along a propagating wave front growing outwards from A. When the point B
has been reached by the wave front, the path can be found by gradient descent
methods in the generated 2D- or 3D-function u(x) . In general, the initial state
may consist of a set of points instead of the single point A.

The solution to the minimum-cost path problem is in principle given by the
Eikonal equation

‖∇U‖ = τ. (1)

An exact solution is usually impossible to find, the problem has to be solved
numerically. Fast marching, first proposed in [7] and later named and rederived in
[1], is an efficient numerical method applicable to this problem [6]. The strategy

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 1154−1161, 2003.
 Springer-Verlag Berlin Heidelberg 2003

of fast marching is to introduce an order in the selection of the grid points,
in a way similar to Dijkstra’s method [2]. This order is based on the causality
condition, i.e., the arrival time u at any point depends only on neighbors that
have earlier (smaller) arrival times.

The fast marching method can be summarized as follows. There are three
sets of points in the 2D- or 3D-space, namely, Accepted, Trial, and Far. In the
initial stage, we label the starting points Accepted, the neighbors Trial, and all
the other points Far. The arrival time u for the starting points in the Accepted
set are set to zero, and the time to reach the neighboring points are computed
and recorded. The arrival time at all the other points are set to infinity. Then,
given the cost τ , the arrival time to all other points are to be computed using
the following two-step loop.

1. Find the point xm that has the smallest arrival time in the Trial set and
move it to the Accepted set.

2. Update the arrival times at neighbors of xm and move those in the Far set
to the Trial set.

Thus, the fast marching method is picking up points one-by-one from the Trial
set while gradually expanding the Accepted set and diminishing the Far set.
Multi-pass scans sweeping back and forth over the whole image, which are typ-
ical for many distance transforms, have no place in fast matching. It should be
noted however, that distance transforms also can be executed using an expanding
and propagating wave front, see e.g. [5]. Actually, in case the input function is
constantly one, the result u computed by the fast marching should be equivalent
to the Euclidean distance to the starting point.

2 A modified fast marching method

2.1 Shifted input-output grids

In most, if not all fast marching method published hitherto, the cost function τ
and the arrival time u are both defined at the very same grid points as shown in
Fig. 1 (a) and (b). When updating the arrival time value uC from the northwest,
the cost τC is used in the quadrant ABC. In the same area, if the updating is
done from the northeast to the point B, the cost used to compute uB will be
τB. In fact, the cost defined at a point may be used in any of the four quadrants
around it depending on from which direction the front approaches. The influence
areas of cost τ therefore overlap as shown in Fig. 1 (a) and (b). The actual cost
becomes dependent on the marching direction.

To overcome this unwanted effect, we propose to define the cost function and
compute the arrival time at half-grid offset positions. As in Fig. 1 (c), the input
cost function is now defined in the center of a grid cell, i.e. a rectangle bounded
by four neighboring grid points. For simplicity, nearest neighbor interpolation is
used and the cost is therefore uniform inside each grid cell. The output u-values
are computed at the grid points as before. If an application requires that input

1155A Modified Fast Marching Method

(a) (c)

!""""""""""""""""""""!""""""""""""""""""""!

#""""""""""""#""""""""""""#""""""""""""#

#""""""""""""#""""""""""""#""""""""""""#

#""""""""""""#""""""""""""#""""""""""""#

#""""""""""""#""""""""""""#""""""""""""#

#""""""""""""#""""""""""""#""""""""""""# !""""""""""""""""""""!""""""""""""""""""""!

!""""""""""""""""""""!""""""""""""""""""""!

!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!

!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!

!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!

(b)

#""""""""""""#""""""""""""#""""""""""""#

#""""""""""""#""""""""""""#""""""""""""#

#""""""""""""#""""""""""""#""""""""""""#

!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!

!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!

!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!

AA A

B BB C CC
τCτB

τABC

Fig. 1. (a, b) In the original fast marching method the cost (×) and the arrival time (•)
are defined at the same grid points. The influence areas of τB in (a) and τC in (b)
overlap. (c) Alternative sampling pattern where cost (×) is defined inside the grid cell
and arrival time (•) is computed at the grid point.

function τ and output function u must have a common grid, we suggest that
one either resamples the input function before or resamples the output after the
marching process to obtain the sampling pattern of Fig. 1 (c).

Under the new sampling condition, the causality condition still holds. Thus,
the main loop of the fast marching is used as usual and the computation of the
arrival time is done by

uAB(C) = min
0≤t≤1

(tuA + (1− t)uB +
√

t2 + (1− t)2τABC) (2)

for the point C in Fig. 1 (c) in the quadrant ABC. The parameter t decides
where the propagation is from and τABC is the cost defined inside the grid cell
surrounded by grid points A,B and C. We name the modified fast marching
method the shifted-grid (SG) fast marching method.

2.2 The 2D case with 8-connected neighbors

Another modification we made to the original fast marching is to include all the
8-connected neighboring points instead of the 4-connected points when comput-
ing the u-values. The use of eight neighbors has also been suggested in [3] and
[7], although not in connection with shifted input-output grids. The geometry
using 8-connected neighbors is shown in Fig. 2 (a). To update the arrival time
uC from the octant given by AB is to solve

uAB(C) = min
0≤t≤1

(tuA + (1− t)uB +
√

1 + t2 · τABC). (3)

This minimization can be solved explicitly. The closed form solution is

uAB(C) =


uB + τABC if uB ≤ uA,
uA +

√
2 · τABC if τABC ≤ √

2 · (uB − uA),
uB +

√
τ2

ABC − (uB − uA)2 Otherwise.
(4)

1156 P.E. Danielsson and Q. Lin

t

(b)(a)

#""""""""""#""""""""""#""""""""""#

#""""""""""#""""""""""#""""""""""#

#""""""""""#""""""""""#""""""""""#

#""""""""""#""""""""""#""""""""""#

!"""""""""""""""""!""""""""""""""""!"""""""""""""""""!"""""""""""""""""!

!"""""""""""""""""!""""""""""""""""!"""""""""""""""""!"""""""""""""""""!

!"""""""""""""""""!""""""""""""""""!"""""""""""""""""!"""""""""""""""""!

!"""""""""""""""""!""""""""""""""""!"""""""""""""""""!"""""""""""""""""!

!"""""""""""""""""!""""""""""""""""!"""""""""""""""""!"""""""""""""""""!

(c)

√
1 + t2

AAA

B

BB

C

CC

DDD

E

φx

φy

φy

u
=

uA

u
=

uB

Fig. 2. (a) The arrival time at point C is to be computed from the 8-connected neigh-
boring points A and B. (b) Alternative interpretation of (a) given by the direction
cosines. (c) A larger neighborhood around point C.

where A and B are diagonal neighbors, A is diagonal neighbor to C and B is
4-connected to C as in Fig. 2.

More intuitively, we can deduce the result using the direction cosines (see
Fig. 2 (b)). A planar wave is assumed to reach point C from the line segment AB.
The direction of arrival is perpendicular to the wave front. The time differences
are then

uB − uA = τABC cos φy, uC − uB = τABC cos φx.

where cos2 φx + cos2 φy = 1.
The causality condition still holds under the new geometry as proven in [4]

using the Kuhn-Tucker condition. The main loop of fast marching can thus be
applied. To implement the 8-neighbor shifted-grid fast marching method effi-
ciently, we use the following observations. First, when a Trial point becomes
accepted, we only need to recompute the arrival times at its neighbors from the
octants that include the newly accepted point. For example, assume B is the
newly accepted point and the arrival times at its neighbors are to be computed
(Fig. 2 (c)). At point C, only computations from line segments AB and EB are
necessary. The smallest value among uAB(C), uEB(C) and the old uC will be
assigned to C.

Furthermore, we note that updating a diagonal neighbor such as point D from
B in Fig. 2 is unnecessary. The reason is as follows. If D is actually dependent
on B, that is the wave is coming from either BA or BC, one of the inequalities
uB < uA < uD and uB < uC < uD must hold. Thus the correct u-value will
be assigned to D later on when either A or C becomes accepted. An efficient
updating step is given in Algorithm 1.

2.3 The 3D case

In the 3D case, the shifted input-output grid corresponds to the well known
body-centered grid. The total set of grid-points can be divided into two half-
sets so that each grid point has 8 neighbors, all of which belong to the other

1157A Modified Fast Marching Method

Algorithm 1 Update neighbors of xm, shifted grid, 8-neighbor scheme
– Definition: Near set is defined for every Trial point x as

NS(x) = {xjxk | 4-connected points to each other,

one is diagonal neighbor to x,

the other one is 4-connected neighbor to x}.
– For each non-accepted 4-connected point x of xm,

• If x is Far, move it to the Trial set;
• u(x) = min{u(x), min

xjxm∈NS(x)
(uxjxm(x))} with uxjxm(x) computed by (4);

(a)

”Entrance” point

(b)

A1 A2

A2

A3

B1

B1

B2

B3 CC

D

D

x

x

y
y

z

z

φx

φy

φzuA2

uB1uC

(1 − t1,−1, t2)

τ

Fig. 3. (a) 3D Cartesian grid used in the fast marching method. The arrival time at
point D is to be computed from the direction given by the arrow. (b) The arrival time
at point D to be computed from 26-connected neighbors.

half-set. Consequently, an input cost value is located in the middle of a grid
cell which is a cube bounded by eight neighboring grid points. In the 3D case,
we might consider the possibilities to compute the arrival time at point D in
Fig. 3 from three 6-connected neighbors, three 18-connected neighbors, or three
26-connected neighbors. For the sake of brevity, we will only discuss the 26-
neighbor case. A treatment of the other two cases can be found in [4].

Assume that the wave front is arriving from the direction given by the arrow
in Fig. 3 (a) and the cost is τ inside the shaded cube. Depending on surrounding
arrival times, the arrival time at D is to be computed as if the propagating
front is entering the shaded cube via one of several triangular surfaces patches.
These triangles have three vertices that are 6-connected, face-diagonal and body-
diagonal neighbors to D, respectively. There are 48 such triangles in total. In
Fig. 3 (a) and (b), A2B1C is such a triangle. A line perpendicular to the planar
wave front through point D is given in Fig. 3 (b). This line is intercepted by

1158 P.E. Danielsson and Q. Lin

wave fronts with arrival times uA2 , uB1 , and uC as indicated. The time differences
between points D, A2, B1, and C should then satisfy

uD − uA2 = τ cos φy, uA2 − uB1 = τ cos φx, uB1 − uC = τ cos φz, (5)

where the direction cosines satisfy

cos2 φx + cos2 φy + cos2 φz = 1.

This gives uD = uA2 +
√

τ2 − (uA2 − uB1)2 − (uB1 − uC)2.
A more strict analytical treatment requires that we compute the arrival time

at D from A2B1C as

uA2B1C(D) = min
t1,t2

(t1uA2 + t2uC + (1− t1 − t2)uB1 +
√

1 + (1− t1)2 + t22 · τ)

(6)

s.t. t1 ≥ 0, t2 ≥ 0 and t1 + t2 ≤ 1.

Such a minimization problem can be solved explicitly using the Kuhn-Tucker
condition in a similar manner as done in [7]. If the minimum is not found inside
the triangle A2B1C, the boundaries and the vertices will be searched. Details on
solving (6) are given in [4].

The two-step loop of the fast marching method remains the same in the 3D
case. In fact, the argument given in Section 2.2 for updating only the four nearest
neighbors in Algorithm 1 still holds so that in the 3D case, only the six nearest
neighbors have to be updated.

2.4 Numerical experiments

To compare the proposed shifted-grid fast marching methods with the original
fast marching, we give the following numerical examples. The cost functions are
chosen so that the analytical result of the arrival time uanalytic can be found.
Three types of cost functions are used, namely:

1. τ(x) = h(|x− x0|). The cost τ is defined as a function of the distance from
the starting point x0.

2. τ(x) = 1/(ax+by+c). The reciprocal of the cost function (speed) is a linear
function.

3. τ(x) =
√

(∂u/∂x)2 + (∂u/∂y)2. The cost τ is computed from a continuous
and differentiable u function according to the Eikonal equation.

The three cost functions used in the following examples are

τ1(x) = 1, τ2(x) =
1

x + 1
, τ3(x) =

1
20

√(
sin

x

20
cos

y

20

)2

+
(
cos

x

20
sin

y

20

)2

.

The cost functions for the original and the shifted-grid fast marching methods
are sampled at half-grid offset as in Fig. 1 (c), so that the output u-values are

1159A Modified Fast Marching Method

−20 −10 0 10 20

−20

−10

0

10

20

5
10
15
20
25

−20 −10 0 10 20

−20

−10

0

10

20

1

0.8

0.4

0.2
0.8

1

−20 −10 0 10 20

−20

−10

0

10

20

0.25
0.2

0.1 0.10.2
0.25

(a) (b) (c)

Fig. 4. Cost function τ1(x) = 1. (a) Iso-curves of the correct u-value, a Euclidean
distance map. Iso-curves of errors when using FM (b) and SGFM-8 (c).

L∞ Error τ1 τ2 τ3

FM: 1.1290 0.2209 3.8709

SGFM-4: 1.1290 0.1863 3.0939

SGFM-8: 0.2754 0.1863 0.5245

L2 Error τ1 τ2 τ3

FM: 0.4991 0.0240 7.9358

SGFM-4: 0.4991 0.0048 0.8526

SGFM-8: 0.0276 0.0004 0.0504

Table 1. L∞- and L2- Errors of the arrival time computed with different fast marching
method.

aligned and can be compared. Furthermore, since the analytical results of the
u-values of these three types of cost functions are easy to compute, these results
are used as the golden standard for comparison. In all three examples, there are
56× 56 grid points with ∆x = ∆y = 1. The starting point is in the center of the
images for τ1 and τ3 and in the middle of the top row for τ3. The three different
fast marching methods used are:

FM: the original 4-neighbor fast marching,
SGFM-4: the shifted-grid 4-neighbor fast marching,
SGFM-8: the shifted-grid 8-neighbor fast marching.

Cost function τ1 transforms the problem to the common distance transform.
The Euclidean distance map is shown in Fig. 4 (a). We also notice that SGFM-4
will give exactly the same result as FM in this case since the cost is homogeneous.
The results of FM and SGFM-8 is shown in Fig. 4 (b) and (c) in the form of
error images.

We measure the numerical errors as

L∞ Error = max(|u− uanalytic|), L2 Error = mean|u− uanalytic|2

and list the result in Table. 1.
From Fig. 4, Table. 1 and the result figures for τ2 and τ3 which are not shown,

we observe that:

– The 4-neighbor fast marching methods generate small errors along the ver-
tical and horizontal direction. Errors increase rapidly along the diagonal
direction.

1160 P.E. Danielsson and Q. Lin

– The 8-neighbor fast marching method generates small errors along the ver-
tical, horizontal and diagonal direction. Errors in the regions between these
directions are large.

– The results given by the 4-neighbor shifted-grid fast marching method are
more accurate than those given by the original fast marching for τ2 and τ3.

– The results given by the 8-neighbor fast marching are more accurate than
those given by the 4-neighbor fast marching methods for all three examples.

3 Discussion

To summarize, the fast marching method we have proposed has two significant
properties. The first and most important one is to shift the input and output
grids half a sampling distance relative to each other. Hereby, we can understand
the sampled input image in traditional signal processing terms, define a basis
function to connect the sampled function with the underlying continuous one
etc. But we also get rid of the feature in the original method that makes the
cost dependent on the wave propagation direction in a rather unpredictable and
data-dependent manner.

The second property follows naturally from the previous one, namely the
possibility to employ not only the 4 (6) nearest neighbors but the full 8 (26)
neighbors in the updating procedure. Numerical experiments show that this
approach gives more accurate results.

On the other hand, the shifted-grid fast marching methods do require more
computation. In the 2D case, they tend to double the amount of the computation
of the original fast marching method. In Fig. 1 and Fig. 2, when point C is
updated from B, propagation delays via two quadrants have to be evaluated. In
the original fast marching where the cost is defined at point C, only one such
evaluation is necessary.

References

1. D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating inter-
faces. Journal of Computational Physics, 118:269 – 277, 1995.

2. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269 – 271, 1959.

3. Seongjai Kim. An O(N) level set method for eikonal equations. SIAM J. Sci.
Comput., 22(6):2178 – 2193, 2001.

4. Qingfen Lin. Enhancement, extraction, and visualization of 3D volume data. PhD
thesis, Linköping University, 2003.

5. Ingemar Ragnemalm. Neighborhoods for distance transformation using ordered
propagation. CVGIP - Image Understanding, 56:161 – 166, 1992.

6. J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University
Press, 1999.

7. John N. Tsitsiklis. Efficient algorithm for globally optimal trajectories. IEEE Trans-
actions on Automatic Control, 40(9):1528–1538, 1995.

1161A Modified Fast Marching Method

	1 Introduction
	2 A modified fast marching method
	2.1 Shifted input-output grids
	2.2 The 2D case with 8-connected neighbors
	2.3 The 3D case
	2.4 Numerical experiments

	3 Discussion

