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Abstract. A metering scheme is a protocol in which an audit agency is
able to measure the interaction between clients and servers on the web
during a certain number of time frames. Naor and Pinkas [7] considered
metering schemes in which any server is able to construct a proof to be
sent to the audit agency if and only if it has been visited by at least
a number, say h, of clients in a given time frame. In their schemes the
parameter h is fixed and is the same for any server and any time frame.
In this paper we introduce dynamic multi–threshold metering schemes,
that are metering schemes in which there is a threshold associated to
any server for any time frame. We mainly focus on the efficiency of dy-
namic multi–threshold metering schemes, by minimizing the information
received and distributed by clients. This is important because the clients
participating in the metering process do not receive any money from the
audit agency.

Keywords: Metering Schemes, Security, Cryptography, Entropy.

1 Introduction

Most of the revenues of web sites come from advertisement payments. Web
advertisers must have a way to measure the exposure of their ads by obtaining
usage statistics about web sites which contain their ads. Indeed, the amount of
money charged to display ads depends on the number of visits received by the
web site. Consequently, advertisers should prevent the web sites from inflating
the count of their visits in order to demand more money. Hence, there should
be a mechanism which ensures the validity and accuracy of usage measurements
against fraud attempts by servers (web sites) and clients (visitors). In a typical
scenario there are many servers and clients, and an audit agency whose task
is to measure the interaction between the servers and the clients. A system for
measuring the amount of services performed by the servers is called metering
scheme.
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Naor and Pinkas [7] proposed metering schemes in which any server is able
to present to the audit agency a short proof for the number of client visits it has
received in a given time frame. In their schemes all servers are associated to a
threshold h, and are able to compute their proofs for a certain time frame if and
only if they have been visited by a number of clients larger than or equal to h
in that time frame. The schemes proposed by Naor and Pinkas are also efficient:
the task for the audit agency in sending information to clients and servers is very
simple, as well as the task for the servers in computing their proofs. Recently,
different kinds of metering schemes have been proposed. Metering schemes for
ramp structures [1,3] have been introduced in order to reduce the overhead to
the overall communication due to the metering process. Metering schemes with
pricing [1,5] have been introduced in order to have a more flexible payment
system. Finally, metering schemes for general access structures [6] have been
introduced in order to measure the interaction between servers and particular
groups of clients.

In metering schemes considered by Naor and Pinkas [7] the parameter h is
fixed and is the same for any server and any time frame. This is acceptable
whenever there is a long-term relationship between the audit agency and the
servers. In order to measure any number of visits in any granularity we introduce
dynamic multi–threshold metering schemes, which are metering schemes in which
there is a threshold ht

j associated to any server Sj for any time frame t.
Dynamic multi–threshold metering schemes involve distributing information

to clients and servers. Obviously, such information distribution affects the over-
all communication complexity. Therefore, it is important to construct schemes
whose overhead to the overall communication is as small as possible. We mainly
focus on the efficiency of dynamic multi–threshold metering schemes, by min-
imizing the information received and distributed by clients. This is important
because the clients participating in the metering process do not receive any
money from the audit agency. In this paper we provide lower bounds on the size
of the information received and distributed by clients and we present a scheme
achieving these lower bounds.

2 The Model

Consider the following scenario: there are n clients, m servers and an audit
agency A which is interested in counting the client visits to the servers in τ
different time frames. For any i = 1, . . . , n and j = 1, . . . ,m, we denote by Ci

the i-th client and by Sj the j-th server.
There is an initialization phase in which the audit agency A distributes some

information to any client over a private channel. For any i = 1, . . . , n, we denote
by ci the information that the audit agency A gives to the client Ci. Moreover,
we denote by Ci the set of all values that ci can assume. Given a set of client
indices Z = {1, . . . , α} ⊆ {1, . . . , n}, we denote by C

Z
the cartesian product

C1 × · · · × Cα.
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At the beginning of any time frame the audit agency A distributes to any
server a piece of information which depends on the identity of the server and
on the time frame. For any j = 1, . . . ,m and t = 1, . . . , τ , we denote by st

j the
information that the audit agency A gives to the server Sj at the beginning of
time frame t. Moreover, we denote by St

j the set of all values that s
t
j can assume.

Given a set of server indices B = {1, . . . , β} ⊆ {1, . . . ,m}, we denote by St
B
the

cartesian product St
1 × · · · × St

β .
A regular operation consists in a client visit to a server during a time frame.

During such a visit the client gives to the visited server a piece of information
which depends on its private information, on the identity of the server, and on
the time frame during which the client visits the server. For any i = 1, . . . , n,
j = 1, . . . ,m, and t = 1, . . . , τ , we denote by ct

i,j the information that the client
Ci sends to the server Sj when visiting it in time frame t. Moreover, we denote by
Ct

i,j the set of all values that ct
i,j can assume. Given a set of server indices B =

{1, . . . , β} ⊆ {1, . . . ,m}, we denote by Ct
i,B

the cartesian product Ct
i,1×· · ·×Ct

i,β .
Moreover, given a set of client indices Z = {1, . . . , α} ⊆ {1, . . . , n}, we denote
by Ct

Z,B
the cartesian product Ct

1,B × · · · × Ct
α,B . For any j = 1, . . . ,m and

t = 1, . . . , τ , we denote by Xt
j,(dj) the set of the dj client visits received by server

Sj in time frame t.
During the proof computation stage any server Sj which has received at least

ht
j visits during time frame t is able to compute its proof for time frame t, as

function of the information provided by the ht
j clients and the information st

j

provided by the audit agency A at the beginning of the time frame t. For any
j = 1, . . . ,m and t = 1, . . . , τ , we denote by pt

j the proof computed by the
server Sj when it has been visited by at least ht

j distinct clients in time frame
t. Moreover, we denote by P t

j the set of all values that pt
j can assume. Given a

set of server indices B = {1, . . . , β} ⊆ {1, . . . ,m}, we denote by P t
B
the cartesian

product P t
1 × · · · × P t

β .
During the proof verification stage the audit agency A verifies the proofs

received by servers and decides on the amount of money to be paid to servers.
If the proof received from a server at the end of a time frame is correct, then A
pays the server for its services.

A corrupt server can be assisted by corrupt clients and other corrupt servers
in order to inflate the count of its visits. A corrupt client Ci can donate to
a corrupt server the whole private information received by the audit agency
during the initialization phase. We assume that the number of corrupt clients
is c, where 1 ≤ c < minj=1,...,m mint=1,...,τ ht

j . A corrupt server can donate to
another corrupt server the private information received from the audit agency
at the beginning of any time frame in addition to the information received from
clients in previous time frames and in the actual time frame. For any i = 1, . . . , n
and t = 1, . . . , τ , we denote by V

[t]
j all the information received by a corrupt

server Sj in time frames 1, . . . , t. This information includes the sets of client
visits received by server Sj in time frames 1, . . . , t. We also define V

[0]
j = ∅, for

any corrupt server Sj . We assume that the maximum number of corrupt servers
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is s, where 1 ≤ s ≤ m. For the reader’s convenience, the notations used in this
section are summarized in Appendix B.

In this paper with a boldface capital letter, say X, we denote a random
variable taking value on a set denoted by the corresponding capital letter X
according to some probability distribution {PrX(x)}x∈X . The values such a ran-
dom variable can take are denoted by the corresponding lower letter. Given a
random variable X we denote with H(X) the Shannon entropy of {PrX(x)}x∈X

(for some basic properties of entropy, consult the Appendix A).
We formally define dynamic multi–threshold metering schemes by using the

entropy approach, as done in [1,3,5,6]. We use the entropy approach mainly be-
cause this leads to a compact and simple description of the schemes and because
the entropy approach takes into account all probability distributions on the sets
of the proofs computed by the servers.

Definition 1. An (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi–threshold metering

scheme is a protocol to measure the interaction between n clients and m servers
during τ time frames in such a way that the following properties are satisfied:

1. Any client is able to compute the information needed to visit any server in
any time frame:
Formally, it holds that H(Ct

i,j |Ci) = 0 for i = 1, . . . , n, j = 1, . . . ,m, and
t = 1, . . . , τ .

2. Any server Sj which has received ht
j client visits during time frame t and the

message provided by A at the beginning of the time frame t can compute its
proof for t:
Formally, it holds that H(Pt

j |Xt
j,(ht

j
)S

t
j) = 0, for j = 1, . . . ,m and t =

1, . . . , τ .
3. Let us consider a coalition of α corrupt clients C1, . . . , Cα and β corrupt

servers S1, . . . ,Sβ, where 0 ≤ α ≤ c < minj=1,...,m mint=1,...,τ ht
j and 1 ≤

β ≤ s, and let B = {1, . . . , β}. Assume that at some time frame t each server
Sj in the coalition has been visited by less than ht

j −α clients and has received
the information by A. Then, the servers in the coalition have no information
on their proofs for t:
Formally, it holds that H(Pt

B
|C1 . . .CαXt

1,(d1) . . .X
t
β,(dβ)

St
B
V[t−1]

B
) =

H(Pt
B
), where dj < ht

j − α, for j = 1, . . . , β.

Notice that Naor and Pinkas [7] considered metering schemes which are
“static” and with “single threshold”, i.e., where ht

j = h for j = 1, . . . ,m and
t = 1, . . . , τ . Moreover, their schemes do not require communication between
audit agency and servers at the beginning of any time frame.

3 A Dynamic Multi–threshold Metering Protocol

In this section we present a dynamic multi–threshold metering scheme which
is optimal with respect to the bounds (4) and (5) presented in Section 4. The
protocol is a generalization of Naor and Pinkas metering scheme [7].
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Initialization: For j = 1, . . . ,m and t = 1, . . . , τ , let ht
j be the threshold associ-

ated to the server Sj in time frame t and let h = maxj=1,...,m maxt=1,...,τ ht
j +1.

The audit agency A chooses a random polynomial Q(x, y) of degree h − 1 in x
and sτ − 1 in y over GF (q), where q is a sufficiently large prime number. After-
wards, A sends the univariate polynomial Q(i, y), which is of degree sτ − 1, to
each client Ci.

Beginning of a Time Frame: At the beginning of time frame t, for any
server Sj , the audit agency A evaluates the polynomial Q(x, j ◦ t) in h − ht

j

points other than 1, . . . , n and sends these values to Sj . The argument j ◦ t
denotes the concatenation of j and t, and we assume for simplicity that j ◦ t is in
GF (q) and that no distinct two pairs (j, t) and (j′, t′) are mapped to the same
element.

Regular Operation: When the client Ci visits the server Sj in time frame t,
it sends the value Q(i, j ◦ t) to Sj .

Proof Generation and Verification: Assume that the server Sj has been
visited by at least ht

j different clients in time frame t. Then, knowing the h− ht
j

points of Q(x, j◦t) provided by the audit agency at the beginning of time frame t,
the server can perform a Lagrange interpolation and reconstruct the polynomial
Q(x, j ◦t). Then, it can compute the value Q(0, j ◦t), which constitutes the proof
that the server sends to the audit agency. The audit agency can easily verify this
value.

3.1 Security of the Scheme

In this section we prove that the scheme presented in Section 3 satisfies Proper-
ties 1, 2, and 3 of Definition 1.

It is immediate to verify that the scheme satisfies Property 1 of Definition 1.
Indeed, for any i = 1, . . . , n, the information given by the audit agency to the
client Ci consists of the univariate polynomial Q(i, y) and for any j = 1, . . . ,m
and t = 1, . . . , τ , the information given to the server Sj by client Ci in time frame
t is obtained by evaluating the univariate polynomial Q(i, y) at j ◦ t.

It is also easy to verify that the scheme satisfies Property 2 of Definition 1.
Assume that a server Sj has been visited by ht

j clients in time frame t and that it
has received h−ht

j points of Q(x, j ◦t) from the audit agency at the beginning of
time frame t. Therefore, the server Sj knows h points of the polynomial Q(x, j◦t)
and can perform a Lagrange interpolation on it. Afterwards, it can compute its
proof Q(0, j ◦ t) by evaluating the polynomial Q(x, j ◦ t) at the point 0.

Finally, we prove that the scheme satisfies Property 3 of Definition 1. We
consider the worst possible case in which c corrupt clients decide to cooperate
with s corrupt servers at time frame τ . Moreover we assume that the corrupt
servers have collected the maximum possible information during the previous
time frames 1, . . . , τ − 1. In other words, we assume that each corrupt client Ci
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gives its polynomial Q(i, y) to all servers in the coalition, and that any corrupt
server Sj in the coalition knows the polynomial Q(x, j ◦ t) for t = 1, . . . , τ − 1.

In order to compute its proof Q(0, j◦τ) for time frame τ , any server Sj should
be able to interpolate either the polynomialQ(x, j◦τ) or the bivariate polynomial
Q(x, y). Notice that for any j, k ∈ {1, . . . , s}, with j �= k, the information held
by the server Sk is of no help in computing the polynomial Q(x, j ◦ τ). Assume
gj = hτ

j − c − 1 be the number of client visits received by server Sj during time
frame τ . Each corrupt client Ci donates to Sj the polynomial Q(i, y) from which
Sj can compute the value Q(i, j ◦ τ). Since there are c corrupt clients, Sj can
compute c values of Q(x, j ◦ τ) in addition to those provided by the gj visits
performed by non corrupt clients. Since the server Sj has also received h − hτ

j

points of Q(x, j ◦ τ) by the audit agency at the beginning of time frame τ , the
overall number of points of Q(x, j ◦ τ) known to Sj is gj + c + h − hτ

j = h − 1.
Therefore, the server obtains a linear system of h − 1 equations in h unknowns.
For any choice of a value in GF (q), there is a polynomial R(x, j ◦ τ) which
is consistent with the information held by the server. Since there are q such
polynomials, the probability of the server in guessing its proof for time frame τ
is at most 1/q.

Alternatively, the coalition of corrupt servers might try to interpolate the
polynomial Q(x, y) in order to compute the proofs. The information that a cor-
rupt client Ci gives to a corrupt server is equivalent to the sτ coefficients of its
polynomial Q(i, y). For j = 1, . . . , s, the information collected by each corrupt
server Sj at the beginning of time frame τ is constituted by the information
provided by the audit agency at the beginning of any time frame t = 1, . . . , τ ,
which consists in h − ht

j coefficients of Q(x, j ◦ t), in addition to the informa-
tion provided by clients during each time frame t = 1, . . . , τ − 1, which consists
in ht

j coefficients of Q(x, j ◦ t). Hence, at the beginning of time frame τ each
corrupt server holds (τ − 1)h coefficients of Q(x, y) and h − hτ

j coefficients of
Q(x, j ◦ τ). Suppose that in time frame τ each server Sj , j ∈ {1, . . . , s}, receives
gj ≤ hτ

j − α − 1 regular visits from clients. Then, the overall information on
Q(x, y) held by the coalition of corrupt servers and clients at the end of time
frame τ consists of

csτ + s(τ − 1)h+
s∑

j=1

(h − hτ
j ) +

s∑

j=1

gj − cs(τ − 1) (1)

points. The first term of (1) corresponds to the information donated by the c
corrupt clients, the second term corresponds to the information collected by the
s corrupt servers during time frames 1, . . . , τ − 1, the third term corresponds to
the information provided by the audit agency at the beginning of time frame
τ , the fourth term corresponds to the information provided by client visits at
time frame τ , and the last term corresponds to the information which has been
counted twice. Since gj ≤ hτ

j − α − 1 for j = 1, . . . , s, it is easy to see that
expression (1) is less than or equal to hsτ − s. Therefore, the servers obtain a
system of at most hsτ −s equations in hsτ unknowns. For any choice of s values
in GF (q), there is a polynomial R(x, y) which is consistent with the information
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held by the servers in the coalition. Since there are qs such polynomials, then
the corrupt servers S1, . . . ,Ss have probability at most 1/qs of guessing their
proofs for time frame τ .

4 Lower Bounds on the Size
of the Information Distributed to Clients and Servers

Dynamic multi–threshold metering schemes involve distributing information to
clients and servers. In this section we provide lower bounds on the size of the
information received by clients from the audit agency and distributed by clients
to servers in dynamic multi–threshold metering schemes.
In order to prove our results we will resort to the two following technical lemmas.

Lemma 2. Let A and E be two random variables such that H(A|E) = 0. Then,
for any two random variables F and G, it holds that

H(G|AEF) = H(G|EF).

Proof. Consider the mutual information I(A;G|EF). From (12) of Appendix A
it holds that

H(A|EF) − H(A|EFG) = H(G|EF) − H(G|AEF).

From (13) of Appendix A we have that H(A|EFG) ≤ H(A|EF) ≤ H(A|E).
Since H(A|E) = 0, it follows that

H(G|AEF) = H(G|EF).
��

Lemma 3. Let E, F, and G be three random variables such that H(G|EF) = 0
and H(G|E) = H(G). Then, it holds that

H(F|E) = H(G) +H(F|EG).

Proof. Consider the mutual information I(F;G|E). From (12) of Appendix A it
holds that

H(F|E) − H(F|EG) = H(G|E) − H(G|EF).
Since H(G|EF) = 0 and H(G|E) = H(G), then it follows that H(F|E) =
H(G) +H(F|EG). ��

The next lemma immediately follows from Definition 1. Recall that for any sets
of client and server indices Z = {1, . . . , α} ⊆ {1, . . . , n} and B = {1, . . . , β} ⊆
{1, . . . ,m}, respectively, we denote by ct

Z,B
the information given by clients

C1, . . . , Cα to servers S1, . . . ,Sβ during their visits in time frame t.
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Lemma 4. Let M be an (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi-threshold

metering scheme. Let Z = {1, . . . , α} be a set of client indices and let B =
{1, . . . , β} be a set of server indices. Then, for any time frame t = 1, . . . , τ , it
holds that

H(Ct
Z,B

|C
Z
) = 0.

Proof. We have that

H(Ct
Z,B

|C
Z
) ≤

α∑

i=1

β∑

j=1

H(Ct
i,j |CZ

) (from (15) of Appendix A)

≤
α∑

i=1

β∑

j=1

H(Ct
i,j |Ci) (from (13) of Appendix A)

= 0 (from Property 1 of Definition 1).
��

The next lemma will be a useful tool to prove a lower bound on the size of the
information distributed to servers from clients during their visits.

Lemma 5. Let M be an (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi-threshold

metering scheme. Let S1 . . . ,Sβ be a coalition of β ≤ s corrupt servers and
let B = {1, . . . , β}. Let Ci be a client and for j = 1, . . . , β and t = 1, . . . , τ , let
Xt

j,(ht
j
−1) be a set of visits from ht

j − 1 clients other than Ci to server Sj in time
frame t. Then, for any t = 1, . . . , τ and i = 1, . . . , n, it holds that

H(Ct
i,B

|Xt
1,(ht

1−1) . . .X
t
β,(ht

β
−1)S

t
B
V[t−1]

B
) ≥ H(Pt

B
).

Proof. Let C1, . . . , Cα be a coalition of α ≤ c corrupt servers other than Ci. Let
us consider the random variables E = C1 . . .CαXt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B

V[t−1]
B

, A = Ct
1,B

. . .Ct
α,B

, F = Ct
i,B

, and G = Pt
B
. We have that

H(Ct
1,B

. . .Ct
α,B

|C1 . . .CαCt
i,B
Xt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

≤ H(Ct
1,B

. . .Ct
α,B

|C1 . . .Cα) (from (13) of Appendix A)
= 0 (from Lemma 4).

Hence, A, E, and F verify the hypothesis of Lemma 2, and one has H(G|EF) =
H(G|AEF), that is,
H(Pt

B
|C1 . . .CαCt

i,B
Xt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

= H(Pt
B
|Ct

1,B
. . .Ct

α,B
C1 . . .CαCt

i,B
Xt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

≤ H(Pt
B
|Ct

1,B
. . .Ct

α,B
Ct

i,B
Xt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

(from (13) of Appendix A)
= H(Pt

B
|Xt

1,(ht
1)

. . .Xt
β,(ht

β
)S

t
B
V[t−1]

B
)
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≤
β∑

j=1

H(Pt
j |Xt

j,(ht
j
)S

t
j
) (from (13) and (15) of Appendix A)

= 0 (from Property 2 of Definition 1).

From Property 3 of Definition 1 we have that

H(Pt
B
|C1 . . .CαXt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
) = H(Pt

B
).

Hence, E = C1 . . .CαXt
1,(ht

1−α−1) . . .X
t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
, F = Ct

i,B
, and G =

Pt
B
verify the hypothesis of Lemma 3 and one has H(F|E) = H(G)+H(F|EG),

that is

H(Ct
i,B

|C1 . . .CαXt
1,(ht

1−α−1) . . .X
t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

= H(Pt
B
) +H(Ct

i,B
|C1 . . .CαXt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
Pt

B
)

≥ H(Pt
B
) (from (7) of Appendix A). (2)

Moreover, A = Ct
1,B

. . .Ct
α,B

, E = C1 . . .CαXt
1,(ht

1−α−1) . . .X
t
β,(ht

β
−α−1)S

t
B

V[t−1]
B

, and F = Ct
i,B

verify the hypothesis of Lemma 2 and one has H(F|E) =
H(F|AE), that is
H(Ct

i,B
|C1 . . .CαXt

1,(ht
1−α−1) . . .X

t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

= H(Ct
i,B

|Ct
1,B

. . .Ct
α,B

C1 . . .CαXt
1,(ht

1−α−1) . . .X
t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

≤ H(Ct
i,B

|Ct
1,B

. . .Ct
α,B

Xt
1,(ht

1−α−1) . . .X
t
β,(ht

β
−α−1)S

t
B
V[t−1]

B
)

(from (13) of Appendix A)
= H(Ct

i,B
|Xt

1,(ht
1−1) . . .X

t
β,(ht

β
−1)S

t
B
V[t−1]

B
) (3)

Therefore, the lemma follows from inequalities (3) and (2). ��
The next corollary immediately follows from Lemma 5. It implicitly shows that
the size of the information each client has to give out when visiting a server is
lower bounded by the size of the proof the server could reconstruct.

Corollary 6. Let M be an (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi-threshold

metering scheme. For any i = 1, . . . , n, j = 1, . . . ,m, and t = 1, . . . , τ , it holds
that

H(Ct
i,j) ≥ H(Pt

j).

If the proofs for the servers are uniformly chosen in a finite field F , that is
H(Pt

j) = log |F | for any j = 1, . . . ,m and t = 1, . . . , τ , then from Corollary 6
and from (6) of Appendix A it holds that

log |Ct
i,j | ≥ log |F | (4)
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for i = 1, . . . , n, j = 1, . . . ,m, and t = 1, . . . , τ . This bound is tight, as in
Section 3 we have presented a protocol for an (n,m, τ, c, s, {hj}t=1,...,τ

j=1,...,m) dynamic
multi-threshold metering scheme in which the clients distribute exactly this
information to servers during their visits.

In order to prove a lower bound on the size of the information distributed to
clients we need the next lemma.

Lemma 7. Let M be an (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi-threshold

metering scheme. Let S1 . . . ,Sβ be a coalition of β ≤ s corrupt servers and
let B = {1, . . . , β}. Let Z ⊆ {1, . . . , n} be a set of client indices. Then, it holds
that

H(C
Z
) ≥

τ∑

t=1

H(Ct
Z,B

|V[t−1]
B

).

Proof. We have that

H(C1
Z,B

. . .Cτ
Z,B

|C
Z
) ≤

τ∑

t=1

H(Ct
Z,B

|C
Z
) (from (15) and (13) of Appendix A)

= 0 (from Lemma 4).

Therefore, applying Lemma 3 with F = C1
Z,B

. . .Cτ
Z,B

and D = C
Z
we get

H(C
Z
) = H(C1

Z,B
. . .Cτ

Z,B
) +H(C

Z
|C1

Z,B
. . .Cτ

Z,B
)

≥ H(C1
Z,B

. . .Cτ
Z,B

) (from (7) of Appendix A)

= H(C1
Z,B

) +
τ∑

t=2

H(Ct
Z,B

|C1
Z,B

. . .Ct−1
Z,B

) (from (14) of Appendix A)

≥
τ∑

t=1

H(Ct
Z,B

|V[t−1]
B

).

��
The next lemma provides a lower bound on the size of the information dis-

tributed to clients during the initialization phase in dynamic multi-threshold
metering schemes. It states that the information that must be kept secret by
clients grows linearly with the number of time frames and the size of the coali-
tion of corrupt servers.

Lemma 8. Let M be an (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi-threshold

metering scheme. Let S1 . . . ,Sβ be a coalition of β ≤ s corrupt servers and
let B = {1, . . . , β}. For any i = 1, . . . , n, it holds that

H(Ci) ≥
τ∑

t=1

H(Pt
B
).

Proof. Let Ci be a client and for j = 1, . . . , β and t = 1, . . . , τ , let Xt
j,(ht

j
−1) be

a set of visits from ht
j − 1 clients other than Ci to server Sj in time frame t. We
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have that

H(Ci) ≥
τ∑

t=1

H(Ct
i,B

|V[t−1]
B

) (from Lemma 7)

≥
τ∑

t=1

H(Ct
i,B

|Xt
1,(ht

1−1) . . .X
t
β,(ht

β
−1)S

t
B
V[t−1]

B
) (from (13) of Appendix A)

≥
τ∑

t=1

H(Pt
B
) (from Lemma 5).

��
Notice that in Definition 1 we did not say anything on the entropies of random

variables Pt
j for j ∈ {1, . . . ,m} and t ∈ {1, . . . , τ}. Our results apply to the

general case of arbitrary entropies on proofs, but for clarity, we state the next
corollary for the simpler case that H(Pt1

j1
) = H(Pt2

j2
) for all j1, j2 ∈ {1, . . . ,m}

and t1, t2 ∈ {1, . . . , τ}. We denote this common entropies by H(P).

If the proof sequences of the corrupt servers are statistically independent, then
the next corollary holds.

Corollary 9. Let M be an (n,m, τ, c, s, {hj}t=1,...,τ
j=1,...,m) dynamic multi-threshold

metering scheme and let S1, . . . ,Ss be the s corrupt servers. If the proof sequences
of the s corrupt servers are statistically independent, then it holds that

H(Ci) ≥ sτH(P),

for any i = 1, . . . , n.

If the proofs for the servers are uniformly chosen in a finite field F , that is
H(P) = log |F |, then from Corollary 9 and from (6) of Appendix A it holds that

log |Ci| ≥ sτ log |F |, (5)

for any i = 1, . . . , n. This bound is tight, as in Section 3 we have presented
a protocol for an (n,m, τ, c, s, {hj}t=1,...,τ

j=1,...,m) dynamic multi-threshold metering
schemes which distributes exactly this information to clients.

5 Efficiency of the Scheme

In this section we analyze the efficiency of the scheme presented in Section
3. It is easy to see that the scheme meets the bounds (4) and (5) of Section
4. Indeed, during the initialization phase each client Ci receives by the audit
agency the polynomial Q(i, y), which is of degree sτ − 1. Therefore, the size
of the information distributed to any client is sτ log q and the bound (4) is
tight. During a regular operation in a time frame t each client Ci gives the
value Q(i, j ◦ t) to the visited server Sj . Therefore, the size of the information
distributed to any visited server is log q and the bound (5) is tight. Hence, our
protocol is optimal both with respect to the size of the information distributed
to clients and with respect to the size of information given to servers by clients.
This is important otherwise the task of receiving and sending information would
burden the clients, that are not interested in the metering process.
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6 Conclusions and Open Problems

In this paper we have introduced dynamic multi-threshold metering schemes. In
these schemes the servers need to communicate with the audit agency at the
beginning of any time frame.

In this paper we have assumed that clients provide correct values when they
visit servers. In a practical implementation of a metering scheme, some method
of authentication should be used. However, the method of authentication used
would be, in general, not dependent on the specific metering scheme and it could
be incorporated as an additional feature, if desired.

We have proved lower bounds on the size of the information distributed to
clients and on the size of the information given from clients to servers during
their visits. An interesting problem would be to provide lower bounds on the size
of the information distributed to servers at the beginning of any time frame and
to devise dynamic multi-threshold metering schemes in which this information
is as small as possible.
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A Information Theory Background

In this Appendix we review the basic concepts of Information Theory used in
our definitions and proofs. For a complete treatment of the subject the reader
is advised to consult [2].

Given a probability distribution {PrX(x)}x∈X on a set X, we define the
entropy 1 of X, H(X), as

H(X) = −
∑

x∈X

PrX(x) logPrX(x).

The entropy satisfies the following property

0 ≤ H(X) ≤ log |X|, (6)

where H(X) = 0 if and only if there exists x0 ∈ X such that PrX(x0) = 1;
whereas, H(X) = log |X| if and only if PrX(x) = 1/|X| for all x ∈ X.

1 All logarithms in this paper are to the base 2.
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Given two setsX and Y and a joint probability distribution on their cartesian
product, the conditional entropy H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

PrY (y)Pr(x|y) logPr(x|y).

From the definition of conditional entropy it is easy to see that

H(X|Y) ≥ 0. (7)

The mutual information I(X;Y) between X and Y is defined by

I(X;Y) = H(X) − H(X|Y) (8)

and enjoys the following properties:

I(X;Y) = I(Y;X) (9)

and I(X;Y) ≥ 0, from which one gets

H(X) ≥ H(X|Y). (10)

Given three setsX,Y, Z and a joint probability distribution on their cartesian
product, the conditional mutual information I(X;Y|Z) between X and Y given
Z is

I(X;Y|Z) = H(X|Z) − H(X|ZY) (11)

and enjoys the following properties:

I(X;Y|Z) = I(Y;X|Z) (12)

and I(X;Y|Z) ≥ 0. Since the conditional mutual information is always non
negative we get

H(X|Z) ≥ H(X|ZY). (13)

Given n+ 1 sets X1, . . . , Xn, Y and a joint probability distribution on their
cartesian product, the entropy of X1 . . .Xn given Y can be expressed as

H(X1 . . .Xn|Y) = H(X1|Y) +
n∑

i=2

H(Xi|X1 . . .Xi−1Y) (14)

and enjoys the following property:

H(X1X2 . . .Xn|Y) ≤
n∑

i=1

H(Xi|Y). (15)
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B Parameters and Variables Used in the Paper

n number of clients
m number of servers
τ number of time frames
c number of corrupt clients
s number of corrupt servers
ht

j threshold for server Sj in time frame t

Ci information distributed to client Ci

Ct
i,j visit from client Ci to server Sj in time frame t

B = {1, . . . , β} indices of corrupt servers, β ≤ s

Ct
i,B visits from client Ci to servers S1, . . . ,Sβ in time frame t

Xt
j,(dj) visits from dj clients to server Sj in time frame t

St
j information distributed to server Sj at the beginning

of time frame t

St
B information distributed to servers S1, . . . ,Sβ at the beginning

of time frame t

Pt
j proof for server Sj in time frame t

Pt
B proofs for servers S1, . . . ,Sβ in time frame t

V[t]
j information collected by server Sj in time frames 1, . . . , t

V[t]
B information collected by servers S1, . . . ,Sβ

in time frames 1, . . . , t
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