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Abstract. The task of providing an optimal analysis of the state of the
atmosphere requires the development of novel computational tools that
facilitate an efficient integration of observational data into models. In
this paper we discuss some of the computational tools developed for the
assimilation of chemical data into atmospheric models. We perform a
theoretical analysis of discrete and continuous adjoints for stiff differen-
tial equation solvers. Software tools particularly tailored for direct and
adjoint sensitivity analysis of chemical systems are presented. The ad-
joint of the state-of-the-art model STEM-III is discussed, together with
ozone assimilation results for a realistic test problem.

Keywords: Data assimilation, Chemical transport models, Adjoint mod-
eling.

1 Introduction

Our ability to anticipate and manage changes in the atmospheric pollutant con-
centrations relies on an accurate representation of the chemical state of the
atmosphere. As our fundamental understanding of atmospheric chemistry has
significantly advanced, novel computational tools are needed to integrate obser-
vational data and models with the goal of providing an optimal analysis state
of the atmosphere. By optimal analysis state we mean an intimate and close
integration of modeled and measured quantities, with the two merged together
to provide the best estimate, physically consistent, of the evolving chemical state
of the atmosphere. The analysis state better defines the spatial and temporal
fields of key chemical components in relation to their sources and sinks. This
information is critical in designing cost-effective emission control strategies for
improved air quality, for the interpretation of observational data such as those
obtained during intensive field campaigns, and to the execution of air-quality
forecasting.

In this paper we present some of the computational tools developed for chem-
ical data assimilation into atmospheric transport models. The paper is organized

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 269-278, 2003.
© Springer-Verlag Berlin Heidelberg 2003



270  G.R. Carmichael et al.

as follows. In Section 2 we review the adjoint sensitivity analysis technique and
in Section 3 we discuss the derivation of the adjoint model associated with one
step stiff numerical integrators. Software tools that enable an efficient imple-
mentation are presented in Section 4. Results from a 3-dimensional assimilation
test problem are shown in Section 5, and in Section 6 we draw conclusions and
pinpoint future work.

2 Adjoint Sensitivity Analysis

Consider the adjoint sensitivity analysis of stiff nonlinear ordinary differential
equations arising in the mathematical formulation of the chemical reactions
mechanisms

dy

u = f6y . y(t) =4y, <t <tt. 1)

where y(t) € R™ represents the vector of concentrations of the chemical
species in the model. To simplify the presentation, in this paper we consider
as parameters the initial state y° of the model; it is known that this does not
restrict the generality of the formulation. We will refer to the dynamical model
(1) as a forward (direct) model; its solution y = y(¢,4°) is uniquely determined
once the vector of model parameters y° is specified.

Data assimilation applications require the sensitivities (gradient) of a scalar
response function g = g(y(t*)) with respect to the model parameters y{ ...y9J.
When the number of parameters is large, the adjoint method provides an efficient
alternative to the direct decoupled method [7] for evaluating these sensitivities.
Mathematical foundations of the adjoint sensitivity for nonlinear dynamical sys-
tems are presented by Cacuci [2, 3] and Marchuk et al. [13, 14]. Specific applica-
tions of adjoint modeling to atmospheric chemical data assimilation are described
by Menut et al. [12], Vautard et al. [16], Wang et al. [20], and Elbern et. al. [8].

In the adjoint sensitivity analysis one distinguishes between the continuous
and the discrete adjoint modeling, see Sirkes [19].

2.1 Continuous Adjoint Sensitivity

The continuous adjoint model is obtained from the forward model using the
linearization technique [2]. Define the “adjoint variable” A(t) € R" as the solution
of the adjoint problem

dX

g =TGN, M) = Vyg(y () )

The continuous method consists in applying a numerical discretization scheme
to integrate (2) backwards in time; the sensitivity values are

V09 = A1) . (3)
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2.2 Discrete Adjoint Sensitivity

The discretization of the system (1) with a selected numerical method results in
the discrete forward model, which obtains a numerical approximation g™ & y(t¥)
through a sequence of N intermediate states

y/l’+1:Fl(y1/)’ izoa"'7N_17 (4)

where F represents a one-step numerical integration formula which advances
the solution from ¢ to t*+!. To obtain the adjoint sensitivity of the numerical
solution we evaluate the adjoint variables at t!,i = N — 1,...,1,0 using the
recursive relations

AN =V,9N), X o= Fiy,ph)TAT (5)
The discrete functional sensitivities are

Vyogy™) =A". (6)

3  Stiff Numerical Methods and Their Adjoints

Here we consider one-step numerical methods for the integration of stiff ordinary
differential equations and discuss the corresponding discrete adjoints and their
consistency with the continuous adjoint equation. This analysis is relevant for
atmospheric data assimilation in the context of modeling stiff chemical processes.

3.1 Runge-Kutta Methods
Consider the s-stage Runge Kutta method [10,11]
s S
Uni1t =Un+h Y bif(z), z=yn+h) aif(z) . (7)
j=1 j=1
The Discrete Adjoint. In what follows we will use the notation
Li = hJ (tn + cjh, 2j) & J(t=y(t))|t:tn+th , j=1---s5,

The discrete adjoint of the Runge-Kutta scheme reads [9]

/\n = /\n+1 + ZGJ , 01 =1L, bi)‘n—i-l + Z ajﬁj - (8)

j=1 j=1

The (backwards) propagation of the discrete adjoints defines the discrete
adjoint transfer function

OYnt1 T
An = ( aZ: ) Mgt = Rp Any1 - 9)
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The Continuous Adjoint. Consider the adjoint equation (2) and discretize it
directly using a Runge-Kutta method (7) with coefficients @;;, b;, ¢;. We denote

T
Mi =hJ (tay(t))|t:tn+1—5ih

The method is applied backwards in time (from t"*! to ¢")

)\nzAn+1+ZBij-wj , wi:/\n+1+26iij-wj . (10)

j=1 Jj=1

This (backwards) propagation of the discretized adjoints defines the contin-
uous adjoint transfer function

An = RC /\n-l—l (11)

Comparison of the two approaches. Hager [9] noticed that, if L; = M; and
b; # 0, the discrete adjoint is equivalent to a discretization of the continuous
adjoint equation by a Runge Kutta scheme with

Qgy1—jst1—ibsy1—j

aij = ) 51 = bs+17i ) éz =1- Cs+1—i - (12)

bs+1—i

Order Conditions.

Theorem 1. Consider a Runge-Kutta method (7) consistent of order p and
its discrete adjoint (9). The relation (9) is a numerical discretization of the
continuous adjoint equation (2), which is consistent of order p.

Proof. The proof is given in [18]. Based on the order condition theory for Runge
Kutta methods [10, Section I1.2] one expresses the entries of the discrete and the
continuous transfer functions in terms of elementary differentials, and establishes
that the order conditions for the discrete adjoint are the same as for the original
Runge Kutta method.

Control Problems. Control Problems use a formulation where the function f
depends on the adjoint f(y, ) (due to its dependency of the control variable). In
[18] we analyze the consistency of the discrete adjoint (9) with (2) and generalize
the findings of Hager [9].

If all b; # 0 we can rewrite the discrete adjoint relation as (see [18])

Anp1 = An+h Y bty Li=—J"(z) [An+hd ail| . (13)
j=1

=1

where @; ; = b; — (a;,;b;)/bi.
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Consider now the forward model (1) in tandem with its adjoint (2) as a
partitioned ordinary differential equation and solve it using the partitioned RK
method given by (7) and (13).

To obtain the order of the partitioned method we follow the P-tree theory
of [10, p. 309]. We associate meagre vertices with y and fat vertices with A. For
control problems we recover the extra conditions of Hager [9]. For example, the
extra condition for order 3 corresponds to the following P-tree @ — — o — — e; this
P-tree has a vanishing differential if f does not depend on the adjoint, f = f(y).
Obtaining higher order conditions of consistency is a tedious but straightforward
process.

Singular Perturbation Analysis. In [18] we analyze the behavior of adjoints
in the stiff case by considering the singularly perturbed problem

v =fly,z), €'=h(yz2), t°<t<tr (14)

with the sub-Jacobian h, assumed nonsingular. This model allows us to distin-
guish between the derivatives of the functional g(y(t'), z(t¥')) with respect to
non-stiff and stiff variables

_ Og(y(t"), z(t")) dg(y(t"), 2(t"))

At t) =
(t) A (t) 10 92(t)
We consider e-expansions of the adjoint variables A = A° + eA! + ... and
= pu® +eu + ... The first terms of these expansions satisfy
A0 = (=f7 +hIn;TfT) A% and p®=0. (15)

Consider a Runge Kutta method with invertible coefficient matrix A and
with the stability function satisfying R(oo) = 0. In [18] it is shown that, if the
cost function depends only on the non-stiff variable y (i.e. we initialize u% = 0)
and R(co) = 0 then p? = 0 for all n. In this case the discrete adjoint is a
consistent discretization of the reduced equation (15), and the values of \ are
solved with the same accuracy as the original method, within O(e). A similar
conclusion holds for continuous Runge Kutta adjoints.

3.2 Rosenbrock Methods

Consider an autonomous Rosenbrock method in the implementation-friendly
form

s i—1
Uni1 =Un+ D mik;, Yi=yn+ Y aijk;, (16)
j=1 j=1

i—1
1 Ci i
—Jyn) | k= f )+ Sk, i=1,---,s. 17
(hv (y )) f(Y3) j§:1 p ki (17)
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The Discrete Adjoint In [18] we show that the discrete adjoint of the Rosen-
brock method (17) reads

1 T o - o G
(hw —J (yn)> Ui = MiApt1 +j§rl (a],,v] + A u]) , (18)
'Ui:JT(Y;')uia Z.ZS,S—].,"',]., (19)

An = )\n+1 + Z (H(yn) X kz)T S Ui+ Z (% (20)
i=1 i=1

Here J denotes the Jacobian and H (a 3-tensor) is the Hessian of the deriva-
tive function f. The formulation can be easily extended to non-autonomous
systems.

The Continuous Adjoint The continuous adjoint is obtained by solving (2)
with the Rosenbrock method (17).

4  Software Tools for Adjoint Sensitivity of Chemical
Kinetic Systems

In this section we present the Kinetic PreProcessor KPP software tools that
are useful in derivative computations. A detailed discussion of the basic KPP
capabilities can be found in our previous work [6]. Here we focus on the new
features introduced in the release 1.2 [17,5] that allow a quick and efficient
implementation of the code for sensitivity analysis of chemical kinetic systems.

KPP builds Fortran or C simulation code for chemical systems with chemical
concentrations changing in time according to the law of mass action kinetics.
KPP generates the following building blocks:

FunVar: the time derivative of concentrations;

JacVar, JacVar SP: Jacobian of FunVar in full or in sparse format;

KppDecomp: sparse LU decomposition for the Jacobian;

KppSolve, KppSolveTR: solve sparse system with the Jacobian matrix and

its transpose;

JacVar SP Vec, JacVarTR SP Vec: sparse Jacobian (transposed or not) times

vector;

The stoichiometric matrix STOICM;

ReactantProd: vector of reaction rates;

JacVarReactantProd: the Jacobian of the above;

dFunVar dRcoeff: derivatives of FunVar with respect to reaction coefficients

(in sparse format);

10. dJacVar dRcoeff: derivatives of JacVar with respect to reaction coefficients
times user vector;

11. HessVar: the Hessian of FunVar; this 3-tensor is represented in sparse format;

ARl

© o N®



Computational Aspects of Chemical Data Assimilation 275

12. HessVar Vec, HessVarTR Vec: Hessian (or its transpose) times user vectors;
same as the derivative of Jacobian (transposed) vector product times vector.

In [17, 5] we show how the KPP building blocks can be used to implement very
efficiently code for direct and adjoint sensitivity analysis of chemical systems.

5 Numerical Results with Adjoint STEM-III

We now present assimilation results for a problem being analyzed in support
of large field experiments conducted in East Asia (i.e. TraceP and AceAsia ex-
periments). The simulated region is East Asia, the simulated interval is 6 hours
starting at 0 GMT on March 1st, 2001. The meteorological fields are given by
a dynamic meteorological model (RAMS), and the initial fields and boundary
conditions correspond to Trace-P data campaign. The grid is 90 x 60 x 16 points
and has a horizontal resolution of 80 Km x 80Km.
The adjoint STEM-III code has the following characteristics:

— The transport is computed using an upwind third order finite difference
scheme for advection, and a second order centered scheme for diffusion, with
Crank-Nicholson time integration. The transport operator is linear and the
implementation of its adjoint straightforward;

— The gas phase chemical mechanism is SAPRC-99 [4] which considers the
gas-phase atmospheric reactions of volatile organic (VOCs) and nitrogen
oxides (NOx) in urban and regional settings. The forward time integration is
done with the Rosenbrock numerical integrator Ros-2; the continuous adjoint
model uses Ros-2 on the same sequence of steps as the forward chemical
integration. Both the forward and the adjoint models are implemented using
KPP.

— The forward and adjoint models are parallel and were run on a cluster of
Linux workstations. Parallelization is based on our library PAQMSG [15].

— The checkpoints store the concentration fields every 15 minutes, i.e. for every
operator split step. The checkpoints are distributed as seen in Figure 2,
which means that each node stores local information on the local disk. This
increases the storage capabilities and decreases the input/output overhead
when the parallel computation runs on a cluster of workstations.

— On 16 nodes (Pentium, 2GHz, 1GB RAM) the cpu time for a forward run
is about 2 minutes per hour of simulation; and the cpu time for a forward-
backward run is about 4.5 minutes per hour of simulation.

The data assimilation procedure is set using the twin experiments method
as follows:

Reference run: we start a model run at ¢* = 0:00GMT with the standard
concentrations of all variable chemical species.

Initial guess run: the experiment is repeated with ozone initial concentrations
increased by 20%.
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Observations and assimilation window: We consider a 6 hours assimilation
window. The observations for O3 concentrations on all grid points are provided
only at the end of the assimilation window t° + 6h.

Parameters: the control parameters are the ozone concentrations at t° .

Cost functional: Information to the assimilation process is provided only by
the ”observations” at the final time. To achieve a better scaling and to eliminate
the positivity constraint the logarithmic form is used

j:; 3 [O0s(tF) = n O (7)) . (21)

gridpoints

Optimization algorithm: Quasi-Newton limited memory L-BFGS [1]. The op-
timization proceeds until the cost functional is reduced to 0.001 of its initial
value.

The results of the data assimilation are presented in Figure 1. We notice
a sharp decrease in the cost function value during the first optimization itera-
tions, followed by a slower decrease rate. The ozone concentration at gridpoint
(40,30,1) is recovered within 6 accurate digits. The root mean square difference
between the assimilated and the reference fields decreases to about le-3. Larger
assimilation errors are noted near the top and bottom domain boundaries, which
requires further algorithmic developments.
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Fig. 1. Data assimilation results for ozone, for a 6h run.

6 Conclusions and Future Work

In this paper we presented some of the computational tools developed for chem-
ical data assimilation into atmospheric transport models. The focus is on devel-
oping efficient adjoints for the stiff ordinary differential equations arising in the
simulation of chemistry.

We recall the analysis of discrete Runge Kutta adjoints performed by Hager
[9] and develop the discrete adjoints for Rosenbrock methods. We establish that
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Fig. 2. The parallel adjoint STEM implements a distributed checkpointing scheme.

Runge Kutta discrete adjoints are consistent with the continuous adjoint equa-
tion with the same order as the underlying method. For control problems we
propose an order analysis in the framework of partitioned Runge Kutta meth-
ods; this analysis enables an extension of the original analysis [9]. A singular
perturbation analysis enables us to establish that L-stability is beneficial not
only for the integration of the stiff forward model, but also for the backwards
integration with both the discrete and the continuous adjoints.

The Kinetic PreProcessor KPP developed by the authors is a symbolic engine
that translates a given chemical mechanism into Fortran or C kinetic simulation
code. A comprehensive set of software tools for direct and adjoint sensitivity
analysis were developed and implemented in the new release of the Kinetic Pre-
Processor (KPP-1.2). They include code generation for the Hessian and several
other derivatives, as well as dedicated sparse linear algebra routines.

An adjoint of the state-of-the-science chemical transport model STEM-III
was developed; it uses an efficient distributed checkpointing scheme; the chemical
subsystem is generated with KPP. Results are shown for a 6 hours test case based
on the TraceP scenario, where the perturbed initial concentrations of ozone are
recovered from the known ozone concentrations at the end of the simulation
interval.

Future work will focus on continuing the theoretical analysis of discrete ad-
joints for stiff solvers; on using the developed computational infrastructure to run
more complex tests and to assimilate real measurements data; and on continuing
to improve the computational infrastructure for data assimilation.
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