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Abstract. Cryptographic and physical leakage attacks on devices and
systems which implement cryptosystems, is an area of much recent activ-
ities. One type of attacks are what is called kleptographic attacks which
are mounted against black-box cryptosystems. They are issued by and
serve solely the designer/manufacturer giving it unique advantage. Klep-
tographic attacks are capable of leaking the private keys of users securely
and subliminally to the manufacturer of the black-box system (based on
the availability of public values, such as keys (produced when the sys-
tem is initiated) or signature/ciphertext values (produced by systems in
operation). These attacks provide a very high level of security against
reverse-engineering since even if the black-box is successfully reverse-
engineered, no information can be obtained that compromises the secrets
of the users (thus, the unique advantage of the attacker is retained).
Numerous open questions remain in the area. One issue is that the only
key generation procedure with known attack is the RSA/ factoring based
PKC, while for Discrete Logarithm based keys attacks are not known.
Similarly open, is the existence of bandwidth-optimal leakage attacks,
namely attacks on a “single signature” in Discrete Logarithm based sig-
natures (both in the full group and prime order sub-group cases).

In this paper, we solve the above open questions. We develop new at-
tack techniques, which unlike earlier attacks, require only one value in
order to leak the secret. This gives an attack on modular exponentiation
keys. We then show how to implement an attack on ElGamal signature
which leaks the private key in each signature, and which requires only
160 bits of smoothness in p — 1, where p is the common ElGamal prime.
The attack utilizes the Newton channel. This channel, however, does
not extend to DSA, since DSA operates in a prime order subgroup of
Zp. In the second part of this work, we nevertheless show a subliminal
channel attack on DSA that assumes the existence of a small amount
of non-volatile memory in the device. This gives a kleptographic attack
against DSA that leaks the private key in each signature as well. Non-
volatility is only needed to assure the polynomial indistinguishability of
the outputs of the devices under attack from that of a normal devices’
outputs. We investigate our non-volatility assumption against hardware
feasibility (in quite a popular EEPROM devices, used in manufacturing
of smart-cards).
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tamper-proof hardware designs, trust, public scrutiny, non-volatile mem-
ory, hardware technologies: EEPROM, ferroelectric.

1 Introduction

This paper is concerned with attacks by the designer/manufacturer of black-box
cryptographic systems. The goal is thus to expose non-trivial leakage attacks
which are possible in black-box cipher designs (where the implementation de-
sign is not scrutinized, as in tamper-proof hardware devices) but which are not
necessarily possible in public designs. Indeed, black box usage of cryptography
has been encouraged by governments. The US government, for example, has pro-
posed the use of Capstone, a general purpose crypto-processor which grew out
of the Clipper Initiative. Furthermore, since the mid 80’s the NSA’s Commercial
COMSEC Endorsement Program has been active in trying to base cryptography
on government designed tamper-proof devices (see |Sch], page 598). In addition,
DSA is often included in smart card tokens, which constitutes a black-box en-
vironment. DSA was proposed as the Digital Signature Standard in the US
[DSS91]. The motivation of this paper is to investigate the possibility of (till
now unknown) attacks. These attack involve the design of black-box discrete log
based systems with sophisticated trapdoors that are bandwidth-optimal (i.e.,
leak based on availability of a single value), are hard to detect and immune to
reverse-engineering, and at the same time are indistinguishable from the attack-
free systems.

Note that it is easy to mount certain attacks on black-box devices, e.g., by
fixing (or otherwise specifying) the randomness they use. However, when dealing
with black box environments, the risks posed by the real possibility of successful
reverse-engineering may out-weigh the benefits of this attack when viewed from
the perspective of the malicious designer (being a malicious government, say).
For example, if the “random” DSA exponent k is chosen pseudorandomly based
on a secret seed rather than being chosen truly at random, then the reverse-
engineer will gain as much knowledge as the designer if the seed is learned
via reverse-engineering. Furthermore, even if the seed is chosen randomly for
each chip, the company responsible for the programming of the chip learns the
seeds. On the other hand for example, the attacks we present in this paper
are carried out in such a way that even the programmer of the chip gains no
knowledge that will help determine the private keys of users. The programmer of
the crypto-chip will only learn that a suspicious looking variant of DSA is being
implemented. A related, but different, attack on signature schemes which uses
weak pseudorandomness has been presented in [BGM97| (in contrast, we use
strong randomness/ pseudorandomness in all our attacks, but in combination
with a public key and in a different operational setting).

There has been much interest in analyzing cryptosystems with respect to
their subliminal leakage. Gus Simmons pioneered much of the work on sublimi-
nal channels where the leakage is universal (leaked to everyone) [Si85lSi93/Si94].
Recently, such leakages were suggested not only for leaking information sub-
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liminally, but securely (privately) even if the device is later reverse-engineered
(increasing the awareness of the need of trust in the manufacturer of black-box
devices that looks like they comply with the system’s specifications). The ba-
sic notions underlying these attacks as well as tools that accomplish them were
developed in [YY96/YY97alYY97h]. Specifically, they introduced the notion of
a SETUP attack where a secretly embedded trapdoor (public key) is used to
securely leak the secret information out of the cryptosystem. Their attacks are
geared specifically towards public key systems and exploit randomness and sub-
liminal channels in key generation, message encryption, and signing. The number
of leakages needed for recovery of the secret by the attacker was called the setup
“bandwidth.” For key generation stage which produces the key and nothing
more, an optimal-bandwidth of one value is a must. All the earlier attacks on
discrete log based systems like the ElGamal cryptosystem, the ElGamal Digital
Signature algorithm and the DSA (Digital Signature Algorithm) leak the private
signing key (say) over the course of two (or more) signatures and no bandwidth
optimal attack was known. Therefore, key generation attacks on discrete log.
systems were not known either (in contrast with RSA /factoring).

The entire issue of optimal bandwidth attacks was open in discrete log based
system and we solve it in this work. We first utilize the elegant Newton subliminal
channel to mount optimal-bandwidth attacks on discrete logarithm keys and El-
Gamal signatures. We then apply a new subliminal channel attack on DSA (the
first technique does not apply to it). Our second attack requires a limited amount
of non-volatile memory in the computing environment. We also investigate the
feasibility and attack life time in the required environment in realistic hardware
devices employing EEPROM and the emerging ferroelectric technologies.

Organization: Next we recall and present the basic definitions of the notions
and systems we use. Section [3 presents the attack based on the Newton channel
discrete log cryptosystems. Sections H] and [B] then give and analyze the attack
on the DSA scheme. The conclusion is in Section [6] and the Appendix presents
detailed hardware background explaining available implementations of some of
our conditions in existing hardware technologies.

2 Definitions

Our attacks utilize the notion of what is called a SETUP attack (Secretly Em-
bedded Trapdoor with Universal Protection). The following is the definition of
a (regular) setup [YY97a]:

Definition 1. Assume that C is a black-box cryptosystem with a publicly known
specification. A SETUP mechanism is an algorithmic modification made to C to
get C' such that:

1. The input of C' agrees with the public specifications of the input of C.
2. C" computes efficiently using the attacker’s public encryption function E
(and possibly other functions as well), contained within C’.
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3. The attacker’s private decryption function D is not contained within C' and
is known only by the attacker.

4. The output of C' agrees with the public specifications of the output of C.
At the same time, it contains published bits (of the user’s secret key) which
are easily derivable by the attacker (the output can be generated during key-
generation or during system operation like message sending).

5. Furthermore, the output of C and C' are polynomially indistinguishable to
everyone except the attacker.

6. After the discovery of the specifics of the setup algorithm and after discover-
ing its presence in the implementation (e.g., reverse-engineering of hardware
tamper-proof device), users (except the attacker) cannot determine past (or
future) keys.

Observe that the above definition does not quantify the number of invocations
of €' for which the SETUP attack is carried out. Hence, it is implicitly assumed
that for all invocations of C’, the output contains the published bits of the user’s
secret key. In this work we change this quantification from being unbounded to
being polynomially bounded in some security parameter k (typically, the same
security parameter as in the underlying cryptosystem). This small change of
explicit bound is merely motivated by the reality of hardware devices, with finite
ability to keep/ change a certain state (as a property of the underlying technology
— we will see an example later). Informally the attack works as follows, the
attacker chooses some polynomial poly’ (in k) and implements C’. For the first
poly’ invocations of C’, the SETUP attack will be in effect. The user then chooses
his or her own polynomial poly, and runs C’ that many times. Only if poly >
poly’ are there invocations of C’ for which the SETUP attack is not carried out
(i-e., C" behaves honestly). In this case the last poly — poly’ invocations of C” are
identical to C. In our attack on DSA, we show that if poly’ is large enough (which
is achievable in practice), then C’ will have to be invoked polynomially many
times to reach the point at which it behaves identically to C' (in the appendix
we show how this can easily be 14 years under a reasonable pace assumption, by
which time the technology is likely to become obsolete).

Below we give a definition of a SETUP attack to reflect this idea of bound-
edness.

Definition 2. Assume that C is a black-box cryptosystem with a publicly known
specification. A (poly)-bounded SETUP mechanism is an algorithmic modifica-
tion made to C to get C' such that it has the siz properties of SETUP and in
addition it has the following property:

7. The SETUP attack is carried out a polynomial number of times in k (where k
is the security parameter of the underlying cryptosystem), after which C' behaves
identically to C'.

Signature Schemes:

The following is a review of the ElGamal digital signature algorithm [EIG85].
Let p be a large prime, and let ¢ € Z, be an element with order p — 1. The
signing private key is * €r Z,_1, and the public signature verification key is
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y = g* mod p. Let H be a one-way hash function. To sign an arbitrary message
m, the following algorithm is performed:

1. k €eg Zp,1

2. a=g* modp

3. b=k"Y(H(m) — xa) mod p — 1
4. output the signature (a, b)

To verify (a,b) the verifier makes sure that y®a® = g™ mod p.

We will review the Digital Signature Algorithm (DSA). Let p be a large prime
number such that ¢ | p — 1 where ¢ concretely is chosen to be a 160 bit prime
number and p is standardized to some concrete range (512-2048 bits length) as
well. Let g be an element in Z,, with order ¢g. The signing private key is « where
T €r Zg, and the public verification key is y = g” mod p. Let SHA denote the
Secure Hash Algorithm. To sign the message m, we compute:

k €r Zq

. a = (g¥ mod p) mod q

. b=k"Y(SHA(m) + xa) mod q
. output the signature (a,b)

A R

To verify (a, b) the verifier makes sure that a = (g57A(m)/by2/% mod p) mod q.

Finally, we will now introduce the underlying cryptographic assumption which
is utilized in both attacks in this paper. This assumption is based on the Diffie-
Hellman (DH) assumption [DH76|, but adds additional hiding of the secret. Here
g and the prime p are public, and v,v" which divide p — 1 are also public. We
will refer to it as the Diffie-Hellman Plus Sum (DH-PS) assumption.

Diffie-Hellman Plus Sum Assumption: Let A = ¢ mod p, B = ¢* mod p,
and ¢ = a+bmod v, where v | p—1. It is intractable to compute (g** mod p) mod v’
where v' | p— 1, and |[v'| > M (concretely M is 160), given A, B, and c.

Here |v'| denotes the bit length of v'. Clearly, if we can solve DH, then we can
solve the DH-PS assumption and the DH-PS is randomly self reducible (namely,
we can randomize the input instance and if the randomized new instance is
solvable, we can translate the result to the result of the original input instance).

3 SETUP Attacks Based on the Newton Channel

We start by showing optimal attacks on cryptosystems that operate in all of
Z, (ElGamal type), rather than in a prime order subgroup. Our SETUP attack
utilizes the the Newton Channel and leaks the private key in each and every
signature. The Newton Channel was given in [AVPN].
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3.1 Review of the Newton Channel

Let p = gm + 1 be prime, and let ¢ be prime. Furthermore, assume that m
is smooth, and that g generates Z,. For security it is assumed that computing
discrete logs in the group generated by g™ is hard. Let ¢ be the covert message
that is to be displayed. To display ¢ in an exponentiation mod p using base
g, a value k' mod (p — 1)/m is chosen randomly, and we solve for k in k =
c+ k'm mod p — 1. Hence,

k =c modm

The user then publishes 7 = ¢g* mod p, as in any discrete log based cryptosys-
tem (such as the ElGamal digital signature scheme). The recipient, who can be
anyone who decides to recover ¢, can recover ¢ as follows. The recipient solves
for z in the equation,

(99)* =r? mod p

This can be done since the order of the subgroup of Z, generated by g? is
smooth. Let B be the largest prime in m (i.e., its smoothness). Using Pohlig-
Hellman [Poh78] and Polard’s Rho [Pol78], this requires time O(B'/2). Tt then
follows that,

c=z modm

The clever Newton Channel was also modified to become narrowcast as op-
posed to the broadcast channel given above. This is done by replacing g with two
different primes ¢; and ¢o, and having the sender and receiver a priori secretly
share the signing private key mod ¢g» and having the sender keep the signing
key mod ¢; private. This however, requires a more specialized form for the fac-
torization of p — 1, and may result in reducing the security of the underlying
system. In the SETUP we describe below, no such a priori secret exchange is
required, and this specialized form for p — 1 is not needed. Thus, the SETUP
attack can be utilized securely and subliminally under the observance of a war-
den, as in the case of Simmons original Prisoner’s Problem, without requiring
that the prisoners exchange a secret before going to prison.

3.2 Setting up a Discrete Log Based Key Generation

It is now not hard to add a setup attack to the Newton Channel to leak the
private exponent x in y = ¢* mod p where g generates Z, and p = mm/q +
1. Here m is smooth and ¢ is a prime which is greater than or equal to 160
bits in length. m’ can be any value. The attack is mounted by computing ¢ =
E(seed), where E is a public key encryption algorithm. E can be an elliptic curve
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cryptosystem which outputs 310 bit ciphertexts. Hence, m must be 310 bits in
this case. Provided ¢ < m, the value for seed is used in the attack. Rather than
choosing k' randomly as in the Newton Channel, it can be chosen by applying
a pseudorandom generator to the value seed. The range of the pseudorandom
generator is Z,4. k is computed in the same way as in the Newton Channel.
Therefore, anyone in possession of the private key corresponding to F can recover
the value for seed and reconstruct k¥’ and hence k.

Theorem 1 Assuming there is a smooth number within the factorization of p—1
which is large enough to be greater than the size of public key ciphertexts, there
exists a SETUP attack against any public exponentiation modulo p under the
Diffie-Hellman plus Sum assumption.

3.3 Adding a SETUP Mechanism on Top of the Newton Channel

Let ¢ be prime, and let p = mm/q + 1. We insist that m is smooth and even
and 160 bits in length. We do not insist on any particular form for m’. We
will make the simplifying assumption that ¢ is 160 bits, though many different
configurations on the sizes of m and ¢ are possible. We only require that ¢ < m.
Let 2’ mod q be the attacker’s private key, and let 3/ = gmmlml mod p be the
attackers corresponding public key (which is not published). Let € Z,_1 be
the unwary user’s private key, and let y = ¢ mod p be the corresponding public
key. The attack aims to securely and subliminally leak « in the sense of a SETUP
to the attacker via r = g¥ mod p (as in the Newton Channel), which is output
by the device.

Assume that 3’ has been placed in the discrete log cryptosystem device that
is to be SETUP. The attack is mounted as follows. The device chooses R € Z,.
The device then solves for ¢ in,

c= R+ x mod q

Now, unlike in the Newton Channel, k' is not chosen randomly. Instead, the
device computes k' pseudorandomly based on y’ and c. To be more specific, the
device solves for k' as follows.

k' = H(y'® mod p)

where H is a public pseudorandom function [GGMS6] which uses a secret
seed that only the attacker and the device knows. We assume that the range of
H is Z,,4. The device then computes k = c+k'm mod p—1. The device outputs
r = g* mod p as in the Newton Channel. This value can, for instance be the first
value in the pair of values which constitute and ElGamal digital signature.

The attacker can recover = from r as follows. The attacker recovers c¢ in
the same way as everyone can using the Newton Channel. The attacker then
computes t = g°y~! mod p. Note that t = g’ mod p. The attacker then solves
for k' as follows.
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K = H(@t™™' " mod p)

k is then recovered by computing k = ¢+ k'm mod p — 1. In most (if not all)
digital signature algorithms, such as ElGamal, knowledge of k implies knowledge
of z.

3.4 Security

Note that the overall security of x is inherently reduced for the users of the
system overall, due to the existing smoothness in p — 1. If we suppose in the
worst case that (p — 1)/q is entirely smooth, then the users really only posses
private keys of the form = mod ¢. So, it is this private key that we will show is
intractable to recover without z’. Hence, to show security, we must show that
it is intractable to recover x mod q without z’. To show that it is a SETUP,
we must show that the chosen r is polynomially indistinguishable from normally
constructed (chosen) values r given & mod ¢ and not given the secret seed to H.

Claim 1 [t is intractable to recover x mod q without ' given r, y', x mod m’,
and the secret seed to H, assuming that the Diffie-Hellman plus Sum assumption
holds.

Proof. Since p — 1 has the requisite amount of smoothness, ¢ can be computed
efficiently from r by anyone. Thus, we know k iff we know k', because k is the
Chinese Remainder of ¢ and k’. Since k is the “randomly chosen” secret exponent
used in the signature which is output (i.e., the secret exponent used to construct
the ElGamal signature pair), k is known iff z is known. It follows that &’ is known
iff z mod q is known, since we are given x mod m’. From ¢ we then compute
t = g = ¢y~ mod p. Now, in the absence of the application of H in the attack,
we know k' iff we can solve the DH-PS problem with v = ¢ and v' = (p — 1) /q,
since we know t = ¢f* mod p, y' = gx, mod p, and ¢ = R+x mod gq. Thus, adding
the use of H in no way helps in recovering z without z’. Hence, for secrecy of
x mod q, knowledge of the secret seed to H is thus superfluous. QED.

If z mod m’ is not given away, then the security of the system still holds.
It follows that even if the device is reverse-engineered at a later time and 3’
is found, this does not help the reverse-engineer figure out x. Hence, property
(6) in the definition of a SETUP holds. We note that we had originally tried
to reduce the security of this system to that of DSA itself. The idea was to
make ¢ the DSA “signature equation”, which has the same effect as above: it
hides x mod ¢ using a randomly chosen value mod g. The problem is that all
signature equations include a variable which is a commitment of the randomly
chosen signature exponent, which in the case of our attack, hasn’t even been
computed yet (we must Chinese Remainder k¥’ with ¢ to get it).

Claim 2 the random variables: k in the attack and k as computed normally are
polynomially indistinguishable given x and ', but not given the secret seed to H.
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Proof. Everyone knows ¢ for each signature. Since ¢ and = are known, R can be
found from the equation ¢ = R + x mod g. Once R is obtained, the quantity
(y'* mod p) mod (p — 1)/q can be computed. Recall that in a given signature
which has been set up, this is the preimage under H of k’. However, without
knowing the secret seed to the pseudorandom function H, it follows from the
definition of a pseudorandom function that the output of H (in this case k') is
indistinguishable from randomness (by standard arguments a distinguisher for
the function can be constructed from a distinguisher for the random variables).
Since ¢ is truly random, and since k' is pseudorandom, when they are Chinese
Remaindered, the resulting k is pseudorandom and the same argument follows.
QED.

If the exponents used to compute the signatures in each case are indistin-
guishable (as random variables), then the presence of attacks in the device are
also indistinguishable since from the perspective of a user who knows his own
private key, k is the only information conveyed to the user by the device (it can
be recovered using the user’s own x). It follows that property (5) of a being a
SETUP is satisfied. Note that if each device is given a unique secret seed, then
reverse engineering one device does not help in determining whether another
device is contaminated (in other words: under attack) or not. Also, whether or
not this seed is known, forward security of x holds due to the use of DH-PS in
the attack. Properties 1 through 4 of a SETUP hold for this system. So, we have
therefore shown the following.

Theorem 2 Assuming at least M (M = 160) bits of smoothness in p— 1, there
exists a SETUP attack against ElGamal (and its variants) that leaks the private
key in each digital signature, assuming the security of Diffie-Hellman plus Sum.

4 Attack on Subgroup Based Signature Schemes

It was observed in [AVPN] that DSA does not support the Newton Channel. This
is because all of the users of the system use a value g which generates a prime
order subgroup of Z, whereas the existence of the Newton Channel requires g
whose order has some smoothness. The question therefore remains whether or
not an optimal bandwidth SETUP attack exists against DSA and its variants
(e.g., Nyberg Rueppel [NR94]). In this section we answer this question in the
affirmative.

The attack below relies on two specific realistic conditions. First, we assume
that each specific cryptographic black-box contains within it a unique private
random identifier string. This requirement can be practically met using a keyed
hash function during the programming of the crypto device (knowing the key for
the hash function does not compromise the DSA private keys of users, however).
Note that each Capstone chip has a unique device identifie ).

The second requirement is that each black-box device has poly-sized non-
volatile memory which can be read and written to. This can be realized using

! which may differ from another identifier stored in Capstone’s E2PROM
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Electrically Erasable Programmable Read-Only Memory (E2PROM), for in-

stance.

4.1 System Setup

To mount the attack, the designer generates a private key ' €r Z, and places
the corresponding public key 3’ = ¢* mod p in the device. A portion of the
non-volatile memory in the device will be used to store a counter cnt which is
initially zero. This counter will be incremented by one for each signature that is
output by the device. Let M AX denote the maximum value of ¢nt. Also, let I D
denote the unique (cryptographically secure) identifier for the black-box. Hence,
each device initially contains the triple (y’, cnt, ID) where I.D varies from device
to device.

4.2 Signing and Verifying

To sign the message m, the device does not choose the DSA exponent k ran-
domly, but rather chooses it pseudorandomly. Here x,y, g,p,q are as in DSA.
The following is the SETUP version of the DSA signing algorithm:

1. read cnt from non-volatile memory
2. if ent > MAX then
3. ker Z,

5 B = H(ID,cnt)

6. k' = B —x mod q

7. k= (y’k/ mod p) mod q

8. write cnt = cnt + 1 to non-volatile memory
9. a = (¢* mod p) mod q

10. b = k~1(SHA(m) + xa) mod q

11. output (a,b) as the signature on m

Here H is a publicly specified pseudorandom function, and ID is used as the
secret seed to it. We assume that the range of H is Z,. The signature is verified
as in normal DSA. The intuition behind this attack is that B, which would
typically be displayed through a subliminal channel, is in fact not displayed at
all since it is already known to the malicious designer.

4.3 Recovering the Signing Private Key

Given z’ and the list of device IDs, the signing private key = can be recovered
from (y,m,a,b) as follows:

1. for each device identifier ID do:
2. for i=0to MAX do:
3. B =H(ID,i)



Bandwidth-Optimal Kleptographic Attacks 245

1 k= ((¢Py™")" mod p) mod q

5. if a = (g mod p) mod q (i.e. the DSA signature check passes) then
6. output = (bk — SHA(m))a~! mod ¢ and halt with TRUE

7. halt with FALSE

The private signing key is found iff the device halts with TRUE. Note that
if M AX is really large, then an incremental search algorithm may be preferred
over the above, depending upon the number of devices in existence and on how
much is known about the particular device that was used to compute (a,b)
(e.g., starting from an expected number of signatures at this point of time and
searching up and down incrementally). Note that even the programmer of the
signing algorithm cannot recover x, since the programmer does not know z’,
only the person who generates 3’ knows ' (which is presumably the person who
gave the programmer the code to burn into the chip). Note that the user can
re-key y anytime without affecting the attack. See the appendix for details on
how the counter can be implemented using existing non-volatile semiconductor
memory technologies.

5 Security

Claim 3 It is intractable to recover x without ' given vy, i, and the seed ID to
H, assuming that the Diffie-Hellman plus Sum assumption holds.

Proof. Given ID and i, the value for B is known. Thus, the value gk/ mod p is
known, since g%y~ = gkl mod p. Now, due to the fact that k is used as the ran-
domly chosen DSA signature exponent for the signature being constructed, k is
known iff x is known (the signature which is output by the device is employed).
It remains to show that &k (and therefore x) can be found iff the Diffie-Hellman
plus Sum assumption does not hold. Since B is pseudorandom, & is pseudoran-
dom, and hence finding & is exactly the Diffie-Hellman plus Sum problem with
v =12 =q. QED.

Thus, even the reverse-engineer who obtains ID, 3/, and the secret seed to H
cannot determine past or future private keys z. Hence, property (6) of a SETUP
holds for this attack.

Claim 4 The values for k which are used in the above attack are polynomially
indistinguishable from the values k chosen in normal DSA signatures, given y',
xz, and i, but not given the secret seed ID to H.

Proof. Since H is a privately seeded pseudorandom function using seed I D, for
the first MAX invocations of the device B is chosen pseudorandomly and is in-
distinguishable from random choices. Since B is pseudorandom, it follows that &’
is pseudorandom mod g. This means that k results from pseudorandomly chosen
values from Z,, which are then reduced mod ¢, whereas the original k is generated
similarly but with random elements in Z,,. If the spaces are polynomial-time dis-
tinguishable, by standard arguments one can contradict the pseudorandomness



246 A. Young and M. Yung

of H. It follows that the values for £ in the first MAX invocations are indistin-
guishable from random choices. For the remaining invocations, k is chosen as in
DSA itself. QED.

Therefore, the device’s behavior is indistinguishable from an uncontaminated
device, even for the user who knows z, and hence property (5) of a SETUP is
therefore met. By placing unique ID’s in each device, the reverse-engineer cannot
distinguish contaminated devices from uncontaminated ones without individu-
ally reverse-engineering them all. Properties 1-4, and 7 hold for this attack. We
have therefore shown the following.

Theorem 3 There exists a poly-bounded SETUP attack against DSA which
leaks the private key of the user in each signature based on the Diffie-Hellman
plus Sum assumption in a prime order subgroup.

We note that In the attack above, it would be possible to eliminate the
need for writable non-volatile memory if a reliable source of time is available.
If the time counter is never reset, and it has sufficient resolution that the same
time value is never used for more than one signature, and the attacker can
guess the time of signing well enough that it is practical to try all possibilities,
then the counter can be eliminated and time can be used as the input to the
pseudorandom function. Whether a counter or a timer is more practical depends
on the application and the setting.

6 Conclusion

We showed how to use the Newton Channel to implement an optimal SETUP at-
tack against ElGamal Signatures assuming 160 bits of smoothness in p—1, based
on the Diffie-Hellman plus Sum problem. The notion of a poly-bounded SETUP
attack was introduced and an optimal SETUP attack on DSA was presented
which securely and subliminally leaks the DSA private key to the implementor
in each signature. Hence, in the attack on DSA it was shown that explicit sub-
liminal channels are not needed at all to effectively leak private DSA keys at an
optimal bandwidth. These results imply that a single signature can leak a secret
securely if a manufacturer attacks a black-box implementation. A cryptographic
assumption of perhaps independent interest is utilized.
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A Appendix: Implementing the Counter

We will now describe ways of implementing the non-volatile counter using exist-
ing technologies, taking care to observe the precise physical operating limitations
of these technologies. In particular we describe how to implement the counter
on the ST19SF64 chip from ST Microelectronics. We conclude with a descrip-
tion of how the counter can be greatly simplified using emerging (ferroelectric)
technologies.
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A.1 Background Information on EEPROMs

The predecessor of Electrically Erasable Programmable Read Only Memories
(EEPROM) memories was Erasable PROM memories (EPROM) which require
the use of UV light for erasure. Though EPROM memories can be rewritten a
number of times, a quartz crystal window is needed in the chip to permit erasure,
and erasing typically requires 20 minutes or so. The first available EEPROM
chips also allowed multiple writes, but unlike EPROMSs, the memory could be
erased electrically using around 20 volts or so. This however required a separate
pin on the chip for the high programming voltage, whereas only 5 volts (the
standard operating voltage) was needed for the read operation. Eventually the
technology advanced to where only 5 volts were needed for reads and writes.
These chips contain voltage amplifiers internally to perform the erase operation.

It is a thesis of this paper that this 5 volt (and lower) EEPROM technol-
ogy marked a major turning point in the level of trust that must be placed in
the manufacturers of cryptographic processors, whether the processors contain
non-volatile memory or not. The reason for this is that for the first time state-
less tamper-proof microprocessors became indistinguishable from tamper-proof
microprocessors containing EEPROM, since no crystal window is needed, and
since the operating voltages are the same.

EEPROMs have two major operating characteristics: durability and data
retention. Durability refers to the number of times in which a given byte can be
erased and written to, and data retention refers to how long a byte can reliably
store its value after it is written to. Modern EEPROM memories typically have
an endurance of 10° and a data retention value of 10 years or so. Note that
with these characteristics, in theory a byte can be used for more than 10 years,
provided that it is not written to more than 100,000 times, and provided that
no more than 10 years passes between each write (in many cases the retention
has to do with the discharging of a capacitive layer in the memory cell). These
operating characteristics imply that it is not possible to simply utilize 4 bytes of
EEPROM as a 64 bit counter, since the lower order byte is not durable enough
to handle that many writes.

The reasons for these limitations have to do with the device physics of modern
EEPROMs. We will now briefly summarize why these limitations exist. Modern
EEPROMs are based on a stored charge concept in which the presence or absence
of a stored charge in a MOSFET transistor (typically in a “floating” gate which
is isolated by SiO2) affects the flow of electrons from the drain to the source
leads. Another technology (SNOS) utilizes charge trapping material instead of
a floating gate. The presence or absence of (a significant amount of current)
between these leads indicates a binary 0 or 1, and this current is controlled by
the electric field given off the stored charge if charge is present. A number of
methods are used to inject and remove the stored electrons in the transistor, the
most prominent being quantum mechanical tunneling, and hot electron injection.

The factors affecting endurance are tunnel oxide breakdown, gate oxide break-
down, and trap-up. The first two cause short circuits in the device, thus rendering
it unable to store charge. Trap-up refers to electrons being trapped in the tun-
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neling insulator, thus weakening the injection fields and therefore not allowing
enough charge to get to the stored charge area during programming. For float-
ing gate devices, there is no intrinsic retention problem (and is limited only by
device defects). Clearly, full testing is not possible since the tests would be con-
cluded long after the competitive lifetime of the chip. High temperature tests are
thus performed, and most retention failures are actually endurance failures. The
retention characteristics are different for charge trapping devices, though these
are typically only used in military applications which require reliable operation
in radioactive environments (e.g., to insure reliable missile guidance systems in
fallout).

A.2 An Attack Using the ST19SF64

Below are the specifications for the ST19SF64 CMOS Smartcard MCU chip by
ST Microelectronics, with 64k EEPROM, 32k user ROM, and 960 bytes RAM.

Byte write time = 1 milisecond

Data Retention = 10 years

Automatic write operation with internal control timer
Voo = 5 Volts (or 3 volts)

Endurance = 100,000 erase/write cycles

Note that the read operation requires on the order of nanoseconds.

Typically, cryptoprocessors utilize a portion of E2PROM for the cryptocode,
so we will assume in our attack that 32k of E2PROM is reserved for crypto-
graphic operations and that 32k are available to implement the counter cnt.
We assume that the secret cryptographic device identifier ID, and the attacker’s
public key 3’ are stored in the 32k of E2PROM along with the cryptographic
code.

A.3 Implementing the Non-volatile Counter

If we were to utilize, say 4 bytes of non-volatile memory for a counter cnt that
is incremented from zero we will not get very far since only 100,000 writes can
be made reliably. We thus need to design a counter that can exceed 100,000
utilizing the 32k available bytes. First observe that the counter value need not
be incremented by one, since it is simply used as an argument to a random
oracle H. Hence, all that is needed is a polynomial number of unique values
for ent. Using this observation, a counter permitting 23° different values can be
synthesized as follows.

The counter cnt is the entire 32k bytes. We divide the 32k byte memory
space into 16k words, each of which is 2 bytes. Initially, every word is zero.
To increment the counter, we read in the words from memory until the least
significant word which is not all binary 1’s is found (if any). We then add 1 to
this value if found. Note that each word can only be incremented at most 2'6 —1
times. It follows that each byte is only written to at most 216 — 1 times (which is



250 A. Young and M. Yung

less than 100,000 as required). The counter can no longer be incremented when
all of the bits in the counter are 1. It follows that there are 24 x 216 = 230
different possible values for ent. This implementation of c¢nt requires that all 32k
bytes of e¢nt be read in the computation of B using the random oracle H. Since
reads require on the order of nanoseconds, this is still very fast in comparison
to the time required to compute the signature.

A.4 Operating Statistics of the Attack

We were unable to find benchmarks for the time required to compute a DSA
signature on a dedicated crypto-processor. So, we will cite the time required
to compute a DSA signature in software on a SPARC II using CryptoLib. The
time required in this case is 430 milliseconds where |p| = 768 bits [LMS]. Note
that Cryptolib uses some of the best algorithms to do modular exponentiation,
including Montgomery Reduction, Vector Addition Chains, and Karatsuba mul-
tiplication. Below we give some of the characteristics of our attack in this setting:

SPARC II CryptoLib DSA signing time = 430 ms

time to read cnt (i.e., time to read all 32k bytes) = 4.92 ms
time to update cnt < 4.92 + 2 = 6.92 ms

total non-volatile memory based overhead < 11.84 ms
number of signatures which are SETUP = 230

time required to exhaust ent = 230 % 430 ms > 14 years

It follows from the above that the time required to mount the attack can
be “absorbed” by the time required to compute the DSA signature. Measures
should be taken to insure that the signing time is the same whether or not all
values for cnt have been exhausted, to avoid detection of the attack.
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