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Abstract. Luby and Rackoff idealized DES by replacing each round
function with one large random function. In this paper, we introduce
a primitive-wise idealization in which some of the primitive operations
of the round function are left untouched and some of them are repla-
ced with small random functions or permutations. We then prove that
a four round primitive-wise idealized RC6 is not a pseudorandom per-
mutation and a three round primitive-wise idealized Serpent is a super-
pseudorandom permutation.

1 Introduction

There are five AES finalists, RC6, Serpent, MARS, Twofish and Rijndael. RC6
was proposed by Rivest et.al. [6] as a successor of RC5. RC6 makes essential
use of data-dependent rotations in the new structure. It also includes the use of
four working registers and the inclusion of integer multiplication as an additional
primitive operation. Serpent was proposed by Anderson et.al. [1]. Each round
of Serpent has 32 parallel S-boxes and a following linear transformation of 128
bits. MARS was proposed by Burwick et.al. [2]. It uses a so called type-3 Feistel
structure. Twofish was proposed by Schneier et.al. [7]. It has a 16 round Feistel
structure. Rijndael was proposed by Daemen et.al. [3]. Its round transformation
consists of three distinct invertible uniform transformations.

We consider the security of block ciphers in two ways, pseudorandomness
and super-pseudorandomness.

– Pseudorandomness means that no attacker with polynomially many encryp-
tion queries can distinguish between the block cipher and a truly random
permutation. This security corresponds to a chosen plaintext attack.

– Super-pseudorandomness means that no attacker with polynomially many
encryption and decryption queries can distinguish between the block cipher
and a truly random permutation. This security corresponds to a chosen
plaintext and ciphertext attack.
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Note that super-pseudorandomness implies pseudorandomness.
Luby and Rackoff idealized DES by replacing each round function with one

large random function. Then they showed that the idealized three round DES
yields a pseudorandom permutation and the idealized four round DES yields
a super-pseudorandom permutation [4]. Maurer gave a simpler proof for non-
adaptive adversaries [5].

For this kind of idealization, the three round idealized Twofish is a pseudoran-
dom permutation and the four round idealized Twofish is a super-pseudorandom
permutation because Twofish has the same Feistel structure as DES. MARS has
a so called type-3 Feistel structure. At the rump session of AES2, Vaudenay and
Moriai claimed that the five round idealized MARS is a pseudorandom permu-
tation [8].

In this paper, we introduce a primitive-wise idealization in which some of
the primitive operations of the round function (e.g., linear transformations and
etc.) are left untouched and some of them (e.g., S-boxes and etc.) are replaced
with small random functions or permutations. It is not known whether such a
primitive-wise idealized DES is pseudorandom (or super-pseudorandom). Simi-
larly, the same problem is open for all the AES candidates.

We solve this problem for RC6 partially, and solve for Serpent. We first
idealize RC6 by replacing only an “x× (2x+1)”operation with a pseudorandom
function. The data-dependent rotation parts and the connections among the four
registers are left untouched because they are the main properties of RC6. We then
prove that the four round primitive-wise idealized RC6 is not a pseudorandom
permutation for non-adaptive adversaries.

Serpent is idealized similarly. The linear transformation parts are left untou-
ched and only the S-boxes are replaced with small pseudorandom permutations.
We then prove that the two round primitive-wise idealized Serpent is not a pseu-
dorandom permutation and the three round primitive-wise idealized Serpent is
a super-pseudorandom permutation for non-adaptive adversaries.

A similar analysis for Rijndael, MARS, and Twofish is now in progress. Our
results are stronger than the previous results for DES, Twofish [4] and MARS
[8] because our idealization assumes weaker and smaller modifications of the
ciphers.

This paper is organized as follows. In Section 2, we review the security model
and the pseudorandomness of Twofish and MARS. The primitive-wise idealized
RC6 is studied in Section 3 and the primitive-wise idealized Serpent is studied
in Section 4.

2 Preliminaries

2.1 Security Model

Let us consider a computationally unbounded distinguisher A with an oracle O.
The oracle O chooses a permutation π randomly from the set of all permuta-
tions C∗ over {0, 1}n or from a subset of permutations C ⊂ C∗ (For a block
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cipher, C is the set of permutations obtained from all the keys). The aim of the
distinguisher A is to distinguish if the oracle O implements C∗ or C. Let pC∗

denote the probability that A outputs 1 when O implements C∗ and pC denote
the probability that A outputs 1 when O implements C. That is,

pC∗
4
= Pr(A outputs 1 | O ← C∗) and pC

4
= Pr(A outputs 1 | O ← C) .

Then the advantage AdvA of the distinguisher A is defined as

AdvA
4
= |pC − pC∗ | .

Suppose that A is limited to make at most poly(n) queries to O, where
poly(n) is some polynomial in n. We say that A is a pseudorandom distinguisher
if it queries x and the oracle answers y = π(x), where π is a randomly chosen
permutation by O. We say that A is a super-pseudorandom distinguisher if it is
also allowed to query y and receives x = π−1(y) from the oracle.

Finally, C is called a pseudorandom permutation ensemble if AdvA is negli-
gible for any pseudorandom distinguisher (A pseudorandom function ensemble
is defined similarly). C is called a super-pseudorandom permutation ensemble
if AdvA is negligible for any super-pseudorandom distinguisher. On the other
hand, C∗ is called the truly random permutation ensemble.

In this paper, we consider a non-adaptive distinguisher, i.e., a distinguisher
that sends all the queries to the oracle at the same time.

2.2 Pseudorandomness of Idealized Twofish

Twofish has the same Feistel structure as DES shown in Fig. 1.

fi

?m+ r��

? ?

Fig. 1. The i-th round of the idealized Twofish

Assume that each round functions fi is an independent pseudorandom function
from {0, 1}n/2 to {0, 1}n/2. Then the following propositions are derived from the
result of Luby and Rackoff [4].

Proposition 1. The four round idealized Twofish is a super-pseudorandom per-
mutation.

Proposition 2. The three round idealized Twofish is a pseudorandom permu-
tation.
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2.3 Pseudorandomness of Idealized MARS

MARS has a structure as shown in Fig. 2.

fi

?
?

?

m+
m+

m+
r-

-

-
-

? ? ? ?

Fig. 2. The i-th round of the idealized MARS

Assume that each round function fi is an independent pseudorandom function
from {0, 1}n/4 to {0, 1}3n/4. Then Vaudenay and Moriai claimed the following
proposition [8].

Proposition 3. The five round idealized MARS is a pseudorandom permuta-
tion.

3 Pseudorandomness of Primitive-Wise Idealized RC6

3.1 Primitive-Wise Idealization of RC6

RC6 is specified as RC6-w/r/b, where w denotes the number of bits of a word,
r denotes the number of rounds, and b denotes the length of the encryption key
in bytes. RC6 works with four w bits registers, A, B, C, and D. The i-th round
of RC6 is defined as follows.

t = (B × (2B + 1)) <<< lg w
u = (D × (2D + 1)) <<< lg w
A = ((A⊕ t) <<< u) + S[2i]
C = ((C ⊕ u) <<< t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

Definition of the i-th round of RC6

In the above definition, a+b is an addition modulo 2w, a⊕b is a bitwise exclusive-
or of two w bits words, a× b is a multiplication modulo 2w and a <<< b denotes
to rotate a w bits word a to the left by x, where x is the number given by the
least significant lg w bits of b and lg w denotes the base-two logarithm of w.
Finally, S[2i] and S[2i + 1] denote the i-th round key.
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Let n denote the length of a plaintext. Then n = 4w. In other words, each of
A, B, C, D takes an element of {0, 1}n/4.

Now we idealize RC6 as shown below, where each fj is an independent pseu-
dorandom function from {0, 1}n/4 to {0, 1}n/4.

t = f2i(B)
u = f2i+1(D)
A = ((A⊕ t) <<< u)
C = ((C ⊕ u) <<< t)
(A, B, C, D) = (B, C, D, A)

The i-th round of the primitive-wise idealized RC6

Note that

1. We replace t and S[2i] with f2i, and u and S[2i + 1] with f2i+1.
2. However, we leave the data-dependent rotations <<< t, <<< u and the connec-

tions among the four registers untouched because they are the main pro-
perties of RC6.

3.2 Pseudorandomness of Primitive-Wise Idealized RC6

The primitive-wise idealized RC6 is illustrated in Fig. 3, where x = (x0, x1, x2,
x3) denotes a plaintext, z = (z0, z1, z2, z3) and w = (w0, w1, w2, w3) denote ci-
phertexts of the three and four round primitive-wise idealized RC6, respectively.
Each of xi, zi, and wi is n/4 bits long.

Theorem 1. The four round primitive-wise idealized RC6 is not a pseudoran-
dom permutation.

Proof. Let C be the set of permutations over {0, 1}n obtained from the four ro-
und primitive-wise idealized RC6. We consider a distinguisher A such as follows.

1. A randomly chooses two plaintexts x(1) = (x(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 ) and x(2) =

(x(2)
0 , x

(2)
1 , x

(2)
2 , x

(2)
3 ) such that

x
(1)
0 6= x

(2)
0 and x

(1)
1 = x

(2)
1 , x

(1)
2 = x

(2)
2 , x

(1)
3 = x

(2)
3 . (1)

2. A sends them to the oracle and receives the ciphertexts w(1) = (w(1)
0 , w

(1)
1 ,

w
(1)
2 , w

(1)
3 ) and w(2) = (w(2)

0 , w
(2)
1 , w

(2)
2 , w

(2)
3 ) from the oracle.

3. Finally, A outputs 1 if and only if

((w(1)
0 ⊕ w

(2)
0 ) <<< l) = x

(1)
0 ⊕ x

(2)
0 (2)

for some 0 ≤ l < n/4.
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x0 x1 x2 x3

? ? ? ?
w0 w1 w2 w3

? ? ? ?
z0 z1 z2 z3

f0 f1

f2 f3

f4 f5

f6 f7

? ?l+ � r � r l+ � r � r

?

-
?

�l<<<

l<<<

? ?l+ � r � r l+ � r � r

?

-
?

�l<<<

l<<<

? ?l+ � r � r l+ � r � r

?

-
?

�l<<<

l<<<

? ?l+ � r � r l+ � r � r

?

-
?

�l<<<

l<<<

Fig. 3. The primitive-wise idealized RC6
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Suppose that the oracle implements the truly random permutation ensemble
C∗. Then for any fixed x(1) and x(2) satisfying (1),

Pr(A outputs 1) =
#{(w(1)

0 , w
(2)
0 ) | eq.(2) holds for some l}
#{(w(1)

0 , w
(2)
0 )}

.

It is clear that
#{(w(1)

0 , w
(2)
0 )} = (2n/4)2 = 2n/2 .

For each w
(1)
0 and l, there exists a unique w

(2)
0 which satisfies eq.(2). Therefore,

#{(w(1)
0 , w

(2)
0 ) | eq.(2) holds for some l} ≤ n

4
× 2n/4 .

Hence,

Pr(A outputs 1) ≤ n/4× 2n/4

2n/2 =
n

4× 2n/4 .

Consequently,

pC∗ = Ex(1),x(2)(Pr(A outputs 1)) ≤ n

4× 2n/4 .

Next suppose that the oracle implements the four round primitive-wise ide-
alized RC6. We first assume that each fi is a truly random function. Define α1,
β1, δ1 and γ1 as shown in Fig. 4,

?

?

?

��

?
- m<<<

m+ f5

z1

γ1

δ1

α1

β1

Fig. 4. 3-rd branch in the 3-rd round

Fix x(1) = (x(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 ) and x(2) = (x(2)

0 , x
(2)
1 , x

(2)
2 , x

(2)
3 ) such that x

(1)
0 6=

x
(2)
0 , x

(1)
1 = x

(2)
1 , x

(1)
2 = x

(2)
2 and x

(1)
3 = x

(2)
3 arbitrarily. Then

γ
(1)
1 ⊕ γ

(2)
1 = ((x(1)

0 ⊕ x
(2)
0 ) <<< l′)

for some l′ since x
(1)
1 = x

(2)
1 , x

(1)
2 = x

(2)
2 and x

(1)
3 = x

(2)
3 . If β

(1)
1 = β

(2)
1 , then

α
(1)
1 ⊕ α

(2)
1 = γ

(1)
1 ⊕ γ

(2)
1 . Thus,

α
(1)
1 ⊕ α

(2)
1 = ((x(1)

0 ⊕ x
(2)
0 ) <<< l′) .
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Further if δ
(1)
1 = δ

(2)
1 , then

z
(1)
1 ⊕ z

(2)
1 = ((α(1)

1 ⊕ α
(2)
1 ) <<< l′′)

for some l′′. Therefore,

z
(1)
1 ⊕ z

(2)
1 = ((x(1)

0 ⊕ x
(2)
0 ) <<< l′′′)

for some l′′′. Hence, if both β
(1)
1 = β

(2)
1 and δ

(1)
1 = δ

(2)
1 occur, then

((w(1)
0 ⊕ w

(2)
0 ) <<< l) = x

(1)
0 ⊕ x

(2)
0

holds for some l because z
(1)
1 = w

(1)
0 and z

(2)
1 = w

(2)
0 . Therefore,

pC ≥ Pr(β(1)
1 = β

(2)
1 and δ

(1)
1 = δ

(2)
1 ) .

Since 0 ≤ l < n/4 and f4 is a truly random function, it is easy to see that

Pr(δ(1)
1 = δ

(2)
1 ) ≥ 1

n/4
.

Since x
(1)
1 = x

(2)
1 and the output of f2 for x(1) is equal to that for x(2),

Pr(β(1)
1 = β

(2)
1 ) ≥ 1

n/4
.

Further, β1 and δ1 are independent because f4 is a truly random function. Con-
sequently,

pC ≥ Pr(β(1)
1 = β

(2)
1 )× Pr(δ(1)

1 = δ
(2)
1 )

≥ 1
n/4
× 1

n/4

=
16
n2 .

Therefore, we obtain that

AdvA = |pC − pC∗ | ≥ 16
n2 −

n

4× 2n/4 ,

which is non-negligible. Finally, we can show that AdvA is non-negligible even if
each fi is a pseudorandom function. The proof is almost the same as the proof
of [4, Theorem 1]. Hence, the four round primitive-wise idealized RC6 is not a
pseudorandom permutation. ut

The above theorem implies that the four round primitive-wise idealized RC6
is not a super-pseudorandom permutation.
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4 Pseudorandomness of Primitive-Wise Idealized Serpent

4.1 Primitive-Wise Idealization of Serpent

Serpent consists of 32 rounds. The plaintext becomes the first intermediate data
B0, after which the 32 rounds are applied, where each round i consists of three
operations:

1. Key Mixing: At each round, a 128 bits subkey Ki is exclusive or’ed with the
current intermediate data Bi.

2. S-Boxes: The 128 bits combination of input and key is considered as four 32
bits words. The S-box is applied to these four words, and the result is four
output words. The CPU is employed to execute the 32 copies of the S-box
simultaneously, resulting with Si(Bi, Ki). Each S-box is a permutation over
{0, 1}4.

3. Linear Transformation: The 32-bit in each of the output words are linearly
mixed, by

X0, X1, X2, X3 := Si(Bi, Ki)
X0 := X0 <<< 13
X2 := X2 <<< 3
X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 << 3)
X1 := X1 <<< 1
X3 := X3 <<< 7
X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 << 7)
X0 := X0 <<< 5
X2 := X2 <<< 22

Bi+1 := X0, X1, X2, X3 ,

where <<< denotes rotation, and << denotes shift.

The effect of the linear transformation is that each plaintext bit affects all
the data bits after three rounds. This can be detailed as follows. 4 output bits
of some S-box in the first round are expanded by the linear transformation, so
that they are input bits to m S-boxes in the second round. Then the 4m output
bits of these m S-boxes are expanded so that they become input bits to the 32
S-boxes in the third round. The maximum value of m is 19, and the minimum
is 17.

We idealize Serpent as shown in Fig. 5 and:

1. Let n = 128× k denote the length of a plaintext.
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f32i f32i+1 · · · f32i+31

? ? ?

? ? ?

? ? ?

LT

Fig. 5. The i-th round of the primitive-wise idealized Serpent

2. We assume that each fi is an independent pseudorandom permutation over
{0, 1}4k.

3. In the linear transformation, a <<< b is replaced with a <<< bk, and a << b is
replaced with a << bk.

Note that we leave the linear transformation part untouched except the above
modification.

4.2 Pseudorandomness of Primitive-Wise Idealized Serpent

The three round primitive-wise idealized Serpent is illustrated in Fig. 6. Let
x = (x0, . . . , x31) denote a plaintext, z = (z0, . . . , z31) and y = (y0, . . . , y31)
denote ciphertexts of the two round and the three round primitive-wise idealized
Serpent, respectively. Each of xi, zi, and yi is 4k bits long.

We first prove the following theorem.

Theorem 2. The two round primitive-wise idealized Serpent is not a pseudoran-
dom permutation.

Proof. Let C be the set of permutations over {0, 1}n obtained from the two
round primitive-wise idealized Serpent. We consider a distinguisher A such as
follows.

1. A chooses two plaintexts, x(1) = (x(1)
0 , . . . , x

(1)
31 ) and x(2) = (x(2)

0 , . . . , x
(2)
31 )

such that x
(1)
0 6= x

(2)
0 and x

(1)
1 = x

(2)
1 , . . . , x

(1)
31 = x

(2)
31 .

2. A sends them to the oracle and receives the ciphertexts z(1) = (z(1)
0 , . . . , z

(1)
31 )

and z(2) = (z(2)
0 , . . . , z

(2)
31 ) from the oracle.

3. A computes v(1) = LT−1(z(1)) and v(2) = LT−1(z(2)).
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x0 x1 · · · x31

f0 f1 · · · f31

f32 f33 · · · f63

f64 f65 · · · f95

y0 y1 · · · y31

z0 z1 · · · z31

w0 w1 · · · w31

? ? ?

? ? ?

? ? ?
LT

? ? ?

? ? ?
LT

LT
? ? ?

? ? ?

? ? ?

? ? ?

LT

Fig. 6. The primitive-wise idealized Serpent

4. A outputs 1 if and only if v
(1)
1 = v

(2)
1 .

Suppose that the oracle implements the truly random permutation ensemble
C∗. Then it is clear that pC∗ = 1/24k.

Next suppose that the oracle implements the two round primitive-wise idea-
lized Serpent. The input to f33 includes no output of f0. Therefore, v

(1)
1 = v

(2)
1

because x
(1)
1 = x

(2)
1 , . . . , x

(1)
31 = x

(2)
31 . Hence pC = 1.

Therefore
AdvA = |pC − pC∗ | = 1− 1

24k
.

Consequently, AdvA is non-negligible. Hence, the two round primitive-wise ide-
alized Serpent is not a pseudorandom permutation. ut

The above theorem implies that the two round primitive-wise idealized Ser-
pent is not a super-pseudorandom permutation.

We next prove the following theorem.

Theorem 3. The three round primitive-wise idealized Serpent is a pseudoran-
dom permutation for non-adaptive adversaries.

Proof. Let C be the set of permutations over {0, 1}n obtained from the three
round primitive-wise idealized Serpent. First, assume that each fi is a truly
random permutation.
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Suppose that A makes p oracle calls. In the i-th oracle call, A sends a
plaintext x(i) = (x(i)

0 , . . . , x
(i)
31 ) to the oracle and receives the ciphertext y(i) =

(y(i)
0 , . . . , y

(i)
31 ) from the oracle. In Fig. 6, let w(i) = (w(i)

0 , . . . , w
(i)
31 ) denote the

inputs to f32, . . . , f63 and z(i) = (z(i)
0 , . . . , z

(i)
31 ) denote the inputs to f64, . . . , f95.

Without loss of generality, we can assume that x(1), . . . , x(p) are all distinct.
Let Ezt

be the event that z
(1)
t , . . . , z

(p)
t are all distinct for t = 0, . . . , 31, and let

Ez be the event that all Ez0 , . . . , Ez31 occur. If Ez occurs, then, y(1), . . . , y(p) are
completely random since f64, . . . , f95 are truly random permutations. Therefore,
AdvA is upper bounded by

AdvA = |pC − pC∗ | ≤ 1− Pr(Ez) .

Further, it is easy to see that

1− Pr(Ez) ≤
∑

1≤i<j≤p

Pr(z(i)
0 = z

(j)
0 ) + · · ·+

∑

1≤i<j≤p

Pr(z(i)
31 = z

(j)
31 ) . (3)

Fix i 6= j arbitrarily. We show that all Pr(z(i)
0 = z

(j)
0 ), . . . ,Pr(z(i)

31 = z
(j)
31 ) are

sufficiently small. Since x(i) 6= x(j), we have x
(i)
s 6= x

(j)
s for some 0 ≤ s ≤ 31. For

this s, fs has 4k output bits. From the property of LT, the output bits of fs are
distributed among m wt’s, say t = t0, . . . , tm−1, where m depends of s. Each wt

contains at least k bits of those from our modification of LT. Therefore,

Pr(w(i)
t = w

(j)
t ) ≤ 1

2k

for t = t0, . . . , tm−1 because fs is a truly random permutation.
Next each wt becomes the input to f32+t. The output bits of f32+t0 , . . . ,

f32+tm−1 are distributed among all of z0, . . . , z31 from the property of LT. Each
zu contains at least k bits of those from our modification of LT.

Let Ew be the event that w
(i)
t 6= w

(j)
t for t = t0, . . . , tm−1. Then we have

Pr(z(i)
u = z(j)

u ) ≤ 1
2k

Pr(Ew) + (1− Pr(Ew))

≤ 1
2k

+ Pr(w(i)
t0 = w

(j)
t0 ) + · · ·+ Pr(w(i)

tm−1
= w

(j)
tm−1

)

≤ 1
2k

+
m

2k

for u = 0, . . . , 31. Therefore, the right side of (3) is upper bounded as follows.

∑

1≤i<j≤p

Pr(z(i)
0 = z

(j)
0 ) + · · ·+

∑

1≤i<j≤p

Pr(z(i)
31 = z

(j)
31 ) ≤ 16(m + 1)p2

2k

≤ 320× p2

2n/128 ,

because m ≤ 19 and n = 128× k.
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Since p = poly(n), AdvA is negligible for any A. Finally, we can show that
AdvA is negligible even if each fi is a pseudorandom permutation as the proof
of [4, Theorem 1]. ut

We can prove the following corollary similarly.

Corollary 1. The three round primitive-wise idealized Serpent is a super-
pseudorandom permutation for non-adaptive adversaries.
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