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Abstract. Consider a network of processors among which elements in
a finite field K can be verifiably shared in a constant number of rounds.
Assume furthermore constant-round protocols are available for generat-
ing random shared values, for secure multiplication and for addition of
shared values. These requirements can be met by known techniques in
all standard models of communication.
In this model we construct protocols allowing the network to securely
solve standard computational problems in linear algebra. In particular,
we show how the network can securely, efficiently and in constant-round
compute determinant, characteristic polynomial, rank, and the solution
space of linear systems of equations. Constant round solutions follow for
all problems which can be solved by direct application of such linear
algebraic methods, such as deciding whether a graph contains a perfect
match.
If the basic protocols (for shared random values, addition and multiplica-
tion) we start from are unconditionally secure, then so are our protocols.
Our results offer solutions that are significantly more efficient than pre-
vious techniques for secure linear algebra, they work for arbitrary fields
and therefore extend the class of functions previously known to be com-
putable in constant round and with unconditional security. In particular,
we obtain an unconditionally secure protocol for computing a function f
in constant round, where the protocol has complexity polynomial in the
span program size of f over an arbitrary finite field.

1 Introduction

In this paper we consider the problem of secure multiparty computation (MPC),
where n players, each holding a secret input, want to compute an agreed function
of the inputs, in such a way that the correct result is computed, and no additional
information about the inputs is released. This should hold, even in presence of
an adversary who can corrupt some of the players, this means he can see all their
internal data and can (if he is active) even make them behave as he likes.

A main distinction between different kinds of MPC protocols concerns the
model for communication: In the cryptographic model (first studied in [25,14]),
the adversary may see all messages sent, and security can then only be guaran-
teed under a computational assumption. In the information-theoretic model (first

J. Kilian (Ed.): CRYPTO 2001, LNCS 2139, pp. 119–136, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



120 R. Cramer and I. Damg̊ard

studied in [5,7]), one assumes a private channel between every pair of players,
and security can then be guaranteed unconditionally.

Two measures of complexity are important for MPC protocols, namely the
communication complexity (total number of bits sent) and the round complexity
(where a round is a phase where each player is allowed to send one message to
each other player).

In this paper, we focus on the round complexity of MPC protocols, in par-
ticular on building constant-round protocols. Kilian [19] showed that Boolean
formulas can be securely and efficiently evaluated in constant rounds in the
two-party case, with secure computations based on Oblivious Transfer. Under
a complexity assumption, it was shown in [2] by Beaver, Micali and Rogaway
that any function that can be computed in polynomial time can also be securely
computed in a constant number of rounds (and polynomial communication).
The result works under minimal complexity assumptions, but leads in practice
to very inefficient protocols. Thus, for computationally secure MPC in constant
round, the question is not which functions can be securely computed, but rather
how efficiently it can be done.

The situation is different for unconditionally secure MPC: in this model,
it is not known which functions can be securely computed in constant-round.
However, Bar-Ilan and Beaver [1] showed that it can be done for any arithmetic
formula.

Later results by Feige, Kilian and Naor [12] and Ishai and Kushilevitz [16,
17] and Beaver [3] extend this to functions in NL and some related counting
classes. More precisely, their protocols are polynomial in the modular branching
program size of the function computed. Their methods also apply to the more
general arithmetic branching program model of Beimel and Gal[4].

2 Our Work

In this paper, we start from the assumption that we are given an efficient, con-
stant round method to share securely between the players values in a finite field
K and to reveal them. For an active adversary, this would be a verifiable secret
sharing (VSS). In the following, we write [a] for a sharing of a, i.e. [a] denotes
the collection of all information related to a held by the players. When M is
a matrix over K, [M ] will denote a sharing of each of the coordinates of M .
Whenever we say “let [x] be a sharing” we mean that either some processor has
distributed shares of his private input x, or that [x] is the result of previous
secure computations on certain private inputs of the processors. An expression
such as “[f(x)] is securely computed from [x]” means that the processors in the
network perform secure computations on a sharing of x, as a result of which they
obtain a (random) sharing of f(x).

We show how to design efficient constant-round protocols for a number of
standard linear algebra problems:
– Given a shared matrix [A] over an arbitrary finite field K, we show how to

compute securely a sharing [det(A)] of the determinant of A. More generally,
[f ] is computed where f denotes the vector containing the coefficients of the
characteristic polynomial of A.
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– Given a shared (not necessarily square) matrix [A] over a finite field K, we
show how to securely compute the rank of A, concretely we can compute [r]
where r is a unary encoding of the rank of A, padded with zeroes.

– Given also a shared vector [y] we show how to securely compute [b] where b
is a bit that indicates whether the system of equations Ax = y is solvable.
Finally, we show how to solve the system by securely computing [x], [B],
where x is a solution and [B] generates A’s kernel.

Our protocols work for arbitrary fields and do not use any cryptographic
assumptions, so if the basic sharing method we start from is unconditionally
secure, then so are the protocols we construct.

It is easy to see that our results allow handling all functions computable in
constant round and with unconditional security using the most general previous
methods [16,17]: for instance, our protocol for subspace membership immedi-
ately implies a constant-round protocol for computing a function f , of com-
plexity polynomial in the span program[18] size of f . By the results from [4]
span programs are always at least as powerful as the modular and arithmetic
branching programs to which the methods from [16,17] apply. For fields with
fixed characteristic, all three models are equivalent in power. However, since this
is not known to hold for arbitrary fields, our results extend the class of function
known to be computable in constant round and with unconditional security.

What is equally important, however, is that the standard linear algebra prob-
lems we can handle are problems that occur naturally in practice. For instance,
deciding if a determinant is non-zero allows to decide if a bipartite graph con-
tains a perfect match. Moreover, privacy is a natural requirement in matching
type problems that occur in practice.

We therefore believe it is of interest to be able to do linear algebra securely
and efficiently. Our work leads to a protocols with better efficiency compared to
solutions based on combinations of known techniques. Please refer to Section 6.5
for more details in the case of determinant and characteristic polynomial.

We note that our results apply to the cryptographic model as well as the infor-
mation theoretic, the only difference being the implementation of the underlying
sharing and multiplication protocols. And because we attack the problems di-
rectly rather than going through reductions (to, e.g., Boolean circuits for the
problems) we get much more efficient solutions than what one gets from, e.g, [2].

3 Some Basic Protocols

For convenience in describing our main protocols, we assume that secure constant
round protocols are available for the following tasks:

– Computing (from scratch) a sharing [r] where r ∈ K is random and unknown
to the adversary.

– Computing from sharings [a], [b] a sharing of [a + b].
– Computing from sharings [a], [b] a sharing of [ab].

Also, these protocols must remain secure when composed in parallel.
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The first two requirements are always met if the sharing method used is
linear over K, in the sense that from [a], [b] and a known constant c, we can
non-interactively compute new sharings [a + b] and [ac], and more generally,
arbitrary linear functionals. For standard examples of VSS, this just translates
to locally adding shares of a to corresponding shares of b, and to multiplying the
shares of a by c.

In fact, all three requirements can be met by known techniques in all stan-
dard models of communication. We give here a few examples of existing efficient,
constant round, linear MPC protocols: The classical unconditionally secure MPC
protocols of Ben-Or, Goldwasser and Wigderson [5] and Chaum, Crépeau and
Damgaard [7] are examples in the secure channels model satisfying all our re-
quirements, tolerating an active, adaptive threshold adversary that corrupts less
than a third of the processors.

MPC protocols secure against general adversaries [15] are given by Cramer,
Damgaard and Maurer [9]. Their protocols make no restriction on the field size,
as opposed to [7,5] where this must be larger than the size of the network. 1 For
the broadcast model of Rabin and Ben-Or [23], one can take the protocols of
[10], tolerating an actively (and adaptively) corrupted minority at the expense
of negligible errors and the assumption that a secure broadcast primitive is
given. 2 An example in the cryptographic model is given by the protocols of
Gennaro, Rabin and Rabin [13]. Here the size of the field is necessarily large.
For the binary field an example given in [8]. This protocol, which is based on
homomorphic threshold encryption, is quite efficient and tolerates an actively
corrupted minority.

Note that parallel composition is not secure in general for all the models of
communication mentioned here, unless extra properties are required. Neverthe-
less, the example protocols considered above are in fact secure under parallel
composition.

A final basic protocol (called Π1 in the following) that we will need is:

– Compute from a sharing [a] a sharing [h(a)] where h is the function on K
defined by h(a) = 0 if a = 0 and h(a) = 1 if a 6= 0.

Later we show a constant-round realization of this protocol based only on the
three requirements above. This realization is efficient if the characteristic of the
field is polynomially bounded.

For arbitrary fields, we can do the following instead: assume first that K =
GF (q) for a (large) prime q. Represent an element a ∈ K in the natural way as
a bit string a0, ..., ak. Choose a new field F = GF (p) where p is a small prime,
all that is required is that p is larger than the number of players, in particular,
p does not depend on the size of the input to the desired computation. Define
[a] = [a0]F , ..., [ak]F , i.e., using any of the standard methods described above we
share each bit in the representation of a over the field F .

We can now use the well-known fact that for a given, fixed q, there exist NC1

Boolean circuits for elementary operations in GF (q) (and even for unbounded
1 In the full version of [9] it is pointed out that their VSS is actually constant round.
2 One extra level of sub-sharing must be built in (which is no problem) to ensure

constant rounds for their multiplication protocol.
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fan-in addition). This, together with the result from [1] and the fact that Boolean
operations can be simulated in a natural way by arithmetic in F immediately
implies existence of constant round protocols for this sharing method meeting
the three requirements above. Moreover, computing the function h is now trivial
since we only have to compute the OR of all bits of the input value.

Finally, we show in Section 4 how the basic protocols for a field K can be
lifted to any extension field of K.

Since most of the known MPC protocols are linear, we explain our protocols
under this assumption, since it leads to more efficient and easier to explain
protocols. At the end of Section 4, we argue that our results also hold in the
more general model described earlier.

4 Known Techniques Used

Let a secure linear MPC protocol for elementary arithmetic (i.e., multiplication
and addition) over a finite field K be given, that is efficient and constant round.
Write q = |K|. We frequently use the following constant-round techniques from
Bar-Ilan and Beaver [1].

Joint Secret Randomness is a protocol to generate a sharing [ρ] where ρ ∈ K
is random and secret. This is just by letting all players in the network share a
random element, and taking the sum as the result. This extends in a natural way
to random vectors and matrices. Secure Matrix Multiplication is a protocol that
starts from sharings [A], [B] of matrices A and B, and generates a sharing [AB]
of their product. This protocol works in the obvious way. We denote this secure
computation by [AB] = [A]·[B]. By our assumptions on the basic MPC, it follows
that if any of these matrices, say A, is publicly known, secure multiplication can
be performed non-interactively. and we write [AB] = A · [B] instead.

Jointly Random Secret Invertible Elements and Matrices is a protocol that
generates a sharing of a secret, random nonzero field element or an invertible
matrix. The protocol securely generates two random elements (matrices), se-
curely multiplies them, and reveals the result. If this is non-zero (invertible),
one of the secret elements (matrices) is taken as the desired output of the proto-
col. The probability that a random matrix A ∈ Kn,n is invertible is than 1/4,3
and is at least 1 − n/q. In particular if n is negligible compared to q, almost all
A ∈ Kn,n are invertible. This is easy to verify (see also the counting arguments
in Section 6.1).

Secure Inversion of Field Elements and Matrices is a protocol that starts from
a sharing of an invertible field element or matrix, and results in a sharing of its
inverse. We denote this secure computation by [x−1] = [x]−1, and [A−1] = [A]−1

respectively. This protocol first generates [ρ] with ρ ∈ K random and non-zero,
securely computes [σ] = [ρ] · [x], and finally reveals σ. The result [x−1] is then
non-interactively computed as σ−1 · [ρ]. The same approach applies to the case
of an invertible matrix.

3 For instance, by simple counting and induction it follows that this probability is at
least 1/4 + (1/2)n+1. Also, there are better estimates known from the literature.
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Securely Solving Regular Systems is a protocol that starts from sharings of
an invertible matrix and a vector, and generates a sharing of the unique pre-
image of that vector under the given invertible matrix. This protocol follows
immediately from the above protocols.

Secure Unbounded Fan-In Multiplication is a protocol that produces a sharing
of the product of an unbounded number n of shared field elements [xi]. First
consider the case where all elements [x1], . . . , [xm] are invertible. The network
generates sharings [ρ1], . . . , [ρm] of independently random non-zero values, and
subsequently sharings of their multiplicative inverses. Next, they compute [σ1] =
[x1] · [ρ1], and, for i = 2 . . . m, [σi] = [ρ−1

i−1] · [xi] · [ρi]. Finally, they publicly
reconstruct σi for i = 1 . . . m, compute the product of the σi’s, and multiply
the result into the sharing of ρ−1

m to get a sharing of the product of the xi’s.
See [3] for a more efficient solution. Using a result by Ben-Or and Cleve, the
general case (i.e., xi’s may be equal to 0) is reduced to the previous case. The
resulting protocol comes down to unbounded secure multiplication of certain
invertible 3 × 3-matrices. The overhead is essentially a multiplicative factor n.
See Section 6.4 for an alternative approach.

Note also that the MPC protocol over K is easily “lifted” to an extension
field L of K, as we show below. If the original is efficient and constant round,
then so is the lifted protocol.

L may be viewed as a K-vectorspace, and let b0, . . . , bd−1 be a fixed K-basis
for L, where d is the degree of L over K. More precisely, let α be a root of an
irreducible polynomial f(X) ∈ K[X] of degree d. We set bi = αi for i = 0 . . . d−1.
Elements of L are represented by coordinate vectors with respect to this chosen
basis. In particular, the vectors that are everywhere zero except possibly in the
first coordinate correspond to the elements of K.

If [x0]K , . . . , [xd−1]K are sharings, with the xi’s in K, it is interpreted as
[x]L, where x =

∑d−1
i=0 xi · bi ∈ L. Let [x]L = ([x0]K , . . . , [xd−1]K), [y]L =

([y0]K , . . . , [yd−1]K) be sharings of x, y ∈ L. Securely computing [x+y]L = [x]L+
[y]L amounts to computing the sum of the vectors, which is be done by local oper-
ations. So we have the correspondence [x+y]L ↔ ([x0+y0]K , . . . , [xd−1+yd−1]K).

Now consider multiplication. For i = 0, . . . , d − 1 let Bi be the matrix whose
j-th column is the vector representation of the element ei · ej ∈ L, and let
B = B0|| . . . ||Bd−1 (concatenation from left to right). Let x ⊗ y ∈ Kn2

be
the (column-) vector whose j-th “block” is xj · y0, . . . , xj · yd−1. Then: x · y =∑d−1

i,j=0 xi · yj · ei · ej =
∑d−1

i=0 λi · ei, where B(x ⊗ y) = (λ0, . . . , λd−1)T ∈ Kd,
and so we have the correspondence: [x · y]L ↔ [B(x ⊗ y)]K .

Over K, it is straightforward for the network to first securely compute [x ⊗
y] = [x]⊗[y] efficiently in constant rounds. Since B is public, secure computation
of [B(x ⊗ y)]K is then by local operations only. Hence, secure multiplication in
the extension field can be carried out efficiently in constant rounds. Note that
securely multiplying in a known constant is a special case, which is handled
completely by local operations.

Finally, we note that if the linearity assumption on the MPC protocol is
dropped, and instead we work with the model also described in Section 2, where
more generally secure constant round protocols for generation of shared random
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element, addition and multiplication are assumed, the above sub-protocols still
work. It is sufficient to argue that unbounded addition can be securely and
efficiently performed in constant rounds.

Although this does not directly follow from the model, as is the case with
linearity, it can be done in similar style as unbounded multiplication of non-zero
field elements using the ideas of Bar-Ilan and Beaver. This is actually where the
assumption on secure generation of a shared random value comes into play. It is
easy to verify that all protocols to follow also work in this more general model.

5 Overview and Conventions

Throughout we assume efficient, constant round, secure linear MPC protocols
over a finite field K. In the analysis we assume that the required properties are
perfectly satisfied.

The linear algebraic problems of our interest are determinant, characteristic
polynomial, rank, sub-space membership, random sampling and general linear
systems. We first explain secure solutions with negligible error probabilities.

We will assume that K (“the field of interest”) is “large enough”, i.e., n
(“dimension” of the linear algebraic problems) is negligible compared to q = |K|.
Without loss of generality we may use the lifting technique to achieve this.

In all cases, solutions of the original problems defined over K can be recovered
from the solutions of the lifted problem.

In Section 9 we argue how to obtain zero-error modifications of our protocols.

6 Secure MPC of Determinant

Let [A] be a sharing, where A ∈ Kn,n. The goal of the network is to securely
compute a sharing [det(A)], where det(A) is the determinant of A, efficiently in
constant rounds.

Secure computation via the standard definition of determinant is inefficient,
and a secure version of Gaussian elimination for instance, seems inherently se-
quential. After we give our efficient and constant round solution, we discuss some
less efficient alternatives based on combinations of known techniques.

6.1 The Case of Invertible Matrices

We start by solving the problem under the assumption that the shared matrix A
is promised to be invertible and that there exists an efficient constant round pro-
tocol Π0 allowing the network to securely generate a pair ([R], [det(R)]) where
R ∈ Kn,n is an (almost) random invertible matrix and det(R) is its determi-
nant. Note that we do not require that the network can securely compute the
determinant of a random invertible matrix; we merely require that Π0 securely
constructs a sharing of a random invertible matrix together with its determinant.

In the following, let GLn(K) ⊂ Kn,n denote the group of invertible matrices.
Let [A] be a sharing, with A ∈ GLn(K).
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1. Under the assumption that protocol Π0 is given, the network securely gen-
erates ([R], [d]), where R ∈ GLn(K) is random and d = det(R).

2. By the method of Bar-Ilan and Beaver for secure inversion, the network
securely computes [d−1] = [d]−1.

3. The network securely computes [S] = [R] · [A], and reveals S.
4. All compute e = det(S), and by local operations they securely compute

[det(A)] = e · [d−1].

Note that (S, e) gives no information on A. Also note that the protocol is not
private if A is not invertible, since e = 0 exactly when that is the case. A
realization for Protocol Π0 is shown below.

Realization of Protocol Π0. We show an efficient, constant round protocol
for securely generating pairs ([R], [d]), where R ∈ GLn(K) is random and d =
det(R). It achieves perfect correctness. The distribution of (R, d) has a negligible
bias.

Our solution is based on the idea of securely multiplying random matrices
of a special form, and requires that n is negligible compared to q. The protocol
goes as follows.

1. The network securely generates the pair of shared vectors [xL], [xU ], where
xL,xU ∈ Kn both consist of random non-zero entries, and securely computes
[d] = (

∏n
i=1[xL(i)]) · (

∏n
i=1[xU (i)]).

This is done using the methods of Bar-Ilan and Beaver for secure unbounded
fan-in multiplication of non-zero values.

2. The network securely generates n2 − n elements [ri], where the ri ∈ K are
random.
Next, the network defines [L] such that L ∈ Kn,n has xL on its diagonal,
while the elements below the diagonal are formed by the first 1

2 (n2 − n) of
the [ri]’s. The elements above the diagonal are set to 0.
Similarly for the matrix [U ], but with xU on its diagonal, and the remaining
[ri]’s placed above the diagonal. The elements below the diagonal are set to
0.
Finally, the network securely computes [R] = [L] · [U ], Note that det(R) =
d 6= 0. The result of the protocol is set to ([R], [d]).

Correctness is clear. We now discuss privacy. Define L, U as the sub-groups
of GLn(K) consisting of the invertible lower- and upper-triangular matrices, i.e.,
the matrices with non-zero diagonal elements, and zeroes above (resp. below) the
diagonal. For n > 1 these groups are non-abelian. Let D denote the invertible
diagonal matrices, i.e., the matrices with non-zero diagonal elements and zeroes
elsewhere. We have L ∩ U = D, |L| = |U| = q

n2−n
2 (q − 1)n, |D| = (q − 1)n.

Define the map h : L×U −→ GLn(K), (L, U) 7→ LU , and write R = h(L×U)
for the range of h, i.e., R consists of all invertible matrices that can be written
as the product of a lower- and an upper-triangular matrix.

For each R ∈ R, it holds that |h−1(R)| = |D|. Using the fact that L, U and
D are groups and that L ∩ U = D, this claim is easily proved as follows. Let
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R = LU , and let D ∈ D. Then LD−1 ∈ L and DU ∈ U , and R = (LD−1)(DU).
This shows that R has at least |D| pre-images under h. On the other hand, if
R = L0U0 = L1U1, then L−1

1 L0 = U1U
−1
0 . Since L−1

1 L0 ∈ L and U1U
−1
0 ∈ U ,

both are equal to D for some D ∈ D, and so we can write L1 = L0D
−1 and

U1 = DU0.
As a consequence, |R| = |L|·|U|

|D| . Thus we have |R|
|Kn,n| = (1 − 1

q )n, and hence,
|R|

|GLn(K)| > (1 − 1
q )n ≥ 1 − n

q .

These facts imply that if (L, U) is chosen uniformly at random from L × U ,
then R = LU is distributed uniformly in R, which is almost all of the invertible
matrices when n is negligible compared to q. 4

We note that it is possible to devise an alternative for protocol Π0, where each
player in the network shares a random invertible matrix and a value he claims is
the determinant. Invertibility is proved using Bar-Ilan and Beaver’s techniques.
Using cut-and-choose techniques it can be established that this value is indeed
the determinant. The desired output is obtained by taking products. However,
this method introduces correctness errors, and is less efficient compared to the
above solution.

6.2 The General Case of Determinant

If A ∈ Kn,n is no longer guaranteed to be invertible the situation becomes
slightly more involved. Although the protocol would still compute the determi-
nant correctly, security is not provided if the matrix is singular: by inspection of
the previous protocol, the publicly available value e is equal to 0 exactly when
A is singular. Moreover, any blinding technique in which a product of A with
randomizing matrices is revealed, provides a lower-bound on A’s rank. 5

We now propose our solution for secure computation of determinant. Let [A]
be a sharing, where A ∈ Kn,n is an arbitrary matrix. The purpose of the network
is to securely compute a sharing [det(A)] efficiently in constant rounds.

Let fA(X) = det(X · In − A) ∈ K[X] denote the characteristic polynomial
of A, where In denotes the n × n identity matrix. Then fA(0) = (−1)n · det(A)
and deg f = n. By Lagrange Interpolation, for distinct z0, . . . , zn ∈ K, there are
l0, . . . , ln ∈ K, only depending on the zi’s, such that det(A) = (−1)n · fA(0) =
(−1)n · ∑n

i=0 li · fA(zi) = (−1)n · ∑n
i=0 li · det(ziIn − A).

Now, for z ∈ K, it holds that zIn − A ∈ GLn(K) if and only if fA(z) 6= 0,
i.e., z is not an eigenvalue of A.

Since A has at most n eigenvalues, the matrix zIn − A is invertible when z
is randomly and independently chosen, except with probability at most 1/q.

4 We note that all invertible matrices can be brought into “LUP” form, where L and U
are invertible matrices in lower-, resp. upper-triangular form, and P is a permutation
matrix. However, choosing each of these at random, LUP does not have the uniform
distribution on GLn(K). Moreover, securely computing the sign of the permutation
would pose a separate problem at this point.

5 The rank of the product of matrices is at most equal to the smallest rank among
them.
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This enables a reduction of the problem of securely computing [det(A)] to
that of secure computation of the determinant of a number of invertible matrices,
which now we know how to do, and proceed as before.

1. In parallel, the network securely generates [z0], . . . , [zn], where the zi are ran-
domly distributed in K. They reveal the zi’s. Except with negligible proba-
bility, the zi’s are distinct (which can be checked of course) and all matrices
ziIn − A are invertible. For i = 0, . . . , n, the network securely computes by
local computations [ziIn − A] = ziIn − [A]

2. Using our protocol for securely computing the determinant of an invertible
matrix, they securely compute in parallel [det(z0In−A)], . . . , [det(znIn−A)].

3. Finally, the network securely computes [det(A)] = (−1)n ·∑n
i=0 li ·[det(ziIn−

A)], where the li’s are the interpolation coefficients.

Note that if some zi happens to be an eigenvalue of A, this becomes publicly
known, since the sub-protocol for securely computing the determinant of an
invertible matrix noticeably fails in case it is not invertible. On the other hand,
it also means that if zi is not an eigenvalue of A, this also becomes known, and
the adversary can rule out all matrices A′ of which zi is an eigenvalue.

However, it is only with negligible probability that the adversary learns an
eigenvalue. The actual probability depends on A, but this poses no privacy prob-
lems since it is negligible anyway.

Also, the adversary could predict with almost complete certainty in advance
that zi is not an eigenvalue. Hence we have almost perfect privacy, and perfect
correctness.

6.3 Secure MPC of Characteristic Polynomial

Let M ∈ Kn+1,n+1 be the Vandermonde matrix whose i-th row is (1, zi, . . . , z
n
i ),

and write y and f for the (column) vectors whose i-th coordinates are equal to
yi and to the coefficient of Xi in fA(X), respectively. Then f = M−1y.

The protocol above not only securely computes the determinant [det(A)],
but in fact the coefficient vector f of the characteristic polynomial, if we replace
the last step by [f ] = M−1 · ([det(z0In − A)], . . . , [det(znIn − A)])T . Note that
we might as well omit computation of the leading coefficient of fA(X) since it is
equal to 1 anyway.

6.4 Alternative Protocol for Unbounded Multiplication

As an aside, we note that a similar reduction via interpolation yields an al-
ternative protocol for unbounded multiplication. Namely, consider [a1], . . . , [an]
with the ai’s in K, and define f(X) =

∏n
i=1(X − ai). By applying interpolation

through random points on f(X), we get a similar reduction to the much simpler
case of unbounded multiplication of non-zero field elements. Zero-error can be
obtained by a method described in Section 9.
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6.5 Other Approaches

We discuss some interesting but less efficient alternatives based on combinations
of known results, in particular from Parallel Computing.

First we consider a combination of techniques due to Mahajan and Vinay
[21], Ishai and Kushilevitz [16,17], and Beimel and Gál [4].

For our purposes, an Arithmetic Program (AP) [4] is a weighted directed
acyclic graph with two distinguished vertices s, t. Each edge is labelled by a
variable that can take on a value in a finite field K. The function computed
by an AP is defined by taking a path from s to t, multiplying the weights,
and summing up over all such paths to finally obtain the function value. The
computations take place in the finite field K. By elementary algebraic graph
theory, the function value shows up as the (s, t)-entry in the matrix (I − H)−1,
where H is the adjacency matrix of the weighted graph. Ishai and Kushilevitz
[16,17] nicely exploit this fact in their construction of representations of functions
in terms of certain degree-3 randomized polynomials obtained from branching
programs.

The result of [21] in particular says that there is an AP with roughly n3

vertices for computing determinant. The weights are entries from the matrix of
interest, where the correspondence does not depend on the actual matrix.

Therefore, determinant can in principle be securely computed using a single
secure matrix inversion. Unfortunately, this matrix has dimension greater than
n3. Bar-Ilan and Beaver’s inversion applied to the matrix I − H, essentially
requires secure multiplication of two n3 × n3 matrices. Methods for securely
computing a sharing of just the (s, t)-entry of (I − H)−1 rather than the whole
matrix (via a classical identity relating inverse with determinants) seem to re-
quire secure computations of determinant in the first place.

Another approach can be based on Leverier’s Lemma (see e.g. [20]), which
retrieves the coefficients of the characteristic polynomial by inverting a certain
lower-triangular matrix, where each entry below the diagonal is the trace of a
power of the matrix of interest. This lemma is obtained by combining Newton’s
identities with the fact that these traces correspond to sums of powers of the
characteristic roots.

If K = p, with p a prime greater that the dimension n of the matrix, it is
possible to devise a secure protocol for characteristic polynomial whose com-
plexity is dominated by securely computing all i-th powers of the matrix, for
i = 1 . . . n. These terms can be computed separately using techniques of Bar-
Ilan and Beaver, or by using the observation that obtaining the n powers of an
n×n-matrix is no harder than inverting an n2 ×n2-matrix (see e.g. [20] for more
details).

Note that our solution for large fields essentially just requires secure multi-
plication of two n×n-matrices (due to Bar-Ilan and Beaver’s matrix inversion) if
the matrix is promised to be invertible, and n times that amount in the general
case.
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7 Secure MPC of Rank

The purpose of the network is to securely compute the rank of a matrix A
efficiently in constant rounds. An important feature of our solution is that the
network in fact securely computes a sharing [r], where r ∈ Kn encodes the rank
of A in unary. This means that, when viewed as a column vector, all non-zero
entries of r are all equal to 1 and occur in the bottom r positions. Rank encoded
this way facilitates an easy way to securely compare the ranks of given matrices,
as we show in an application to the subspace membership problem later on.

We note that Ishai and Kushilevitz [16,17] have proposed an elegant and effi-
cient protocol for secure computation of rank. Their protocol produces a random
shared matrix with the same rank as the shared input matrix. This particular
way of encoding rank, however, seems to limit applicability in a scenario of
ongoing secure multi-party computations.

In some special cases, such as when a square matrix A is in triangular form,
its rank r(A) can be read off its characteristic polynomial fA(X), as n− t, where
Xt is largest such that it divides fA(X), and n is its degree. This is not always
the case.

Mulmuley [22] proved the following result. Let S ∈ Km,m be symmetric. Let
Y be an indeterminate, and define the diagonal matrix D = (dii) ∈ K[Y ]m,m

with dii = Y i−1. Let fDS(X) ∈ K[X, Y ] denote the characteristic polynomial of
DS ∈ K[Y ]m,m. Then r(S) = m− t where t is maximal such that Xt divides the
characteristic polynomial fDS(X) ∈ K[X, Y ] of DS. In other words, fDS(X) =
Xm−r(S) · ∑r(S)

i=0 fi(Y )Xi, where f0(Y ) 6= 0 and fr(S)(Y ) = (−1)m.
If S is not symmetric, it can be replaced by the symmetric matrix S∗, which

has ST in its lower-left corner and S in its upper-right corner, while the rest is
set to 0. Both dimension and rank of S∗ are twice that of S.

We exploit this result as follows. Let [A] be a sharing with A ∈ Kn,n. 6.
The network first constructs a sharing [A∗] of the symmetric matrix A∗ ∈

K2n,2n, which is done locally in a trivial manner. Next, they securely generate
[y0] with y0 random in K, and reveal it. Define D0 ∈ K2n,2n as the matrix D
from above, with the substitution Y = y0.

If f0(y0) 6= 0, then 2 · r(A) = 2n − t, with Xt largest such that it divides
the characteristic polynomial fD0A∗(X) ∈ K[X] of the matrix D0A

∗. Since the
degree of f0(Y ) is at most n(2n−1) (as follows from simple inspection), f0(y0) 6=
0, except with probability n(2n − 1)/q.

The next step for the network is to securely compute fD0A∗(X). To this end,
they publicly compute D0 from y0, and finally by local computations [D0A

∗] =
D0[A∗]. Using our Characteristic Polynomial Protocol they securely compute a
sharing of the coefficient vector of the polynomial.

Viewing this as a column vector whose i-th entry is the coefficient of Xi in
the polynomial, i = 0 . . . 2n − 1, and neglecting the coefficient of X2n, it has its
top t entries equal to zero, while the t + 1-st is non-zero. By discarding “every

6 Note that if A is not square, say A ∈ Kn,m, then we can easily extend A to a square
matrix whose rank is the same, by appending all-zero rows or columns. This leads
to an s × s-matrix where s = max(n, m).
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second” entry we obtain a vector f ∈ Kn whose top n − r entries are zero, while
its n − r + 1-st entry is non-zero, where r = r(A).

Definition 1 Let r ∈ Kn be a column-vector, and let 0 ≤ r ≤ n be an integer.
We say that r is an almost-unary encoding of r if its bottom r entries are non-
zero, while it has zeroes elsewhere. If the non-zero entries are all equal to 1, we
say that r is a unary encoding of r.

If H ∈ Kn,n is a random lower-triangular matrix, then Hf has its top n − r
entries equal to 0, while its bottom r entries are randomly and independently
distributed in K. Hence, except with probability at most r/q ≤ n/q, Hf is a
random almost-unary encoding of A’s rank r. The actual probability depends
on the rank, but it is negligible anyway.

The network now simply securely generates a sharing [H] of a random lower-
triangular, reveals it, and non-interactively computes the almost-unary encoding
of A’s rank as [Hf ] = H[f ].

A unary encoding [r] of A’s rank r can be securely computed from [Hf ] by
applying the protocol Π1 mentioned earlier. This protocol starts from a sharing
[x] with x ∈ K, and securely computes [h(x)] in constant rounds, where h(x) = 1
if x 6= 0 and h(x) = 0 if x = 0. 7

Applying protocol Π1 in parallel to each of the entries of the almost-unary
encoding Hf , we get the desired result. We show one realization of such a protocol
below. A less efficient, but more general method was shown in Section 3.

7.1 Protocol Π1 Based on Secure Exponentiation

We assume that the field K has “small” characteristic p, and that the MPC
protocol over K run by the network can be viewed as a lifting from protocols
over GF(p) to K.

Let [x] with x ∈ K be a sharing. Note that h(x) = xq−1, where q = |K|.
The first idea that comes to mind is to securely perform repeated squaring.

This requires O(log q) rounds of communication however. Applying the constant
round protocol of Bar-Ilan and Beaver for unbounded fan-in secure multiplication
to our problem is no option either, since in this case the communication overhead
will be polynomial in q instead of log q.

Another idea is to apply Bar-Ilan and Beaver’s protocol for secure inversion.
Namely, the network would securely compute [y], where y = x−1 if x 6= 0 and
y = 0 if x = 0, and finally compute [h(x)] = [x] · [y]. Unfortunately, the network
would learn that x = 0 in the first step, as can be seen by inspection of the
Bar-Ilan and Beaver method. Hence, the security requirements are contradicted.
We note that the function h defined above is closely related to the Normalization
Function defined in [1], which tells whether two elements are equal or not. They
show how this function (and hence h as well) can be securely computed in
constant rounds if the field K is small.

We need an alternative approach which works for exponentially large fields.
Our solution comes at the expense of assuming small characteristic. Write d for
7 As an aside, note that h(x) is the rank of the 1 × 1-matrix x.
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the degree of K over GF(p). So q = pd = |K|. Let 1 ≤ s ≤ q − 1 be a given,
public integer, and let [x] with x ∈ K be a sharing. This is how they can securely
compute [x]s, efficiently in constant rounds. Setting s = q−1, we get the desired
protocol Π1.

Taking p-th powers in K is a field automorphism of K that leaves GF(p)
fixed. In particular this means that this map can be viewed as an automorphism
of K as a GF(p)-vectorspace. Let B ∈ GLd(GF(p)) denote the (public) matrix
representing this map, with respect to the chosen basis. Then for i ≥ 1, the
matrix Bi ∈ GLd(GF(p)) represents taking pi-th powers.

For i = 0 . . . d − 1, write zi = xpi

. Let s =
∑d−1

i=0 sip
i be the p-ary repre-

sentation of s. Then we have xs = x
∑d−1

i=0
sip

i

=
∏d−1

i=0

(
xpi

)si

=
∏d−1

i=0 zsi
i . If

(x0, . . . , xd−1) ∈ GF(p)d is the vector representation of x, then the vector rep-
resentation of zi is Bi(x0, . . . , xd−1)T . Since Bi is public and since the vector
representation of x are available as sharings, the network can securely compute
the vector representation of [zi] by local computations. Next, the network se-
curely computes the si-th powers of the zi, running Bar-Ilan’s and Beaver’s
unbounded fan-in secure multiplication protocols in parallel. Each of these steps
costs O(p2) secure multiplications, so the total number is O(log q ·p2). But since
p is “small” (for instance, constant or polynomial in log q)) this is efficient. The
protocol is finalized by securely multiplying the d = O(log q) results together
using the same technique.

7.2 Application to Sub-space Membership Decisions

Using our Rank Protocol, the network can securely compute a shared decision
bit [b] from [A] and [y], where b = 1 if the linear system Ax = y is solvable and
b = 0 otherwise.

Defining Ay by concatenating y to A as the last column, we have 1 − b =
r(Ay) − r(A), where r(·) denotes the rank of a matrix and b = 1 if the system is
solvable, and b = 0 otherwise.

Suitably padding both matrices with zeroes, we make them both square of
the same dimension, while their respective ranks are unchanged. Running the
Rank Protocol in parallel, the network now securely computes unary encodings
[r], [ry] of the ranks of A and Ay, respectively. It holds that r(A) = r(Ay) exactly
when r = ry.

Next, the network securely computes [u] = [r] − [ry] by local computations,
securely generates [v] with v random in Kn, and finally securely computes [v] =
[u] · [vT ]. Except with negligible probability 1/q, it holds that v = 0 if b = 1 and
v 6= 0 if b = 0. The network securely computes [b] = 1 − [h(v)], using protocol
Π1.

8 General Linear Systems

Let [A] and [y] be sharings, where A is a square matrix, 8 say A ∈ Kn,n, and
y ∈ Kn. The purpose of the network is to securely compute [b], [x] and [B],
8 As in the Rank Protocol, the assumption that A is a square matrix is not a limitation.
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efficiently and in constant rounds, with the following properties. If the system
is solvable, b = 1 and x ∈ Kn and B ∈ Kn,n are such that Ax = y and the
columns of B generate the null-space Ker A (optionally, the non-zero columns
form a basis). If the system is not solvable, b = 0, and [x], [B] are both all-zero.

Our solution is based on a Random Sampling Protocol which we describe
first.

8.1 Secure Random Sampling

Let y be given to the network, and assume for the moment that the linear system
Ax = y has a solution. The purpose of the network is to securely compute [x],
where x is a random solution of Ax = y, efficiently and in constant rounds.
Note that in particular this implies a means for the network to securely sample
random elements from Ker A by setting y = 0.

Our approach is to reduce the problem to that of solving a regular system,
since this can be handled by the methods of Bar-Ilan and Beaver. Using the
Sub-Space Membership Protocol the network first securely computes the shared
decision bit [b] on whether the system has a solution at all. Applying that same
protocol in an appropriate way, they are able to select a linearly independent
generating subset of the columns of A, and to replace the other columns by
random ones. With high probability θ, this new matrix T is invertible: if r is

the rank of A, then θ = (qn−qr)···(qn−qn−1)
qn ≥

(
1 − 1

q

)n−r

≥ 1 − n
q , which differs

from 1 only negligibly.
This means that, with high probability, the methods of Bar-Ilan and Beaver

can be applied to the system Tx1 = y in the unknown x1 . More precisely, they
are applied to the system Tx1 = y−y0, where y0 is a random linear combination
over the columns of A that were replaced by columns of R in the construction of
T . In other words, y0 = Ax0 for x0 chosen randomly such that its i-th coordinate
equals 0 if ci = 1.

If T is indeed invertible and if Ax = y has a solution at all, then the coor-
dinates of x1 corresponding to the “random columns” in T must be equal to 0.
Then x = x0 +x1 is a solution of Ax = y, since Ax = Ax0 +Ax1 = y0 +Tx1 =
y0 + (y − y0) = y. It is also clearly random, since x1 is unique given y and
random x0.

The result of the protocol is computed as ([b], [b] · [x]), where b is the decision
bit computed at the beginning.

Here are the details. Write k1, . . . ,kn to denote the columns of A, and set
k0 = 0. Define the vector c ∈ Kn by ci = 1 if ki is not a linear combination of
k0, . . . ,ki−1, and ci = 0 otherwise. Note that B = {ki : ci = 1} is a basis for the
space generated by the columns of A.

The shared vector [c] is securely computed by applying the Sub-Space Mem-
bership Protocol in parallel to the pairs ([Ai−1], [ki]), where Ai is the matrix
consisting of the columns k0, . . . ,ki−1, and “negating” the resulting shared de-
cision bits.

Write [C] for the shared diagonal matrix with c on its diagonal. We ’ll use
this matrix as a selector as follows. After generating a random shared matrix
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[R], the network replaces the columns in A that do not belong to the basis B
by corresponding columns from R, by securely computing [T ] = [A] · [C] + [R] ·
([I − C]). As argued before, T is invertible with high probability.

Next, they securely generate a random shared vector [x0] with zeroes at the
coordinates i with ki ∈ B, by generating [x′

0] randomly, and securely multiplying
its i-th coordinate by [1−ci], i = 1, . . . , n. The shared vector [y0] is now securely
computed as [y0] = [A] · [x0].

Using Bar-Ilan and Beaver’s method for securely solving a regular system,
the network computes [x1] = [T ]−1 · ([y]− [y0]), and finally [x] = [x0] + [x1] and
[b] · [x]. They take ([b], [b] · [x]) as the result.

8.2 General Linear Systems Protocol

Let [A], [y] be sharings, where A ∈ Kn,n and y ∈ Kn. If x is a solution of
Ax = y, then the complete set of solutions is given by x + Ker(A).

Using the Random Sampling Protocol it is now an easy task for the network
to securely solve a system of linear equations efficiently in constant rounds.

Assume for the moment that the system is solvable. The network first se-
curely generates [u1], . . . , [un], where the ui are independently random samples
from Ker A. With high probability, these actually generate Ker A. The network
defines [B] such that the i-th column of B is ui. Next, they securely compute [x],
where x is an arbitrary solution of the linear system. The result of the protocol
is ([x], [B]).

To deal with the general case, where the system may not be solvable, we
first have the network securely compute [b] using the Sub-Space Membership
Protocol, where b is the bit that indicates whether it is solvable. After [x], [B]
has been securely computed, they securely compute ([b] · [x], [b] · [B]), and take
([b], ([b] · [x], [b] · [B])) as the result.

9 Achieving Perfect Correctness and Privacy

By inspection of our protocols, non-zero error probabilities arise when the net-
work happens to select zeroes of “hidden” polynomials. Since upper-bounds on
their degree are known, such errors can be avoided altogether by passing to an
extension field and having the network select elements with sufficiently large
algebraic degree instead. This, together with some other minor modifications,
leads to protocols with perfect correctness in all cases. In [11] we study efficient
alternatives with perfect privacy, thereby avoiding the need for large fields.
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