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1 Introduction

Concurrent software and hardware systems play an increasing rôle in today's
applications. Due to the large number of states and to the high degree of non{
determinism arising from the dynamic behavior of such systems, testing is gen-
erally not suÆcient to ensure the correctness of their implementation. Formal
speci�cation and veri�cation methods are therefore becoming more and more
popular, aiming to give rigorous support for the system design and for establish-
ing its correctness properties, respectively (cf. [2] for an overview).

In view of the inherent complexity of formal methods it is desirable to pro-
vide the user with tool support. It is even indispensable for the design of safety{
critical concurrent systems where an ad hoc or conventional software engineering
approach is not justi�able. There is one particularly successful automated ap-
proach to veri�cation, called model checking, in which one tries to prove that (a
model of) a system has certain properties speci�ed in a suitable logic.

During the recent years several prototypes of model{checking tools have been
developed, e.g., CWB [13], NCSU{CWB [4], SPIN [5], and the symbolic model
checker SMV [9]. Most of these are tailored to a speci�c setting, choosing, e.g.,
the CCS process algebra with transition{system semantics as the speci�cation
language and o�ering model checking for the modal �{calculus.

However, in the theoretical modeling and in the implementation of concurrent
systems there exists a wide range of speci�cation formalisms, semantic domains,
logics, and model{checking algorithms. Our aim is therefore to o�er a modular
veri�cation system which can be easily adjusted to di�erent settings. We started
out in 1998 with the development of an initial version of our tool, called Truth,
which is described in Section 2. It was complemented later by rapid prototyping
support for speci�cation languages, provided by the SLC speci�cation language
compiler generator presented in Section 3. The most recent component of the
Truth Veri�cation Platform is a dedicated parallel version running on work-
station clusters which is intended for high{end veri�cation tasks, and which is
brie
y described in Section 4.

2 Truth: The Basic Tool

Here we give a short account of the actual Truth tool. For a more thorough
presentation, the reader is referred to [6] and to [16], where di�erent releases can
be downloaded.
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In its basic version Truth supports the speci�cation and veri�cation of con-
current systems described in CCS, a well{known process algebra [12]. To support
the understanding of the system's behaviour, the speci�cation can be graphically
simulated in an interactive and process{oriented way. Figure 1 shows a screen-
shot for the simulation of a two{place bu�er process B2, composed in parallel of
two commicating instances of a unary bu�er B1.

Fig. 1. A Process-Orientted Simulation of a Two-Place Bu�er.

From the speci�cation a labeled transition system is built. Its desired prop-
erties can be expressed using the �{calculus, a powerful logic which allows to
describe various safety, liveness, and fairness properties. It semantically sub-
sumes the temporal logics CTL (whose operators are implemented as macros in
Truth), CTL�, and LTL.

Truth o�ers several model checking algorithms, such as the tableau{based
model checker proposed in [3]. It has fairly good runtime properties and supports
the full �{calculus. Furthermore, it is a local model checking algorithm, i.e., it
has the advantage that in many cases only a part of the transition system has
to be built in order to verify or to falsify a formula.

Additionally, a local game{based algorithm has been integrated which can
be used to demonstrate the invalidity of a formula by means of an interactive
construction of a counterexample [7,15]. Again, the process visualization com-
ponent is used to play and visualize this game between the user and the Truth
tool in order to support debugging of error{prone speci�cations.
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As mentioned in the introduction, we have chosen a modular design that
allows easy modi�cations and extensions of the system. In particular, this feature
is exploited by a compiler{generator extension which will be described in the
following section. Figure 2 gives an overview of the software architecture.
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Fig. 2. Structure of Truth/SLC.

Truth is implemented in Haskell, a general{purpose, fully functional pro-
gramming language. The choice of a declarative language serves a number of
purposes. Changes to the system become easier when using a language which
lacks side e�ects. Moreover many algorithms which are employed in the context
of model checking have a very concise functional notation. This makes the im-
plementation easier to understand. Furthermore, in principle it allows to prove
the correctness of the implementation which is crucial for a model{checking tool
to be used in safety{critical applications. By employing optimization techniques
such as state monads for destructive updates we achieve a runtime behaviour
which is competitive with other model{checking tools supporting process speci-
�cations in CCS.

3 SLC: The Speci�cation Language Compiler Generator

A notable extension of Truth is the SLC Speci�cation Language Compiler Gen-
erator which provides generic support for di�erent speci�cation formalisms [8].
Given a formal description of a speci�cation language, it automatically generates
a corresponding Truth frontend (cf. Figure 2).

More speci�cally, the syntax and semantics of the speci�cation language has
to be described in terms of Rewriting Logic, a uni�ed semantic framework for
concurrency [11]. From this de�nition a compiler is derived which is capable
of parsing a concrete system speci�cation and of computing the corresponding
semantic object, such as a labeled transition system. This compiler is linked
together with the Truth platform to obtain a model{checking tool which is
tailored for the speci�cation language in question.

The description of the speci�cation language formalism consists of three
parts. First, the syntax of the language has to be given in terms of a context
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free grammar (with typing information). The second part is a set of conditional
rewrite rules de�ning the operational semantics.

Finally, the description contains a set of equations between process terms
which identify certain states of the respective system, thus reducing the state
space. Considering CCS for example, we can de�ne equations like x k y = y k x
and x k nil = x. Then the resulting transition system is minimized with respect
to symmetry, and, since \dead" nil processes are removed, it is often �nite{state
although the original semantics would yield an in�nite system.

We have successfully developed an instance of Truth for a version of CCS re-
specting the previous equations. To verify that our approach is also applicable in
connection with other models of concurrency than labeled transition systems, we
constructed an implementation for Petri nets. Currently we employ our compiler
generator to support the distributed functional programming language Erlang.

4 Truth: The Parallel Version

Despite the improvements of model checking techniques during the last years,
the so{called state space explosion still limits its application. While partial order
reduction [14] or symbolic model checking [10] reduce the state space by orders
of magnitude, typical veri�cation tasks still last days on a single workstation or
are even (practically) undecidable due to memory restrictions.

On the other hand, cheap yet powerful parallel computers can be constructed
by building Networks Of Workstations (NOWs). From the outside, a NOW ap-
pears as one single parallel computer with high computing power and, even more
important, huge amount of memory. This enables parallel programs to utilize the
accumulated resources of a NOW to solve large problems.

Hence, it is a fundamental goal to �nd parallel model checking algorithms
which then may be combined with well{known techniques to avoid the state space
explosion to gain even more speedup and further reduce memory requirements.

We developed a parallel model checking algorithm for the alternation{free
fragment of the �-calculus. It distributes the underlying transition system and
the formula to check over a NOW in parallel and determines, again in parallel,
whether the initial state of the transition system satis�es the formula.

Systems with several millions of states could be constructed within half an
hour on a NOW consisting of up to 52 processors. We found out that the algo-
rithm scales very well wrt. run{time and memory consumption when enlarging
the NOW. Furthermore, the distribution of states on the processors is homoge-
neous.

While the demand for parallel veri�cation procedures also attracted several
other researchers (on overview can be found in [1]), Parallel Truth is|to our
knowledge|the �rst parallel model checking tool that allows the validation of
safety and liveness properties.

A thorough presentation of this algorithm and its runtime properties can be
found in [1].
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