
Low Communication Parallel Multigrid

A Fine Level Approach

Marcus Mohr

System Simulation Group of the Computer Science Department,
Friedrich-Alexander-University Erlangen-Nuremberg

Marcus.Mohr@cs.fau.de

Abstract. The most common technique for the parallelization of multi-
grid methods is grid partitioning. For such methods Brandt and Diskin
have suggested the use of a variant of segmental refinement in order to re-
duce the amount of inter–processor communication. A parallel multigrid
method with this technique avoids all communication on the finest grid
levels. This article will examine some features of this class of algorithms
as compared to standard parallel multigrid methods. In particular, the
communication pattern will be analyzed in detail.

Keywords: elliptic pde, parallel multigrid, domain decomposition, com-
munication cost

1 Introduction

There exists a great variety of different parallel architectures, ranging from clus-
ters of workstations to massively parallel machines. In this paper we will consider
the case that the number of processors is significantly smaller than the number of
grid points and that memory is distributed. With this background the most com-
mon approach to the parallelization of numerical algorithms is grid partitioning.
In the special case of multigrid methods nested levels of grids are employed. This
approach introduces the need to communicate values related to the points on or
near the inner boundaries. The cost of communication naturally limits the pos-
sible speedup of a parallel method. This cost can be alleviated by sophisticated
programming techniques, e.g. by overlapping communication with calculation.
Generally the communication cost is determined by the number of messages

that must be exchanged and the number of bytes that have to be transmitted. In
multigrid the number of messages is proportional to the number of domains and
therefore independent of the grid level. The number of bytes on the other hand
is strongly related to the coarseness of the respective level since it is coupled to
the number of interface points.
This leads to another aspect, namely the parallel efficiency of the algorithm,

determined by the ratio between communication and computation. This ratio
is directly proportional to the ratio of volume and surface of the subgrids and
therefore becomes worse on the coarser grid levels. This is the starting point for

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 806–814, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Low Communication Parallel Multigrid 807

many approaches to improve parallel multigrid, like e.g. coarse grid agglomer-
ation, multiple coarse grid and concurrent algorithms, see e.g. [6], or methods
that employ different cycle schemes like e.g. the U–cycle [9].
A radical approach to reduce fine grid communication has been suggested by

Brandt and Diskin in [3]. Here an algorithm that completely eliminates the need
for inter–processor communication on several of the finest grids is presented. In
the following we will examine a variant of this algorithm. We want to depict some
of its characteristics and problems and compare its communication requirements
to that of a “conventional” parallel multigrid algorithm. The algorithm will
be introduced in Sect. 2. We will compare its communication requirements to
that of a “conventional” parallel multigrid algorithm in Sect. 3 and analyze the
communication pattern in Sect. 4.

2 Algorithm of Brandt & Diskin

In [3] Brandt and Diskin introduced a parallel multigrid algorithm completely
without interprocessor communication on several of the finest levels. This was
achieved by the use of segmental–refinement–type procedures, which were orig-
inally proposed as out–of–core techniques on sequential computers, cf. e.g. [1].
Since the bulk of communication takes place on the fine grids, it may be espe-
cially attractive to save this cost. The effectiveness of such a technique depends
on specific machine and problem parameters. The potential benefits are most
impressive when communication is slow and expensive with respect to compu-
tation.
Their algorithm can be described as follows. Starting from a hierarchy of

grids, in a preliminary step all levels, except the coarsest one, are decomposed
into as many overlapping subdomains as processors are available. We get se-
quences of nested subdomains, where a subdomain on a coarser grid occupies a
larger area than the corresponding subdomain on the next finer grid. Each such
sequence is then assigned to a processor, which starts on it a standard V–cycle,
descending through its grid hierarchy. In this process it does not exchange data
with its neighbours. When the second coarsest level is reached, the local (ap-
proximate) solutions from all processors are used to formulate a global coarse
grid problem. This is then solved exactly by some unspecified algorithm, possi-
bly of course a standard parallel multigrid method. The solution of the global
coarsest grid problem is used by each processor to correct its local solution ap-
proximation on the second coarsest level. As in the following correction steps
on the finer levels the values at the interfaces are included into the correction.
After this step each processor finishes its V–cycle, again without communication
with its neighbours. The algorithm uses the following basic principles to reduce
communication:

– Clearly some exchange of information between the processors is inevitable
to solve the problem. In the algorithm by Brandt and Diskin however, this
data exchange is restricted to the coarse grid correction from the common
coarsest grid. So there is no communication on the finer grid levels.



808 Marcus Mohr

– To compensate errors introduced by the missing exchange of information,
each subdomain has a buffer area around it, that fulfills two purposes. On
the one hand, if an appropriate relaxation scheme, like e.g. red–black Gauß–
Seidel is chosen, the buffer slows the propagation of errors due to wrong
values at the interfaces. On the other hand, as in standard multigrid, the
coarse grid correction introduces some high–frequency error components on
the fine grid. Since the values at the interfaces cannot be smoothed, the
algorithm cannot eliminate these components. But in elliptic problems high–
frequency components decay quickly. So the buffer area keeps these errors
from affecting the inner values too much.

– Nevertheless the algorithm will in general not be able to produce an exact
solution of the discrete problem. While this may seem prohibitive at first
glance, one should remember that, when solving a PDE, it is the contin-
uous solution one is really interested in. Since the latter is represented by
the discrete solution only up to the discretization error, the result of the
algorithm is still valuable, as long as it can be guaranteed, that its algebraic
error remains at least smaller than the discretization error.

– Since the overlap areas are included in the V–cycle, the algorithm trades
communication for calculation. Thus savings in communication time may
be partly compensated by the extra computation. This depends on several
factors, such as size of the problem, number and arrangement of subgrids,
extension of the overlap areas, and the MFLOP– and transfer–rates of the
applied hard– and software. It will be further examined in the next section.

A crucial aspect of the above algorithm is of course the choice of an appropriate
size for the overlap between subdomains. Until now there exists no general a
priori error estimate that would allow to give a bound for the algebraic error
depending on the overlap parameter J , but the experiments in [3,7,8] indicate
that already small overlaps can produce reasonable results.

3 Efficiency Analysis

In this section we will explore how much overall computation time can be saved
by the trade–off between communication and additional computation in the over-
lap areas. As mentioned above this depends on several architecture and problem
parameters. To examine this question we compare a “standard” parallel V–cycle
for the coarse grid correction (CGC) to an identical V–cycle that does not ex-
change data between processors, but instead employs overlapping subdomains.
We model the times spent with computation and communication within the
algorithm from the following simplifying assumptions:

– Data exchange between processors is performed by message passing.
– Communication and calculation are sequential and cannot be overlapped.
– A processor can send and receive messages simultaneously.



Low Communication Parallel Multigrid 809

We now define a relative time saving TRS per grid level in the following way

TRS :=
T (stand)− T (nocom)

T (stand)
. (1)

Here T (nocom) is the time for the variant without communication and T (stand)
for the standard variant with communication. The times include all the work
that has to be done for the specific grid level within one cycle of the CGC–
scheme, that is smoothing, calculation of the defect, restriction of the defect,
prolongation of the coarse grid solution and adding of the correction. They can
be split in the following way

T (stand) = Tcalc(stand) + Tcomm (2)

T (nocom) = Tcalc(stand) + Tcalc(buffer) . (3)

To determine the times for communication and calculation we use the following
two models

Tcalc =
γ

np

(
νFsmoothN1 + FmultiN2

)
(4)

Tcomm =
1
np

(
αM + βW

)
(5)

with the parameters

α latency Fsmooth # of FLOPs per point for smoothing
β bandwidth Fmulti # of FLOPs per point for CGC
γ time per FLOP N1 # of points that are smoothed
np # of processors N2 # of points included in the CGC
ν sum of smoothing steps M # of messages to be exchanged
W # of words (double precision values) that must be exchanged

As model problem we consider a 2D elliptic boundary value problem dis-
cretized with a 5–point stencil on a logically rectangular grid. We assume the
use of a 9–point stencil for restriction, bilinear interpolation as prolongation,
and red–black Gauß–Seidel as smoother. For the 3D analogue, we use a 7–point
discretization, a 27–point stencil for restriction, and trilinear interpolation. We
assume that our global finest grid is quadratic/cubic with Ndim points (N − 1
being a power of 2), and that we have a logical processor grid. Assuming further-
more that a non–overlapping domain decomposition approach is employed for
the grid partitioning [5,8], we can, for given values of N , px, py and eventually
pz, and for a given overlap parameter J , derive the corresponding values of np,
N1, N2, M , and W . We estimate the number of numerical operations per grid
point as Fsmooth ≈ 9 (2D) / 11 (3D) and Fmulti ≈ 7.5 (2D) / 9 (3D).
Now we choose two different processor types, i.e. two different values for γ,

one with 200 and the other one with 50 MFLOP. We compare the relative time
saving TRS per grid level for different grid sizes N and different communication





Low Communication Parallel Multigrid 811

speeds β. Latency effects are taken into account by assuming that α = const ·β.
The results are shown in Fig. 1 and 2.
Communication hardware may have widely varying performance characteris-

tics. For orientation we present typical parameters for current implementations
of the message passing interface (MPI). The following values have been taken
from [4]:

Myrinet Fast Ethernet Ethernet
α 70µs 630µs 1150µs
β 0.36µs 2µs 11.4µs
α/β 194 315 100

The results in Fig. 1 and 2 confirm the following properties of the approach.
The value TRS of the relative time saving grows with β. This was to be expected,
since the more expensive communication, the greater the gain by replacing it
with computation. However, as the grids become larger TRS is reduced. Although
the margin between communication time Tcomm and additional calculation time
Tcalc(buffer) becomes more and more favorable as N grows, this is to some ex-
tent compensated by the growing influence of the regular computational work
Tcalc(stand) on the overall time. This can clearly be seen by comparing the figures
for the 200 and the 50 MFLOP case. This compensation effect is significantly
smaller in 3D than in 2D, since here the number of points and the amount of
computation is of order O(N3), whereas the number of interface points, respon-
sible for communication, grows like N2. In 2D, on the other hand, these values
are N2 and N , respectively.
As far as the remaining problem parameters are concerned, some properties

can easily be derived. If we consider the overlap parameter J , it can be said
that, as long as N � J , the additional computation grows almost linearly with
J . So we have that TRS = C1 − C2J , with constants Ck depending on the other
parameters. We found that the parameter ν had little influence on TRS, but the
number of processors np does. The relative time saving is more favorable, when
there are more processors, because then there are fewer points on each subgrid
and therefore the above mentioned compensation effect is reduced.

4 The Two Level Brandt–Diskin–Algorithm

In this section we will take a closer look at the two level version of the multilevel
cycle in order to analyze in detail the communication pattern of the algorithm
and show some of its properties. We do this by means of the model problem
on the unit square Ω and restrict us to the case of two subdomains, which will
suffice to explain the basic concept.
We discretize the problem on a fine grid Ωh := {xij | 0 6 i, j 6 N} and a

coarse grid ΩH := {x2i2j | 0 6 i, j 6 N/2}. Here xij = (ih, jh) denotes a grid
point on the ith vertical and the jth horizontal line. We decompose the fine grid
into two equally large parts Ωh,1 and Ωh,2 with the grid line j = N/2 as common



812 Marcus Mohr

boundary. Now we augment each subgrid with a buffer zone of J > 0 grid lines
and get the extended subdomains

Ω̂h,1 :=
{
xij

∣∣∣ j 6 N/2 + J
}
and Ω̂h,2 :=

{
xij

∣∣∣ j > N/2− J
}

. (6)

The quantity J > 0 describes the amount of overlap between the two subdo-
mains. It is required that J is a multiple of 2 to ensure that there are coarse grid
points that coincide with interface points on the fine grid.
Each subgrid is now assigned to one processor p1 and p2. Starting from an

approximation uh
S to the discrete solution of the fine grid problem the algorithm

is defined by iteratively performing the following seven steps:

1. Both processors perform separate pre–smoothing steps.
2. A global approximate solution is composed from the local solutions.
3. A global defect function is composed.
4. With the global solution and defect the right hand side of the coarse grid
equation is calculated according to the FAS–scheme.

5. The coarse grid equation is solved exactly (by whatever means).
6. Each processor uses the coarse grid solution to correct its local approximate.
7. Both processors perform separate post–smoothing steps.

In step 1 and 7 the iteration method used is red–black Gauß–Seidel and there is
no communication between the processors to update values along the interfaces.
As a consequence the local solutions u2,1 and u2,2 will start to differ.
Steps 2 and 3 are of virtual character in the sense that no processor knows

the global functions completely. Formally the global solution uh is computed by
taking the values of the local solutions in the interior of the subdomains Ω2,p

and their average along their common boundary. The same is done for the global
defect function, so that we get

rh(xi,j) :=




rh,1(xi,j) if j < N/2

rh,1(xi,j)/2 + rh,2(xi,j)/2 if j = N/2

rh,2(xi,j) if j > N/2

(7)

Here rh,p = fh − Lhuh,p denotes the local defect functions and fh and Lh are
to be interpreted as restrictions on the extended subdomains Ω̂h,p. We point
out that in general the so defined global defect function rh is different from the
defect fh −Lhuh of the global solution function at points near the interface. We
will return to this fact later on.
In a normal FAS–scheme the correction in step 6 would be performed as

uh
new = uh

old + I
h
H

[
uH − IH

h u
h
old

]
(8)

where uH is the solution of the coarse grid problem obtained in step 5, and
Ih
H and I

H
h are a prolongation and a restriction operator. In the two level cycle

the same is done, but since the global solution is not locally available, the local



Low Communication Parallel Multigrid 813

solution is corrected instead. In order to understand how this correction leads
to an update of information between the processors, we re-write the correction.
We define a prolongation operator

Jh,p
H : ΩH → Ω̂h,p (9)

calculating the values in Ω̂h,p from the respective values in ΩH ∩Ω̂h,p by bilinear
interpolation and a restriction operator

JH
h,p : Ω̂

h,p → ΩH (10)

which computes the values in ΩH ∩ Ω̂h,p through injection and sets the values
in ΩH\Ω̂h,p to zero. Denoting by Ep the identity operator on Ω̂h,p, we get

uh,p
new(P ) =

(
Ep − Jh,p

H JH
h,p

)
uh,p

old (P ) +
(
Jh,p

H uH
)
(P ) . (11)

Consider now a point P = xij that lies in the overlap area Ω̂h,1 ∩ Ω̂h,2.
For such a point both processors store a local solution value. Due to lack of
communication during relaxation these values will in general differ prior to the
correction step. The second term in the correction formula will lead to the same
value on both processors, while the first term in (11 will vanish for points that
can be found on the coarse grid. So in this case the values of the two processors
at the point will coincide after the correction. For points not on the coarse grid,
the first term will in general not vanish. This is due to interpolation errors. So
the values of the two processors will be composed of a common part, namely
(Jh,p

H uH)(xij), and a disturbance, which is a remainder of the old function value
at each processor. In this way an information update between the processors is
embedded into the correction.
In the following, we want to point out some of the features of the two level

cycle. First of all, since the algorithm represents an iteration on the pair of local
solution functions (uh,1

i , uh,2
i ), we have to analyze its convergence.

The experiments in [3] as well as the analysis for the special case of exact
solvers as smoothers in [7] indicate that the algorithm will converge for every
choice of initial values. But contrary to standard multigrid the result depends
on the initial values. These can be grouped into equivalence classes according to
their hierarchical offset, with every class converging to the same limit function.
The reason for this is that the first term in (11) will always reproduce the
hierarchical offset of the solution, while the second term represents a bilinear
interpolation and therefore has no hierarchical offset at all. As a consequence
the hierarchical offset of the initial values along the inner boundaries is never
changed by the algorithm.
As another property we require that for a proper choice of the overlap pa-

rameter J the error with respect to the true discrete solution remains at least
of the same order of magnitude as the discretization error. In [3,7] it was shown
by experiment that this can already be achieved with an overlap of 2 to 4 grid
lines. The accuracy can be improved, by a different way to compose a global



814 Marcus Mohr

defect function rh. As already mentioned, the global defect function when set
up according to (7) does not match the defect r̄h := fh − Lhuh of the global
solution approximation. If we use r̄h as the global defect, the algebraic error
will be smaller than with the use of rh and it will strongly be restricted to the
vicinity of the common boundary of the subdomains. In this case also smaller
overlaps are sufficient to keep the algebraic error smaller than the discretization
error and this will often be achieved in a smaller number of cycles, [7,8].
This approach does not cause extra cost. Since the calculation of the defect

fh − Lhuh as well as the prolongation by full weighting and the application of
the coarse grid operator LH are linear operations the amount of communication
needed to set up the coarse grid equation is the same independent of whether
we use r̄h or rh.

5 Conclusions

In this paper we have shown that the approach by Brandt and Diskin to paral-
lelize multigrid methods can be used to reduce overall computation time. This
remains valid even for high–speed communication infrastructures as long as the
processor speeds are fast enough. We have presented an analysis of the communi-
cation pattern of the two–level–version of their algorithm and have shown a way
to improve its performance. Questions that remain open are a priori estimates
for the algebraic error of the algorithm as well as convergence rates.

References

1. A. Brandt, Multi–level adaptive solutions to boundary value problems, Mathe-
matics of Computation 31 (1977) 333 - 390.

2. A. Brandt, B. Diskin, Multigrid Solvers on Decomposed Domains, Contemporary
Mathematics 157 (1994) 135 - 155.

3. B. Diskin, Multigrid Solvers on Decomposed Domains, M. Sc. Thesis, Depart-
ment of Applied Mathematics and Computer Science, The Weizmann Institute of
Science, 1993.

4. M. Griebel and G. Zumbusch, Parnass: Porting gigabit–LAN components to a
workstation cluster, in: W. Rehm, ed., Proceedings des 1. Workshop Cluster-
Computing, 6.-7. November 1997, in Chemnitz, (Chemnitzer Informatik Berichte,
CSR-97-05) 101-124.

5. M. Jung, On the parallelization of multi–grid methods using a non–overlapping
domain decomposition data structure, Appl. numer. Math. 1 (1997) 119-138.

6. L. Matheson, R. Tarjan, Parallelism in Multigrid Methods: How much is too
much?, Int. J. Parallel Programming 5 (1996) 397 - 432.

7. M. Mohr, Kommunikationsarme parallele Mehrgitteralgorithmen, Diplomarbeit,
Institut für Mathematik, TU München, 1997.

8. M. Mohr, U. Rüde, Communication Reduced Parallel Multigrid: Analysis and
Experiments, Technical Report No. 394, University of Augsburg, 1998.

9. D. Xie, L. Scott, The Parallel U–Cycle Multigrid Method, Virtual Proceedings
of the 8th Copper Mountain Conference on Multigrid Methods, MGNET, 1997,
(http://casper.cs.yale.edu/mgnet/www/mgnet.html).


