
A Comparative Study of Performance

of AES Final Candidates Using FPGAs?

Andreas Dandalis1, Viktor K. Prasanna1, and Jose D.P. Rolim2

1 University of Southern California, Los Angeles CA 90089, USA
{dandalis,prasanna}@halcyon.usc.edu

http://maarcII.usc.edu
2 Centre Universitaire d’Informatique, Université de Genève
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Abstract. In this paper we study and compare the performance of
FPGA-based implementations of the five final AES candidates (MARS,
RC6, Rijndael, Serpent, and Twofish). Our goal is to evaluate the suit-
ability of the aforementioned algorithms for FPGA-based implementa-
tions. Among the various time-space implementation tradeoffs, we fo-
cused primarily on time performance. The time performance metrics
are throughput and key-setup latency. Throughput corresponds to the
amount of data processed per time unit while the key-setup latency time
is the minimum time required to commence encryption after providing
the input key. Time performance and area requirement results are pro-
vided for all the final AES candidates. To the best of our knowledge,
we are not aware of any published results that include key-setup latency
results. Our results suggest that Rijndael and Serpent favor FPGA
implementations the most since their algorithmic characteristics match
extremely well with the hardware characteristics of FPGAs.

1 Introduction

The projected key role of AES in the 21st century cryptography led us to im-
plement the AES final candidates using Field Programmable Gate Arrays (FP-
GAs). The goal of this study is to evaluate the performance of the AES final
candidates on FPGAs and to make performance comparisons. In addition, we
evaluate the suitability of reconfigurable hardware as an alternative solution for
AES implementations.

In this study, we concentrate only on performance issues. We assume that all
the considered algorithms are secure. Time performance and area requirements
results are provided for all the final candidates. The time performance metrics
are throughput and key-setup latency. Throughput corresponds to the amount
of data processed per time unit while key-setup latency is the minimum time
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required to commence encryption after providing the input key. Besides the
throughput metric, the latency metric is the key measure for applications where
a small amount of data is processed per key and key context switching occurs
repeatedly.

FPGA technology is a growing area that has the potential to provide the
performance benefits of ASICs and the flexibility of processors. This technology
allows application-specific hardware circuits to be created on demand to meet
the computing and interconnect requirements of an application. Moreover, these
hardware circuits can be dynamically modified partially or completely in time
and in space based on the requirements of the operations under execution [5,13].

Private-key cryptographic algorithms seem to fit extremely well with the
characteristics of the FPGAs. The fine-granularity of FPGAs matches extremely
well the operations required by private-key cryptographic algorithms such as bit-
permutations, bit-substitutions, look-up table reads, and boolean functions. On
the other hand, the constant bit-width required alleviates accuracy-related im-
plementation problems and facilitates efficient designs. Moreover, the inherent
parallelism of the algorithms can be efficiently exploited in FPGAs. Multiple op-
erations can be executed concurrently resulting in higher throughput compared
with software-based implementations. Finally, the key-setup circuit can run con-
currently with the cryptographic core circuit resulting in low key-setup latency
time and agile key-context switching.

In our implementations, we focused on the time performance. Our goal was
to exploit, for each candidate, the inherent parallelism of the cryptographic core
(at the round level) to optimize performance. Moreover, we have exploited the
low-level hardware features of FPGAs to enhance the performance of individual
required operations. Our throughput results are compared with the FPGA-based
results in [9,11]. In [9,11], only the cryptographic core of each algorithm was
implemented using FPGAs and, thus, no key-setup latency results were provided.
As a result, only throughput comparisons are made with the FPGA-based results
in [9,11]. Moreover, our time performance results are compared with the best
software-based results in [3,4] and the NSA’s ASIC-based results [17].

An overview of FPGAs and FPGA-based cryptography is given in Section
2. In Section 3, general aspects of our implementations are discussed. The im-
plementation results for each algorithm are described in Section 4. In Section 5,
a comparative analysis among the results of all the candidates is performed. In
addition, comparisons with related work are made. Comparisons with software
and ASIC implementations are made in Sections 6 and 7 respectively. Finally,
in Section 8, concluding remarks are made.

2 FPGA Overview

Processors and ASICs are the cores of the two major computing paradigms
of our days. Processors are general purpose and can virtually execute any op-
eration. However, their performance is limited by the restricted interconnect,
datapath, and instruction set provided by the architecture. Conversely, ASICs
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are application-specific and can achieve superior performance compared with
processors. However, the functionality of an ASIC design is restricted by the
designed parameters provided during fabrication. Any update to an ASIC-based
platform incurs high cost. As a result, ASIC-based approaches lack flexibility.

FPGA technology is a growing area of research that has the potential to
provide the performance benefits of ASICs and the flexibility of processors. Ap-
plication specific hardware circuits can be created on demand to meet the com-
puting and interconnect requirements of an application. Moreover, these hard-
ware circuits can be dynamically modified partially or completely in time and in
space based on the requirements of the operations under execution. As a result,
superior performance can be expected compared with the performance of the
equivalent software implementation executed on a processor.

FPGAs were initially an offshoot of the quest for ASIC prototyping with
lower design cycle time. The evolution of the configurable system technology led
to the development of configurable devices and architectures with great compu-
tational power. As a result, new application domains become suitable for FP-
GAs beyond the initial applications of rapid prototyping and circuit emulation.
FPGA-based solutions have shown significant speedups (compared with software
and DSP based approaches) for several application domains such as signal & im-
age processing, graph algorithms, genetic algorithms, and cryptography among
others.

The basic feature underlying FPGAs is the programmable logic element
which is realized by either using anti-fuse technology or SRAM-controlled tran-
sistors. FPGAs [5,13] have a matrix of logic cells overlaid with a network of wires.
Both the computation performed by the cells and the connections between the
wires can be configured. Current devices mainly use SRAM to control the con-
figurations of the cells and the wires. Loading a stream of bits onto the SRAM
on the device can modify its configuration. Furthermore, current FPGAs can be
reconfigured very quickly, allowing their functionality to be altered at runtime
according to the requirements of the computation.

2.1 FPGA-Based Cryptography

FPGA devices are a highly promising alternative for implementing private-
key cryptographic algorithms. Compared with software-based implementations,
FPGA implementations can achieve superior performance. The fine-granularity
of FPGAs matches extremely well the operations required by private-key crypto-
graphic algorithms (e.g., bit-permutations, bit-substitutions, look-up table reads,
boolean functions). As a result, such operations can be executed more efficiently
in FPGAs than in a general-purpose computer.

Furthermore, the inherent parallelism of the algorithms can be efficiently
exploited in FPGAs as opposed to the serial fashion of computing in an uni-
processor environment. At the cryptographic-round level, multiple operations
can be executed concurrently. On the other hand, at the block-cipher level, cer-
tain operation modes allow concurrent processing of multiple blocks of data.
For example, in the ECB mode of operation, multiple blocks of data can be
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processed concurrently since each data block is encrypted independently. Con-
sequently, if p rounds are implemented, a throughput speed-up of O(p) can be
achieved compared with a “single-round” based implementation (one round is
implemented and is reused repeatedly). Moreover, by adopting deep-pipelined
designs, the throughput can be increased proportionally with the clock speed.
On the contrary, in feedback modes of operation (e.g., CBC, CFB), where the
encryption results of each block are fed back into the encryption of the current
block [14], encryption can not be parallelized among consecutive blocks of data.
As a result, the maximum throughput that can be achieved depends mainly on
the encryption time required by a single cryptographic round and the efficiency
of the implementation of the key-setup component of an algorithm.

Besides throughput, FPGA implementations can also achieve agile key-con-
text switching. Key-context switching includes the generation of the required
key-dependent data for each cryptographic round (e.g., subkeys, key-dependent
S-boxes). A cryptographic round can commence as soon as its key-dependent
data is available. In software implementations, the cryptographic process can
not commence before the key-setup process for all the rounds is completed. As a
result, excessive latency is introduced making key-context switching inefficient.
On the contrary, in FPGAs, each cryptographic round can commence as early as
possible since the key-setup process can run concurrently with the cryptographic
process. As a result, minimal latency can be achieved.

Security issues also make FPGA implementations more advantageous than
software-based solutions. An encryption algorithm running on a generalized com-
puter has no physical protection [14]. Hardware cryptographic devices can be se-
curely encapsulated to prevent any modification of the implemented algorithm.
In general, hardware-based solutions are the embodiment of choice for military
and serious commercial applications (e.g., NSA authorizes encryption only in
hardware) [14].

Finally, even if ASICs can achieve superior performance compared with FP-
GAs, their flexibility is restricted. Thus, the replacement of such application-
specific chips becomes very costly [10] while FPGA-based implementations can
be adapted to new algorithms and standards. However, if ultimate performance
is essential, ASICs solutions are superior.

3 Implementation and Design Decisions

As a hardware target for the proposed implementations, we have chosen the Xil-
inx Virtex family of FPGAs. Virtex is a high-capacity, high-speed performance
FPGA providing a superior system integration feature set [16]. For mapping onto
Virtex devices, we used the Foundation Series v2.1i software development tool.
The synthesis and place-and-route parameters of the tool remained the same for
all the implementations. All the results were based on placed-and-routed imple-
mentations (device speed −6) that included both the key-setup component and
the cryptographic core along with their control circuit.
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Among the various time-space tradeoffs, our focus was primarily time perfor-
mance. For each algorithm we have implemented the key-setup component, the
control circuitry, and the encryption block cipher for 128-bit data blocks using
128-bit keys. A “single-round” based design was chosen for each implementa-
tion. Since one round was implemented, it was reused repeatedly. The key-setup
component was processing data in parallel with the cryptographic core. While
the cryptographic core was processing the data of the ith round, the key-setup
component was calculating the key-dependent data for the (i + 1)th round. As
a result, even if an algorithm does not support on-the-fly key generation in the
software domain, the key setup can be executed on the fly in FPGAs.

Our goal was to maximize throughput for each candidate algorithm. We
have exploited the inherent parallelism of each cryptographic core and the low-
level hardware features of FPGAs to enhance the performance. The performance
metrics are throughput and key-setup latency. The throughput metric indicates
the amount of data encrypted per time unit after the initialization of the al-
gorithm. The key-setup latency denotes the minimum time required to com-
mence encryption after providing the input key. While throughput indicates the
bulk-encryption capability of the implementation, key-setup latency indicates
the capability of agile key-context switching.

Since one round was implemented and was reused repeatedly, the through-
put results correspond to 128

n ∗ tround
, where n and tround are the the number of

required rounds and the encryption time per round respectively. Similar perfor-
mance analysis can be performed for larger sizes of data blocks and keys as well
as for implementations that process multiple blocks of data concurrently.

The key-setup latency issue was of primary interest, that is, the cryptographic
core had to commence as early as possible. Based on the achieved throughput,
we designed the key-setup component to sustain the processing rate of the cryp-
tographic core and to achieve minimal latency. The key-setup latency metric is
the key metric for applications where a small amount of data is processed per
key and key-context switching occurs repeatedly. In software implementations,
the cryptographic process cannot commence before the key-setup process for
all the rounds is completed. As a result, the key-setup latency time equals the
key-setup time.

To implement efficient key-setup circuits, we took advantage of the embedded
memory modules (Block SelectRAM) of the Virtex FPGAs [16]. The Virtex
FPGA Series provides dedicated on-chip blocks of true dual-read/write port
synchronous RAM, with 4096 memory cells each. Depending on the size of the
device, 32-132 Kbits of data can be stored using the Block SelectRAM memory
modules. The key-setup circuit utilized these memory modules to pass its results
to the cryptographic core. As a result, the cryptographic core could commence
as soon as the key-dependent data for the first encryption round is available in
the memory modules. Then, during each encryption round, the cryptographic
core reads the corresponding data from the memory modules.

For each algorithm, we have also implemented the key-setup circuit and the
cryptographic core separately. For all the implementations, the maximum clock
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speed of the key-setup circuit was higher than the maximum clock speed of the
cryptographic core. Based on the results of these individual implementations, we
also provide latency estimates for implementations that clock each circuit at its
maximum speed.

Regarding the cryptographic cores, the majority of the required operations
fit extremely well in Virtex FPGAs. The permutations and substitutions can be
hard-wired while distributed memory can be used as look-up tables. In addi-
tion, boolean functions, data-dependent rotations, and addition can be mapped
very efficiently onto Virtex FPGAs. Wherever a multiplication with a constant
was required, constant coefficient multipliers were utilized to enhance the perfor-
mance compared with “regular” multipliers. Regular multiplication is required
only by the MARS and RC6 block ciphers. In both cases, two 32-bit numbers
are multiplied and the lower 32-bit of the output are used in the encryption pro-
cess. We tried the multiplier-macros provided for Virtex FPGAs but we found
that they were a performance bottleneck. Besides the excessive latency that was
introduced due to the numerous pipeline stages, excessive area was also required
since the full multiplier was mapped onto the FPGA. Instead of using these
macros, a multiplier that computes partial results in parallel and outputs only
the required 32-bits was used. As a result, the latency was reduced by more than
50% and the area requirements were also reduced significantly.

4 Implementation Results

In the following, implementation results as well as relevant performance issues
specific to each algorithm are provided. The key-setup latency results are repre-
sented both as absolute time and as the fraction of the corresponding encryption
time over one 128-bit block of data. In addition, the throughput results are rep-
resented both as encryption rate and as encryption rate elaborated on area.
Finally, area requirements results are provided for both the key-setup and the
cryptographic core circuits. In the following, the order of presenting the algo-
rithms is alphabetic. Detailed algorithmic information for each candidate can be
found in [6,12,7,2,15].

4.1 MARS

The MARS block cipher is the IBM submission to AES [6]. The time perfor-
mance and area requirements results for our MARS implementation are shown
in Table 1.

Key Setup. The MARS key expansion procedure expands the input 128-bit
key into a 1280-bit key. First a linear-key expansion occurs following by stir-
ring the key-words based on an S-box. Both processes involves simple operations
performed repeatedly. However, the final stage of modifying the multiplication
key-words involves string-matching operations that are relatively expensive func-
tions. String-matching is an expensive operation compared with the rest of the
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Table 1. Implementation Results for MARS

Key-Setup Latency Throughput

MBits / sec KBits / (sec*slice)µs
key-setup latency time

block encryption time

1.96 101.883.12 29.55

Area Requirements

# of slices

6896 2275  (33%) 4621 (67%)

Total Key-Setup Cryptographic Core

operations required by MARS. A compact implementation of string-matching
introduces high latency while a high-performance implementation increases the
area requirements dramatically. In our implementation, the last stage of the key-
expansion process (i.e., string-matching) was not implemented. In spite of this,
the introduced key-setup latency was still relatively high (the worst among all
the implementations considered in this paper).

Cryptographic Core. The cryptographic core of MARS consists of a 16-round
cryptographic layer wrapped with two layers of 8-round “forward” and “back-
ward mixing” [6]. The achieved throughput depended mainly on the efficiency
of the multiplier (please see Section 3). In our implementation only one round
of each layer was implemented that was used repeatedly. The encryption time
for one block of data was 32 clock cycles. An interesting feature of our design
is that by increasing the utilization factor of the processing stages (i.e. all the
three processing stages execute in parallel), the average encryption time for one
block of data can be reduced to 16 clock cycles for operation modes that allow
concurrent processing of multiple blocks of data (e.g., non-feedback, interleaved).

4.2 RC6

The RC6 block cipher is the AES proposal of the RSA Laboratories and R. L.
Rivest from the MIT Laboratory for Computer Science [12]. The implemented
block cipher corresponds to w = 32-bit round keys, r = 20 rounds, and b = 14-
byte input key. The time performance and area requirements results for our RC6
implementation are shown in Table 2.

Table 2. Implementation Results for RC6

Key-Setup Latency Throughput

MBits / sec KBits / (sec*slice)µs

0.17 112.870.15 42.59

Area Requirements

# of slices

2650   901  (34%) 1749 (66%)

Total Key-Setup Cryptographic Core
key-setup latency time

block encryption time
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Key Setup. The RC6 key setup expands the input 128-bit key into 42 round
keys. The key for each round corresponds to a 32-bit word. The key scheduling
is fairly simple. The round-keys are initialized based on two constants. We have
implemented the initialization procedure using a look-up table since it is the
same for any input key. Then, the contents of the look-up table were used to
generate the round-keys with respect to the input key. As a result, remarkably
low key-setup latency was achieved that was equal to the 15% of the time for
encrypting a block of data.

Cryptographic Core. The cryptographic core of RC6 consists of 20 rounds. The
symmetry and regularity found in the RC6 block cipher resulted in a compact
implementation. The entire data-block was processed at the same time by us-
ing two identical circuits. The achieved throughput depended mainly on the
efficiency of the multiplier (please see Section 3).

4.3 Rijndael

The Rijndael block cipher is the AES proposal of J. Daemen and V. Rijmen
from the Katholieke Universiteit Leuven [7]. The implemented block cipher cor-
responds to Nb = 4, Nk = 4, and Nr = 10 (i.e., 4× 32-bit block data, 4× 32-bit
key, 10 rounds). The time performance and the area requirements results of our
implementation are shown in Table 3.

Table 3. Implementation Results for Rijndael

Key-Setup Latency Throughput

MBits / sec KBits / (sec*slice)µs

0.07 353.000.20 62.22

Area Requirements

# of slices

5673 1361  (24%) 4312 (76%)

Total Key-Setup Cryptographic Core
key-setup latency time

block encryption time

Key Setup. The Rijndael key setup expands the input 128-bit key into a 1408-bit
key. Simple operations are used that resulted in extremely low key-setup latency
latency. ROM-based look-up tables were utilized to perform the SubByte trans-
formation. The achieved latency was the lowest among all the implementations
considered in this paper.

Cryptographic Core. The cryptographic core of Rijndael consists of 10 rounds.
The cryptographic core is ideal for implementations on FPGAs. It combines fine-
grain parallelism with look-up table operations. The round transformation can
be represented as a look-up table resulting in extremely high speed. We have
implemented a ROM-based fully-parallel version of the look-up table. By com-
bining common references to the look-up table, we have achieved a 25% savings
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in ROM compared with the straightforward implementation suggested in the
AES proposal [7]. The simplicity of the operations and the inherent fine-grain
parallelism resulted in the highest throughput among all the implementations.
Furthermore, the Rijndael implementation had the highest area utilization fac-
tor (i.e., throughput per area unit).

4.4 Serpent

The Serpent block cipher is the AES proposal of R. Anderson, E. Biham, and
L. Knudsen from Technion, Cambridge University, and University of Bergen
respectively [2]. The time performance and area requirements results for our
Serpent implementation are shown in Table 4.

Table 4. Implementation Results for Serpent

Key-Setup Latency Throughput

MBits / sec KBits / (sec*slice)µs

0.08 148.950.09 58.41

Area Requirements

# of slices

2550 1300  (51%) 1250 (49%)

Total Key-Setup Cryptographic Core
key-setup latency time

block encryption time

Key Setup. The Serpent key setup expands the input 128-bit key into a 4224-bit
key. First, the input key is padded to 256 bits and then it is expanded to an
intermediate key by iterative mixing of the key data. Finally, by using look-up
tables, the keys for all the rounds are calculated. The simplicity of the required
operations resulted in extremely low key-setup latency (the second lowest among
all the implementations considered in this paper).

Cryptographic Core. The cryptographic core of Serpent consists of 32 rounds.
The round transformation is a linear transform consisting of rotations, shifts, and
XOR operations. Neither multiplication nor addition is required. As a result,
the lowest encryption time per round and the most compact implementation
were achieved among all the implementations. Furthermore, the Serpent imple-
mentation had the second higher area utilization factor (i.e. throughput per area
unit).

4.5 Twofish

The Twofish block cipher is the AES proposal of the Counterpane Systems,
Hi/fn, Inc., and D. Wagner from the University of California Berkeley [15]. The
time performance and area requirements results of our implementation are shown
in Table 5.
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Table 5. Implementation Results for Twofish

Key-Setup Latency Throughput

MBits / sec KBits / (sec*slice)µs

0.18 173.060.25 18.48

Area Requirements

# of slices

9363 6554  (70%) 2809 (30%)

Total Key-Setup Cryptographic Core
key-setup latency time

block encryption time

Key Setup. The Twofish key setup expands the input 128-bit key into a 1280-
bit key. Moreover, it generates the key-dependent S-boxes used in the crypto-
graphic core. Four 128-bit S-boxes are generated. Since our goal was to minimize
latency, we have implemented a parallel version of the key setup consisting of 24
q0/q1 permutation boxes and 2 MDS matrices [15]. Moreover, the RS matrix
was implemented for the S-box generation. The matrices are used for “constant
matrix”-to-matrix multiplication over GF (28). The best known implementation
of a constant coefficient multiplier in Virtex FPGAs is by using a look-up ta-
ble [16]. As a result, low latency was achieved but excessive area was required.
The area requirements corresponded to the 70% of the total area. However, by
implementing a more compact design (e.g., reusing processing elements), the
key-setup latency would increase.

Cryptographic Core. The cryptographic core of Twofish consists of 16 rounds.
The structure of the round transformation is similar to the structure of the
key-expansion circuit. The only major difference is the S-boxes that the crypto-
graphic core uses.

4.6 Key-Setup Latency Improvements

For each algorithm, we have also implemented the key-setup circuit and the cryp-
tographic core separately. For each algorithm, the maximum clock speed of the
key-setup circuit was higher than the maximum clock speed of the cryptographic
core. Thus, by clocking each circuit at its maximum clock speed, improvement
in key-setup latency can be achieved. No additional synchronization hardware is
required since we can configure the read/write ports of the Block SelectRAMs
having different clock speeds. Compared with implementations using one clock,
the key-setup latency time can be reduced by a factor of 1.35, 2.96, 1.43, 1.00, and
1.15 for MARS, RC6, Rijndael, Serpent, and Twofish respectively. Clearly, the
RC6 block cipher can achieve the best key-setup latency improvement by clock-
ing the key-setup and the cryptographic core circuits at their maximum clock
speeds. For the MARS block cipher, the result is based on an implementation
that does not include the circuit for modifying the multiplication key-words.
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5 Comparative Analysis of Our FPGA Implementations

In Table 6, key-setup latency comparisons are made among our FPGA imple-
mentations. The comparisons are made in terms of absolute time and the ratio
of the key-setup latency time to the time required to encrypt one block of data.
The latter metric represents the capability of agile key-context switching with
respect to the encryption rate.

Table 6. Key-Setup Latency Comparisons of Our FPGA Implementations

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0

0.5

1

1.5

2

2.5

3

3.5

0

0.05

0.1

0.15

0.2

0.25

MARS

RC6

Rijndael
Serpent

Twofish

MARS

RC6

Rijndael

Serpent

Twofish

key-setup latency time
µsec
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block encryption time

Clearly, Rijndael and Serpent achieve the lowest key-setup latency times
while the latency times for RC6 and Twofish are higher by a factor of 2.5. As
we have mentioned in Section 4, the key-setup latency introduced by MARS is
the highest. All the algorithms (except MARS) achieve key-setup latency time
that is equal to the 7-25 % of the time for encrypting one block of data.

In Table 7, throughput comparisons are made among our FPGA implemen-
tations. The comparisons are made in terms of the encryption rate and the ratio
of the encryption rate to the area requirements. The latter metric reveals the
hardware utilization efficiency of each implementation.

Rijndael achieves the highest encryption rate due to the ideal match of
its algorithmic characteristics with the hardware characteristics of FPGAs. In
addition, the encryption rate of Rijndael is higher than the ones achieved by the
other algorithms by a factor of 1.7− 3.12. Moreover, Rijndael also achieves the
best hardware utilization. The latter metric combines, for each algorithm, the
computational demands in terms of an FPGA implementation with the inherent
parallelism of the cryptographic round.
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Table 7. Throughput Comparisons of Our FPGA Implementations
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Serpent achieves the second best hardware utilization while having the low-
est encryption time per round. The latter suggests that, under the same area
constraints, Serpent can achieve throughput equivalent to Rijndael for opera-
tion modes that allow concurrent processing of multiple blocks of data. Similar
to Rijndael, the algorithmic characteristics of Serpent matches extremely well
with the hardware characteristics of FPGAs.

Finally, in Table 8, area comparisons are made among our FPGA implemen-
tations. The comparisons are made in terms of the total area as well as the area
required by each of the key-setup and the cryptographic core circuits. Serpent
and RC6 have the most compact implementations. Serpent also has the most
compact cryptographic core circuit while RC6 has the most compact key-setup
circuit. For the MARS block cipher, the result shown is based on an implementa-
tion that does not include the circuit for modifying the multiplication key-words
[6].

5.1 Related Work

In [9,11], FPGA implementations of the AES candidate algorithms were de-
scribed using Virtex devices. However, only the cryptographic core for each
algorithm was implemented. No results regarding key-setup were provided. In
Table 9, throughput results for [9,11] and our work are shown for encrypting
128-bit data blocks using 128-bit keys. To make a fair comparison, the results
shown for [9] correspond to the performance evaluation for feedback modes. In
[9], results for non-feedback modes were also provided, which corresponded to
implementations that process multiple blocks of data concurrently.

The major difference in the throughput results is the Serpent algorithm.
By implementing 8 rounds of the algorithm [9], the distribution of the sub-
keys among consecutive rounds becomes very efficient resulting in 3× speed-up
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Table 8. Area Comparisons of Our FPGA Implementations
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Table 9. Performance Comparisons with FPGA Implementations [9,11]

[9]

101.88
112.87
353.00
148.95
173.06

Our

MARS
RC6
Rijndael
Serpent
Twofish

   AES
Algorithm  MBits/sec

Throughput

    ---
126.50
300.10
444.20
119.60

[11]

  39.80
103.90
331.50
339.40
177.30

compared with our “single-round” implementation. For MARS, our implemen-
tation achieved higher throughput by a factor of 2.5 compared with [11]. The
MARS block cipher was not implemented in [9]. For RC6 and Rijndael, all
the implementations achieved similar throughput performance. For Twofish,
the throughput achieved in [11] and in our work is higher than the one in [9]
by a factor of 1.5. By combining the throughput results provided in [9,11] and
the performance results provided in our work, we can verify that Rijndael and
Serpent favor FPGA implementations the most among all the AES candidate
algorithms.

6 Comparison with Software Implementations

Our performance results are compared with the best software-based results found
in [3] and [4]. In [3], optimized assembly-language implementations on the Pen-
tium II were described for MARS, RC6, Rijndael, and Twofish; only through-
put results were provided. In [4], ANSI C-based implementations on a variety of
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Table 10. Performance Comparisons with Software Implementations [3,4]

Software

101.88
112.87
353.00
148.95
173.06

Our

MARS
RC6
Rijndael
Serpent
Twofish

   AES
Algorithm  MBits/sec Speed-up

  1/1.84
  1/2.28

1.45
2.44

  1/1.17

µs

Software

  8.22
  3.79
  2.15
11.57
15.44

1.96
0.17
0.07
0.08
0.18

Our

Key-Setup LatencyThroughput

188.00
258.00
243.00
  60.90
204.00

[3]
[3]
[3]
[4]
[3]

[4]
[4]
[4]
[4]
[4]

Speed-up

      4.19
    22.29
    30.71
  144.62
    85.78

platforms were described for all the AES candidate algorithms; both throughput
and key-setup time results were provided.

In Table 10, throughput and key-setup latency comparisons are shown for
encrypting 128-bit data blocks using 128-bit keys. Clearly, the FPGA imple-
mentations achieve significant reduction in the key-setup latency time by a fac-
tor of 4 − 144. In software implementations, the cryptographic process can not
commence before the key-setup process for all the rounds is completed. As a re-
sult, the key-setup latency time equals to the key-setup time making key-context
switching inefficient. On the contrary, in FPGAs, each cryptographic round can
commence as early as possible since the key-setup process can run concurrently
with the cryptographic process. As a result, minimal latency can be achieved.

Regarding throughput results, the software implementations achieve higher
throughput by a factor of 1.84, 2.28, and 1.17 for MARS, RC6, and Twofish
respectively. The latter algorithms require multiplication operations. Our intu-
ition is that the hardware specialization and parallelism exploited in FPGAs
were not enough to outperform the efficiency of the multiplication in software.
On the contrary, the FPGA implementations achieved higher throughput by a
factor of 1.45 and 2.44 for Rijndael and Serpent respectively. The latter recon-
firms that Rijndael and Serpent favor FPGA implementations the most among
the AES candidate algorithms. It is also worthy to mention that Rijndael re-
sults in one of the fastest implementations in both software and FPGAs. Finally,
for operation modes that allow concurrent processing of multiple blocks of data
(e.g., non-feedback, interleaved), the parallel fashion of computing in FPGAs
can result in higher throughput for all the AES candidate algorithms compared
with uniprocessor-based software implementations.

7 Comparison with ASIC Implementations

Our performance results are also compared with the results of ASIC-based im-
plementations described in the NSA’s “Hardware Performance Simulations of
Round 2 AES Algorithms” [17]. Our time performance results are compared
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with the results provided for encrypting 128-bit data blocks using 128-bit keys
using iterative architectures. In Table 11, throughput and key-setup latency com-
parisons are shown for encrypting 128-bit data blocks using 128-bit keys. Clearly,
besides our implementations, Rijndael achieves the highest throughput in ASICs
too. Surprisingly enough, the FPGA implementations for MARS, RC6, and
Twofish achieve higher throughput than the ASIC-based counterparts. For one
reason, since ASIC technology can provide the ultimate performance, we assume
that the resulted speed-ups are due to the design techniques (e.g., inherent par-
allelism) and the individual components (e.g., multiplier) incorporated in our
implementations. For another, the Virtex FPGAs are fabricated on a leading
edge 0.18µm, six-layer metal silicon process [16], while a 0.5µm MOSIS-specific
technology library was utilized in [17]. Regarding the key-setup latency time, the
only major difference is the RC6 algorithm where an improvement by a factor
of 33.76 has been achieved.

Table 11. Performance Comparisons with ASIC Implementations [17]

NSA ASIC

101.88
112.87
353.00
148.95
173.06

Our

MARS
RC6
Rijndael
Serpent
Twofish

   AES
Algorithm  MBits/sec Speed-up

  1.79
  1.09
1/1.71
1/1.35
 1.64

µs

NSA ASIC

  9.55
  5.74
  0.00
  0.02
  0.06

1.96
0.17
0.07
0.08
0.18

Our

Key-Setup LatencyThroughput

  56.71
102.83
605.77
202.33
105.14

Speed-up

      4.87
    33.76
       ---
      1/4
      1/3

8 Conclusions

In this paper we have provided time performance and area requirements re-
sults for the implementations of the five final AES candidates (MARS, RC6,
Rijndael, Serpent, and Twofish) using FPGAs. To the best of our knowledge,
we are not aware of any published results that include key-setup latency re-
sults. In our implementations, the key-setup process can be performed in parallel
with the encryption process regardless of the capability of the software imple-
mentation to support on-the-fly key setup. Our implementations suggest that
Rijndael and Serpent favor FPGA implementations the most due to the ideal
match of their algorithmic characteristics with the characteristics of FPGAs.
The Rijndael implementation achieves the lowest key-setup latency time, the
highest throughput, and the highest hardware utilization. Comparing our results
with software [4,3] and ASIC [17] implementations, we verified that Rijndael



140 Andreas Dandalis, Viktor K. Prasanna, and Jose D.P. Rolim

also achieves the best time performance across different platforms (i.e., ASIC,
FPGA, software).

The work reported here is part of the USC MAARCII project
(http://maarcII.usc.edu). This project is developing novel mapping tech-
niques to exploit dynamic reconfiguration and facilitate run-time mapping using
configurable computing devices and architectures. A domain-specific mapping
approach is being developed to support instance-dependent mapping [8]. More-
over, computational models and algorithmic techniques are being developed to
exploit self-reconfiguration using FPGAs. Finally, the idea of “active” libraries
is exploited to develop a framework for automatic dynamic reconfiguration.
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