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Abstract. We describe a scalable and unified architecture for a Mont-
gomery multiplication module which operates in both types of finite fields
GF (p) and GF (2m). The unified architecture requires only slightly more
area than that of the multiplier architecture for the field GF (p). The mul-
tiplier is scalable, which means that a fixed-area multiplication module
can handle operands of any size, and also, the wordsize can be selected
based on the area and performance requirements. We utilize the con-
currency in the Montgomery multiplication operation by employing a
pipelining design methodology. The upper limit on the precision of the
scalable and unified Montgomery multiplier is dictated only by the avail-
able memory to store the operands and internal results, and the module
is capable of performing infinite-precision Montgomery multiplication in
both types of finite fields.

Keywords: Prime fields, binary extension fields, multiplication, Mont-
gomery multiplication, scalability, hardware implementation.

1 Introduction

The basic arithmetic operations (i.e., addition, multiplication, and inversion) in
prime and binary extension fields, GF (p) and GF (2m), have several applications
in cryptography, such as decipherment operation of RSA algorithm [17], Diffie-
Hellman key exchange algorithm [3], elliptic curve cryptography [7,12], and the
Digital Signature Standard including the Elliptic Curve Digital Signature Algo-
rithm [15]. The most important of these three arithmetic operations is the field
multiplication operation since it is the core operation in many cryptographic
functions.

The Montgomery multiplication algorithm [13] is an efficient method for
doing modular multiplication with an odd modulus. The Montgomery multi-
plication algorithm is very useful for obtaining fast software implementations
of the multiplication operation in prime fields GF (p). The algorithm replaces
division operation with simple shifts, which are particularly suitable for imple-
mentation on both general-purpose computers and application specific hardware.
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The Montgomery multiplication operation has been extended to the finite field
GF (2k) in [9]. Efficient software implementations of the multiplication operation
in GF (2k) can be obtained using this algorithm, particularly when the irreducible
polynomial generating the field is chosen arbitrarily. The main idea of the archi-
tecture proposed in this paper is based on the observation that the Montgomery
multiplication algorithm for both fields GF (p) and GF (2k) are essentially the
same algorithm. The proposed unified architecture performs the Montgomery
multiplication in the field GF (p) generated by an arbitrary prime p and in the
field GF (2m) generated by an arbitrary irreducible polynomial p(x). We show
that a unified multiplier performing the Montgomery multiplication operation
in the fields GF (p) and GF (2k) can be designed at a cost only slightly higher
than the multiplier for the field GF (p), providing significant savings when both
types of multipliers are needed.

Several variants of the Montgomery multiplication algorithm [16,10,2] have
been proposed to obtain more efficient software implementations on specific pro-
cessors. Various hardware implementations of the Montgomery multiplication
algorithm for limited precision operands are also reported [2,16,4]. On the other
hand, implementations utilizing high-radix modular multipliers have also been
proposed [16,11,18]. Advantages and disadvantages of using high-radix represen-
tation have been discussed in [21,20]. Because high-radix Montgomery multipli-
cation designs introduce longer critical paths and more complex circuitry, these
designs are less attractive for hardware implementations.

A scalable Montgomery multiplier design methodology for GF (p) was intro-
duced in [20] in order to obtain hardware implementations. This design method-
ology allows to use a fixed-area modular multiplication circuit for performing
multiplication of unlimited precision operands. The design tradeoffs for best
performance in a limited chip area were also analyzed in [20]. We use the design
approach as in [20] to obtain a scalable hardware module. Furthermore, the scal-
able multiplier described in this paper is capable of performing multiplication
in both types of finite fields GF (p) and GF (2k), i.e., it is a scalable and unified
multiplier.

The main contributions of this paper are summarized below.

– We show that a unified architecture for multiplication module which operates
both in GF (p) and GF (2m) can be designed easily without compromising
scalability, time and area efficiency.

– We analyze the design tradeoffs such as the effect of word length, the number
of the pipeline stages, and the chip area by supplying implementation results
obtained by Mentor graphics synthesis tools.

We start with a short discussion of scalability in §2 and explain the main idea
behind the unified multiplier architecture in §3. We then present the methodol-
ogy to perform the Montgomery multiplication operation in both types of finite
fields using the unified architecture. We give the original and modified definitions
of Montgomery algorithm for GF (p) and GF (2m) in §4. We discuss concurrency
in the Montgomery multiplication and show the methodology to design a pipeline
module utilizing the concurrency in §5. We present the processing unit and the
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modifications needed to make the unit operate in prime and binary extension
fields in §6. In §7, we discuss the area/time tradeoffs and suitable choices for
word lengths, the number of pipeline stages, and typical chip area requirements.
Finally, we summarize our conclusions in §8.

2 Scalable Multiplier Architecture

An arithmetic unit is called scalable if it can be reused or replicated in order
to generate long-precision results independently of the data path precision for
which the unit was originally designed. To speed up the multiplication operation,
various dedicated multiplier modules were developed in [18,1,14]. These designs
operate over a fixed finite field. For example, the multiplier designed for 155 bits
[1] cannot be used for any other field of higher degree. When a need for a multi-
plication of larger precision arises, a new multiplier must be designed. Another
way to avoid redesigning the module is to use software implementations and
fixed precision multipliers. However, software implementations are inefficient in
utilizing inherent concurrency of the multiplication because of the inconvenient
pipeline structure of the microprocessors being used. Furthermore, software im-
plementations on fixed digit multipliers are more complex and require excessive
amount of effort in coding. Therefore, a scalable hardware module specifically
tailored to take advantage of the concurrency of the Montgomery multiplication
algorithm becomes extremely attractive.

3 Unified Multiplier Architecture

Even though prime and binary extension fields, GF (p) and GF (2m), have dis-
similar properties, the elements of either field are represented using almost the
same data structures inside the computer. In addition, the algorithms for basic
arithmetic operations in both fields have structural similarities allowing a unified
module design methodology. For example, the steps of the Montgomery multi-
plication algorithm for binary extension field GF (2m) given in [9] only slightly
differs from those of the integer Montgomery multiplication algorithm [13,10].
Therefore, a scalable arithmetic module, which can be adjusted to operate in
both types of fields, is feasible, provided that this extra functionality does not
lead to an excessive increase in area or a dramatic decrease in speed. In addition,
designing such a module must require only a small amount of extra effort and
no major modification in control logic of the circuit.

Considering the amount of time, money and effort that must be invested
in designing a multiplier module or more generally speaking a cryptographic
coprocessor, a scalable and unified architecture which can perform arithmetic
in two commonly used algebraic fields is definitely beneficial. In this paper, we
show the method to design a Montgomery multiplier that can be used for both
types of fields following the design methodology presented in [20]. The proposed
unified architecture is obtained from the scalable architecture given in [20] after
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minor modifications. The propagation time is unaffected and the increase in chip
area is insignificant.

4 Montgomery Multiplication

Given two integers A and B, and the prime modulus p, the Montgomery multi-
plication algorithm computes

C = MonMul(A, B) = A ·B · R−1 (mod p) , (1)

where R = 2m and A, B < p < R, and p is an m-bit number. The original
algorithm works for any modulus n provided that gcd(n, R) = 1. In this paper,
we assume that the modulus is a prime number, thus, we perform multiplication
in the field defined by this prime number. This issue is also relevant when the
algorithm is defined for the binary extension fields.

The Montgomery multiplication algorithm relies on a different representa-
tion of the finite field elements. The field element A ∈ GF (p) is transformed
into another element Ā ∈ GF (p) using the formula Ā = A · R (mod p). The
number Ā is called Montgomery image of the element, or Ā is said to be in the
Montgomery domain. Given two elements in the Montgomery domain Ā and B̄,
the Montgomery multiplication computes

C̄ = Ā·B̄·R−1 (mod p) = (A·R)·(B·R)·R−1 (mod p) = C·R (mod p) , (2)

where C̄ is again in the Montgomery domain. The transformation operations
between the two domains can also be performed using the MonMul function as

Ā = MonMul(A, R2) = A · R2 · R−1 = A · R (mod p) ,

B̄ = MonMul(B, R2) = B · R2 · R−1 = B · R (mod p) ,

C = MonMul(C̄, 1) = C · R · R−1 = C (mod p) .

Provided that R2 (mod p) is precomputed and saved, we need only a single
MonMul operation to carry out each of these transformations. However, be-
cause of these transformation operations, performing a single modular mul-
tiplication using MonMul might not be advantageous. The advantage of the
Montgomery multiplication becomes much more apparent in applications re-
quiring multiplication-intensive calculations, e.g., modular exponentiation or el-
liptic curve point operations. In order to exploit this advantage, all arithmetic
operations are performed in the Montgomery domain, including the inversion
operation [6,19].

Below, we give bitwise Montgomery multiplication algorithm for obtaining
C := ABR−1 (mod p), where A = (am−1, . . . , a1, a0) and C = (cm, . . . , c1, c0).

Input: A, B ∈ GF (p) and m = dlog2 pe
Output: C ∈ GF (p)
Step 1: C := 0
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Step 2: for i = 0 to m − 1
Step 3: C := C + aiB
Step 4: C := C + c0p
Step 5: C := C/2
Step 6: if C ≥ p then C := C − p
Step 7: return C

In the case of GF (2m), the definitions and the algorithms are slightly different
since we use polynomials of degree at most m − 1 with coefficients from the
binary field GF (2) to represent the field elements. Given two polynomials

A(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x + a0

B(x) = bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x + b0 ,

and the irreducible monic degree-m polynomial

p(x) = xm + pm−1x
m−1 + pm−2x

m−2 + · · ·+ p1x + p0

generating the field GF (2m), the Montgomery multiplication of A(x) and B(x)
is defined as the field element C(x) which is given as

C(x) = A(x) ·B(x) · R(x)−m (mod p(x)) . (3)

We note that, as compared to Equation 1, R(x) = xm replaces R = 2m. The
representation of xm in the computer is exactly the same as the representation
of 2m, i.e., a single 1 followed by 2m zeros. Furthermore, the elements of GF (p)
and GF (2m) are represented using the same data structures. Only the arith-
metic operations acting on the field elements differ. The Montgomery image of
a polynomial A(x) is given as Ā(x) = A(x) · xm (mod p(x)). Similarly, be-
fore performing Montgomery multiplication, the operands must be transformed
into the Montgomery domain and the result must be transformed back. These
transformations are accomplished using the precomputed variable R2(x) = x2m

(mod p(x)) as follows:

Ā(x) = MonMul(A, R2) = A(x) · R2(x) · R−1(x) = A(x) · R(x) (mod p(x)) ,

B̄(x) = MonMul(B, R2) = B(x) ·R2(x) · R−1(x) = B(x) ·R(x) (mod p(x)) ,

C(x) = MonMul(C̄, 1) = C(x) · R(x) · R−1(x) = C(x) (mod p(x)) .

The bit-level Montgomery multiplication algorithm for the field GF (2m) is given
below:

Input: A(x), B(x) ∈ GF (2m), p(x), and m
Output: C(x)
Step 1: C(x) := 0
Step 2: for i = 0 to m − 1
Step 3: C(x) := C(x) + aiB(x)
Step 4: C(x) := C(x) + c0p(x)
Step 5: C(x) := C(x)/x
Step 6: return C(x)
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We note that the extra subtraction operation in Step 6 of the previous algorithm
is not required in the case of GF (2m), as proven in [9]. Also, the addition opera-
tions are different. While addition in binary field is just bitwise mod 2 addition,
the addition in GF (p) requires carry propagation.

Our basic observation is that it is possible to design a unified Montgomery
multiplier which can perform multiplication in both types of fields if an adder
module, equipped with the property of performing addition with or without
carry, is available. The design of an adder with this property is provided in the
following sections.

The algorithms presented in this section require that the operations be per-
formed using full precision arithmetic modules, thus, limiting the designs to a
fixed degree. In order to design a scalable architecture, we need modules with the
scalability property. The scalable algorithms are word-level algorithms, which we
give in the following sections.

4.1 The Multiple-Word Montgomery Multiplication Algorithm for
GF (p)

The use of fixed precision words alleviates the broadcast problem in the circuit
implementation. Furthermore, a word-oriented algorithm allows design of a scal-
able unit. For a modulus of m-bit precision, e = dm+1/we words (each of which
is w bits) are required. Note that one extra bit is used for all the variables in the
actual implementation in order to take care of partial sum in the Montgomery
algorithm, which can reach (m+1)-bit precision. The algorithm proposed in [20]
scans the operand B (multiplicand) word-by-word, and the operand A (multi-
plier) bit-by-bit. The vectors involved in multiplication operations are expressed
as

B = (B(e−1), . . . , B(1), B(0)) ,

A = (am−1, . . . , a1, a0) ,

p = (p(e−1), . . . , p(1), p(0)) ,

where the words are marked with superscripts and the bits are marked with
subscripts. For example, the ith bit of the kth word of B is represented as
B

(k)
i . A particular range of bits in a vector B from position i to j where j > i

is represented as Bj..i. (x|y) represents the concatenation of two bit sequence.
Finally, 0m stands for an all-zero vector of m bits. The algorithm is given below:

Input: A, B ∈ GF (p) and p
Output: C ∈ GF (p)
Step 1: T := 0m+1

Step 2: for i = 0 to m − 1
Step 3: (Carry|T (0)) := ai · B(0) + T (0)

Step 4: Parity := T
(0)
0

Step 5: (Carry|T (0)) := Parity · p(0) + (Carry|T (0))
Step 6: for j = 1 to e − 1
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Step 7: (Carry|T (j)) := ai · B(j) + Carry + T (j) + Parity ∗ p(j)

Step 8: T (j−1) := (T (j)
0 |T (j−1)

w−1..1)
Step 9: T (e−1) := (Carry|T (e−1)

w−1..1)
Step 10: C := T
Step 11: if C > p then C := C − p
Step 12: return C

Note that the variable Carry must be capable of accumulating more than
one single bit. As suggested in [20], we use the Carry-Save form for the partial
sum T , thus T = (TC, TS) where TC and TS are carry and sum part of T ,
respectively.

4.2 Multiple-Word Montgomery Multiplication Algorithm for
GF (2m)

The Montgomery multiplication algorithm for GF (2m) is given below. Since
there is no carry computation in GF (2m) arithmetic, the intermediate addition
operations are replaced by bitwise XOR operations, which are represented below
using the symbol ⊕.

Input: A, B ∈ GF (2m) and p(x)
Output: C ∈ GF (2m)
Step 1: T := 0m+1

Step 2: for i = 0 to m

Step 3: T (0) := aiB
(0) ⊕ T (0)

Step 4: Parity := T
(0)
0

Step 5: T (0) := Parity · p(0) ⊕ T (0)

Step 6: for j = 1 to e − 1
Step 7: T (j) := aiB

(j) ⊕ TS(j) ⊕ Parity · p(j)

Step 8: T (j−1) := (T (j)
0 |T (j−1)

w−1..1)
Step 9: T (e−1) := (0|T (e−1)

w−1..1)
Step 10: C := T
Step 11: return C

Notice that in the outer loop the index i runs from 0 to m. Since (m + 1)
bits are required to represent the irreducible polynomial of GF (2m), we prefer
to allocate (m + 1) bits to express the field elements.

5 Concurrency in Montgomery Multiplication

In this section, we analyze the concurrency in Montgomery multiplication al-
gorithms as given in the subsections §4.1 and §4.2. In order to accomplish this
task, we need to determine the inherent data dependencies in the algorithm and
describe a scheme to allow the Montgomery multiplication to be computed on
an array of processing units organized in a pipeline.
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We prefer to accomplish concurrent computation of the Montgomery multi-
plication by exploiting the parallelism among the instructions across the different
iterations of i-loop of the algorithms, as proposed in [20]. We scan the multi-
plier one bit at a time, and after the first words of the intermediate variables
(TC, TS) are fully determined, which takes two clock cycles, the computation
for the second bit of A can start. In other words, after the inner loop finishes
the execution for j = 0 and j = 1 in ith iteration of the outer loop, the (i+1)th
iteration of outer loop starts its execution immediately. The dependency graph
shown in Figure 1 illustrates these computations.
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Figure 1: The Dependency Graph of the MonMul Algorithm.

Each circle in the graph represents an elementary computation performed in
each iteration of the j-loop. We observe from this graph that these computations
are very suitable for pipelining. Each column in the graph represents operations
that can be performed by separate processing units (PU) organized as a pipeline.
Each PU takes only one bit from multiplier A and operates on each word of
multiplicand, B, each cycle. Starting from the second clock cycle, a PU generates
one word of partial sum T = (TC, TS) in the Carry-Save form at each cycle,
and communicates it to the next PU which adds its contribution to the partial
sum, when its turn comes. After e + 1 clock cycles, the PU finishes its portion
of work, and becomes available for further computation. In case there is no
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available PU and there is work to do, the pipeline must stall and wait for the
working PUs to finish their jobs. Since the PU at the end of the pipeline has
no way of communicating its result to another PU, we need to provide extra
buffers for it. In the worst case, which happens when there is only one PU, there
must be 2e extra buffers of w length to hold these partial sum words. In the last
clock cycle of each column, the The PU responsible for this column must receive
p(e) = B(e) = 0. Elementary computations represented by circles in Figure 1 are
performed on the same hardware module. Local control module in the PU must
be able to extract T

(0)
0 and keep this value for the entire operand scanning. Each

PU, in other words, has to obtain this value and use it to decide whether to add
the modulus p to the partial sum. This value is determined in the first clock
cycle of each stage.

An example of the computation for 6-bit operands is shown in Figure 2 for
the word size w = 1 provided that there are sufficient number of PUs preventing
the pipeline to stall. Note that there is a delay of 2 clock cycles between the stage
for xi and the stage for xi+1. The total execution time for the computation takes
20 clock cycles in this example.

Time (clock cycle)

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

5

6

4

7

Figure 2: An Example of Pipeline Computation for 6-Bit Operands, where
w = 1.

If there are at least d(e +1)/2e PUs in the pipeline organization the pipeline
stalls do not take place. The total computation time, CC (clock cycles), is slightly
different from the one in [20] and is given as

CC =
{

(dm+1
k e − 1)2k + e + 1 + 2(k − 1) if (e + 1) < 2k ,

(dm+1
k e)(e + 1) + 2(k − 1) otherwise ,

where k is the number of PUs in the pipeline. Notice that the first line of the
formula gives the execution time in clock cycles when there are sufficiently many
PUs while the second line corresponds to the case when there are stalls in the
pipeline.
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6 Scalable Architecture

   PU
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1 1
ai ai+1
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B

TC

TS

TC

TS

TC
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SR-TC

SR-TS

SR-p

SR-B
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Figure 3: Pipeline Organization with 2 PUs.

An example of pipeline organization with 2 PUs is shown in Figure 3. An
important aspect of this organization is the register file design. The bits of mul-
tiplier ai are given serially to the PUs, and are not used again in later stages
and can be discarded immediately. Therefore, a simple shift register would be
sufficient for the multiplier. The registers for the modulus p and multiplicand B
can also be shift registers. When there is no pipeline stall, the latches between
PUs forward the modulus and multiplicand to next PU in the pipeline. How-
ever, if pipeline stalls occur, the modulus and multiplicand words generated at
the end of the pipeline enter the SR − p and SR − B registers. The length of
these shift registers are of crucial importance and determined by the number of
pipeline stages (k) and the number of words (e) in the modulus. By considering
that SR − p and SR − B values require one extra register to store the all-zero
word needed for the last clock cycle in every stage (recall that p(e) = B(e) = 0)
the length of these registers can be given as

L1 =
{

e − 2 · (k − 1) if (e + 1) > 2k ,
0 otherwise. (4)

The width of the shift registers is equal to w, the wordsize. Once the partial sum
(TC, TS) is generated, it is transmitted to the next stage without any delay.
However, we need two shift registers, SR−TC and SR−TS, to hold the partial
sums from the last stage until the job in the first stage is completed. The length
(L2) of the registers TC and TS is equal to L1.

The registers for TC, TS, B, and p must have loading capability which can
complicate the local control circuit by introducing several multiplexers (MUX).
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The delay imposed by these MUXes will not create a critical path in the final
circuit. The global control block was not mentioned since its function can be
inferred from the dependency graph and the algorithms.

6.1 Processing Unit

The processing unit (PU) consists of two layers of adder blocks, which we call
dual-field adders. A dual-field adder is basically a full adder which is capable
of performing addition both with carry and without carry. Addition with carry
corresponds to the addition operation in the field GF (p) while addition without
carry corresponds to the addition operation in the field GF (2m). We give the
details about the dual-field adder in the next subsection. The block diagram of
a processing unit (PU) for w = 3 is shown in Figure 4.

Adder

Adder AdderAdder

Adder
Dual-field

Adder
FSEL

   Shift &
 Alignment
    Layer

TC2
(j) TS2

(j) TC1
(j) TS1

(j) TC0
(j) TS0

(j)

TC2
(j-1)   TS0

(j) TC1
(j-1)   TS1

(j-1) TC0
(j-1)   TS0

(j-1)

B2(j) B1(j) B0(j)p2(j) p1(j) p0(j)

c

ai

Dual-field Dual-field

Dual-field Dual-field Dual-field

p0
(j-1)

p1
(j-1)

p2
(j-1)

B0
(j-1)

B1
(j-1)

B2
(j-1)

Next
Stage

Next
Stage

  Local 
Control

Global Control
    Signals

Figure 4: Processing Unit (PU) with w = 3.

The unit receives the inputs from the previous stage and/or from the registers
SR − A, SR − B and SR − p, and computes the partial sum words. It delays p
and B for the first cycle, then, it transmits them to the next stage along with
the first partial sum word (which is ready at the second clock cycle) if there is an
available PU. The data path for partial sum T = (TC, TS) (which is expressed
in the redundant Carry-Save form) is 2w bits long while it is w bits long for p
and B and 1 bit long for ai. At the first cycle, the decision to add the modulus to
the partial sum is determined, and this information is kept during the following
e clock cycles by the local control. FSEL selects between GF (p) and GF (2m)
fields.
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6.2 Dual-Field Adder

The dual-field adder (DFA) shown in Figure 5a, as mentioned before, is basi-
cally a full-adder equipped with the capability of doing bit addition both with
and without carry. It has an input called FSEL (field select) that enables this
functionality. When FSEL = 1, the DFA performs the bit-wise addition with
carry, which enables the multiplier to do arithmetic in the field GF (p). When
FSEL = 0, on the other hand, the output Cout is forced to 0 regardless of
the values of the inputs. The output S produces the result of bitwise modulo-2
addition of three input values. At most 2 of 3 input values of dual-field adder
can have nonzero values while in the GF (2m) mode.

An important aspect of designing the dual-field adder is not to increase the
critical path of the circuit compared to the full-adder, which can have an effect
on the clock speed which this would be against our design goal. However, a small
amount of extra area can be sacrificed. We show in the following section that this
extra area is very insignificant. Figure 5b shows the actual circuit synthesized
by Mentor Graphics tools using the 1.2µm CMOS technology.

c

FSEL

a
b

S

Cout

    Dual-Field

      Adder

a
b
c

FSEL

S

Cout

      (a) Dual-Field Adder                                    (b) Synthesized circuit by Mentor 

Figure 5: The Dual-Field Adder Circuit.

In the circuit, the two XOR gates are dominant in terms of both area and
propagation time. As in the standard full-adder circuit, the dual-field adder has
two XOR gates connected serially. Thus, propagation time of the dual-field adder
is not larger than that of full adder. Their areas differ slightly.

7 Design Considerations

In [20], an analysis of the area and time tradeoffs is given for the scalable mul-
tiplier. The architecture allows designs with different word lengths and different
pipeline organizations for varying values of operand precision. In addition, the
area can be treated as a design constraint. Thus, one can adjust the design ac-
cording to the given area, and choose appropriate values for the word length and
the number of pipeline stages, in accordance. We give a similar analysis for the
scalable and unified architecture. We are targeting two different classes of ranges
for operand precision:
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– High precision range which includes 512, 768 and 1024, is intended for ap-
plications requiring the exponentiation operation.

– Moderate precision range which includes 160, 192, 224, and 256, is typical
for elliptic curve cryptography.

The propagation delay of the PU is independent of the wordsize w when w is
relatively small, and thus all comparisons among different designs can be made
under the assumption that the clock cycle is the same for all cases. The area
consumed by the registers for the partial sum, the operands, and modulus is also
the same for all designs, and we are not treating them as parts of the multiplier
module.

The proposed scheme yields the worst performance for the case w = m in
the high precision range, since some extra cycles are introduced by the PU in
order to allow word-serial computation, when compared to other full-precision
conventional designs. On the other hand, using many pipeline stages with small
wordsize values brings about no advantage after a certain point. Therefore, the
performance evaluation reduces into finding an optimum organization for the
circuit.

In order to determine the optimum selection for our organization, we obtain
implementation results by synthesizing the circuit with Mentor Graphics tools
using 1.2µm CMOS technology. The cell area for a given word size w is obtained
as

Acell(w) = 48.5w (5)

units, and is slightly different from the one found in [20], where the multiplication
factor in the formula is the area cost provided by the synthesis tool for a single
bit slice. Note that a 2-input NAND gate takes up 0.94 units of area. In the
pipelined organization, the area of the inter-stage latches is important, which
was measured as

Alatch(w) = 8.32w (6)

units. Thus, the area of a pipeline with k processing elements is given as

Apipe(k, w) = (k − 1)Alatch(w) + kAcell(w) = 56, 82kw− 8.32w (7)

units. For a given area, we are able to evaluate different organizations and select
the most suitable one for our application. The graphs given in Figure 6 allow to
make such evaluations for a fixed area of 15,000 gates.
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Figure 6: Time Efficiency for Different Configurations
with a Fixed Area of 15,000 Gates.

For both moderate and high precision ranges, the number of stages between
5 and 10 are likely to give the best performance. For the high precision cases,
fewer than 5 stages yields very poor performance since the fixed area becomes
insufficient for large wordsizes and the performance degradation due to pipeline
stalls becomes a major problem. The small number of stages with very long
word sizes seem to provide a reasonable performance in the moderate range,
however, because of the incompatibility issues about using very long word sizes
and inefficiency when the precision increases, using fewer than 5 stages is not
advised. We avoid using many stages for two reasons:

– high utilization of the PUs will be possible only for very high precision, and
– the execution time may have undesirable oscillations.

The behavior mentioned in the latter category is the result of the facts that

– extra stages at the end of the computations, and
– there is not a good match between the number of words e and the number

of stages k, causing a underutilization of stages in the pipeline.

From the synthesis tool we obtained a minimum clock cycle time of 11
nanoseconds, which allows to use a clock frequency of up to 90MHz with 1.2µm
CMOS. Using the CMOS technology with smaller feature size, we can attain
much faster clock speeds. It is very important to know how fast this hardware
organization really is when comparing it to a software implementation. The an-
swer to this would determine whether it is worth to design a hardware module.
In general, it is difficult to compare hardware and software implementations. In
order to obtain realistic comparisons, a processor which uses similar clock cycles
and technology must be chosen. We selected an ARM microprocessor [5] with 80
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MHz clock which has a very simple pipeline. We compare the GF (p) multiplica-
tion timing on this processor against that of our hardware module. We use the
same clock frequency 80 MHz for the module of the pipeline organization with
w = 32 and k = 7 for the hardware module. On the other hand, the Montgomery
multiplication algorithm is written in the ARM assembly language by using all
known optimization techniques [8,10]. Table 1 shows the multiplication timings
and the speedup.

Table 1: The Execution Times of Hardware and Software
Implementations of the GF (p) Multiplication.

precision Hardware (µs) Software (µs) speedup
(80 MHz, w = 32, k = 7) (on ARM with Assembly)

160 4.1 18.3 4.46
192 5.0 25.1 5.02
224 5.9 33.2 5.63
256 6.6 42.3 6.41
1024 61 570 9.34

8 Conclusion

Using the design methodology proposed in [20], we obtained a scalable field mul-
tiplier for GF (p) and GF (2m) in unified hardware module. The methodology can
also be used to design separate modules for GF (p) and GF (2m) which are fast,
scalable and area-efficient. The fundamental contribution of this research is to
show that it is possible to design a dual-field arithmetic unit without compro-
mising scalability, the time performance and area efficiency. Our analysis shows
that a pipeline consisting of several stages is adequate and more efficient than
a single unit processing very long words. Working with relatively short words
diminishes data paths in the final circuit, reducing the required bandwidth.

The proposed multiplier was synthesized using the Mentor tools, and a circuit
capable of working with clock frequencies up to 90 MHz is obtained. Except
for the upper limit on the precision which is dictated only by the availability
of memory to store the operands and internal results, the module is capable of
performing infinite-precision Montgomery multiplication in GF (2m) and GF (p).
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