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Abstract. This paper describes two implementations of a Data Encryption
Standard (DES) encryptor/decryptor that operate at data rates up to 12 Gbps.
The 12 Gpbs number is faster than any previously published design. In these
DES implementations, the key can be changed and the core switched from
encryption to decryption mode on a cycle-by-cycle basis with no dead cycles.
The designs were synthesized from Verilog HDL and implemented in Xilinx
XCV300 and XCV300E devices. This paper describes the optimizations used
and the coding conventions required to direct the synthesis tools to map the
design to achieve a high-speed implementation. No physical constraints were
given to the tools.

1 Introduction

The rapid growth of virtual private networks has heightened demand for encryption
hardware that can handle high data rates. The hardware-friendly DES algorithm is
well-suited to this application. Concerns about the vulnerability of DES are driving
further standardization efforts, so any encryption hardware that is deployed today may
become obsolete in a few months. In contrast, if the encryption engine resides in an
FPGA, it could be updated in the field with a new encryption algorithm when that
algorithm is available.

The DES algorithm has a regular structure that lends itself to pipelining, and simple
data manipulations that permit fast operations. Several high-speed DES hardware
implementations have been reported in the literature. These implementations unroll the
16 rounds of encryption and pipeline them. Wilcox [8] describes an ASIC
implementation that operates above 10Gbps. Patterson [5] compiles a key-dependent
data path for encryption in an FPGA that runs over 12Gbps [6], but the latency to
change keys is tens of milliseconds. The most directly comparable prior art design
implemented in an FPGA has complete loop unrolling and encrypts at 3.05Gbps [3].

This paper describes the implementation and optimization of an FPGA core for
DES encryption and decryption. The core achieves a data rate of 8.4 Gbps with 16
cycles of latency, and 12 Gpbs with 48 cycles of latency. The core takes a key an
encrypt/decrypt signal, both of which may change on a cycle-by-cycle basis.
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Since the core is compiled Verilog, it is simple to concatenate multiple copies of the
core in a larger FPGA to provide triple DES [1] at the same data rate. Iﬂ is also
straightforward to interface the core to data concentrators and different communication
interfaces supported by the FPGA, such as LVDS or double data rate (DDR) RAM.

2 The DES Algorithm

DES [2][7] takes as input one 56-bit key and one 64-bit block of data, and produces
one 64-bit block of encrypted data. The same basic design is used for both encryption
and decryption. As shown in figure 1, the DES algorithm begins with an initial
permutation (IP), encrypts in sixteen “rounds”, followed by the inverse of the initial
permutation (IP™"). In each round, the right-side 32 bits of the block are transformed
with the function labeled “f” and the key, then exclusive-ored with the left side 32
bits. The key for each round is a subset of the original 56-bit key with bits permuted.
After each round, the two sides of the data block are swapped and the algorithm
continues.

The f function expands the right side to 48 bits, exclusive-ors those bits with the
key, and divides the resulting 48 bits into eight 6-bit fields. Those fields are used as
addresses into 8 64-word by 4-bit memories called S-boxes. The eight 4-bit S-box
outputs are re-assembled into the 32-bit word that is XORed with the left side of the
block.

Decryption differs from encryption in the way the bits of the sub-keys (K,-K,,) are

selected from the encryption key. This selection leads to the key bits multiplexer in
figure 2.
In summary, the DES algorithm consists of 16 identical encryption rounds. Each
round contains a significant amount of bit movement, which is simple wire in a
hardware implementation, 80 2-bit XORs, and 8 lookups in 64-word by 4-bit S-boxes.
Each round uses a subset of the key bits with a particular permutation. The
permutation depends on the round and on whether the operation is encrypt or decrypt.
Consisting primarily of wiring, table lookups and bitwise operations, the algorithm fits
nicely into an FPGA.

3 Implementation

We coded the design in Verilog and simulated with Cadence Verilog-XL 2.2.31. We
synthesized with Synopsys Design Analyzer 1998.08, targeting Xilinx Virtex-6 speed
grade. Physical design was done with Xilinx Design Manager 2.11, C.22.

The original Verilog design was intended to be space efficient, and was
implemented as a single instantiation of the encryption round that operated iteratively.
A single block of data passed through the round 16 times to produce one block of
output. We modified this original version in several ways to gain significant
throughput and clock rate improvements. The following sections describe those
improvements.
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Fig. 1. DES Algorithm Overview
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3.1 Loop Unrolling and Pipelining

To gain speed, we built 16 copies of the round and unrolled the loop, pipelining the
data through the 16 stages. This increased the data rate by a factor of sixteen, but at
the cost of approximately sixteen times as much logic. This design simulated fine, but
logic synthesis, which we ran at medium effort, predicted a clock rate less than
25MHz. The critical path through the round is shown in figure 2. A multiplexer
selects key bits depending on the round and on whether we are encrypting or
decrypting. The resulting selected key bits are XORed with the right side of the data
block (R,) and 6-bit fields are used to address in to the S-boxes. One bit of one S-box
is shown as 4LUTs, F5 and F6 MUXes. The resulting bits from the S-box are XORed
with the left side bits from of the block (L;) and stored in the pipeline register.
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Fig. 2. Single Round Data Path.

3.2 Mapping to LUTSs

Clearly, the critical path is through the logic of a single round. In our initial
implementation, we used an SBOX expressed as 2-input functions[4] which produced
an appallingly slow result, so we re-coded the SBOXes as 64x4 lookup tables. This
design resulted in a critical path of eleven levels of LUTs which still performed rather
poorly. We recognized that the Virtex CLB can implement one bit of an S-Box
completely as a 64-word lookup table, which would reduce the logic to only three
levels in the FPGA, but the synthesis tool did not implement the logic that way despite
the Verilog description that looked like a lookup table. The stylized form of Verilog
shown in figure 3 directs the synthesis tool to generate a 4LUT, but the form does not
extend to SLUTs or 6LUTs, which is why the original design was mashed into gates.
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We changed the Verilog to build 4LUTs, and directly instantiated the Virtex FS MUX
in Verilog. We decided not to instantiate the F6 MUX because the F6 function could
be merged with the following XOR gate in a single 4LUT (circled in figure 2), and the
Virtex F5 function is slightly faster than the F6 function. The LUT following the
SBOX is required in either case to implement the XOR with the left side of the data
block that follows the SBOX lookup.

After these modifications, synthesis implemented the critical path in five levels of
logic: two for the key MUX, one for the key XOR, one for the S-box through the
5LUT, and one for the F6 MUX plus the final XOR. Synopsys estimated the resulting
speed at SOMHz.

always @ (addr) begin

case (addr[2:5])
0: d2 = 4;
1: d2 = 1;
2: d2 = 14;
3: d2 = 8;
4. d2 = 13;
5: d2 = 6;
6: d2 = 2;
7: d2 = 11;
8: d2 = 15;
9: d2 = 12;
10: d2 = 9;
11: d2 = 7;
12: d2 = 3;
13: d2 = 10;
14: d2 = 5;
15: d2 = 0;

endcase

end

Fig 3. Verilog Case Statement that Generates a 4LUT.

3.3 Verilog Parameters

Focus turned now to the key multiplexer (on the left in figure 2). That multiplexer was
rather wide because the Verilog code, which had been written for an iterative
implementation, included a module for the key shift block. The module took as input
signals that identified the round because the shift is different for different rounds. In
the iterative version, those signals changed every cycle, but in the pipelined version,
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those bits were tied to constants. However, since they were passed into a Verilog
module, the multiplexers were not simplified by synthesis, so each of those MUXes
had five or six inputs instead of two (one for encryption, one for decryption).

The solution was to implement these signals as Verilog parameters. To do this, the
module must be declared a template in the synthesis tool, so the tool can create a
separate module in the data base for each instance.

3.4 Decoupling the Key from the Data Path

In order to take the next step in performance improvement, we decided to take the key
MUX off the critical path by pre-computing the key shift selection. This was rather
straightforward. Since the key calculation must be pipelined along with the block of
data, we moved the pipeline registers in the key calculation data path to the location
marked with an arrow in figure 2. We added an additional pipeline stage in the first
round at that location. The key must now be presented one cycle before the data it
operates on. This modification is similar in concept to pre-computing the key
schedule, which is common in software implementations, and which Patterson [5] did
in software in his reconfigurable implementation. Since we compute the key in
hardware anyway, we require no more logic to continually re-compute the key
schedule one cycle ahead of when it is needed. This way, the decryptor is still able to
switch keys on a cycle-by-cycle basis. After this modification, synthesis estimated a
clock rate of about 70MHz. It was time for physical design.

3.5 Physical Design

We generated EDIF from the synthesized circuit, read the EDIF into the Xilinx Design
Manager and set the target to XCV300-6. Without any constraints, placement and
routing ran for about half an hour and produced a design that Design Manager reported
used 4216 LUTs (about 69% capacity) and would run about 80OMHz. We set a single
timing constraint: the clock period should be 10ns, and set high placer and router effort
(5). Placement and routing met the constraint after about four hours, yielding a circuit
that encrypts or decrypts a 64-bit block every 10ns, a 6.4Gbps data rate. Further
tightening of the clock period did not improve the resulting performance.

Next, we set the target to XCV300E-8 and tightened the clock rate constraint to
7.5ns. The resulting circuit ran at 132MHz, encrypting at 8.4Gbps.

We gave no placement constraints or hints. All performance numbers reported after
physical design are post-layout, worst-case timing reports from the Xilinx Design
Manager.

3.6 Deeper Pipeline

Finally, to wring a higher data rate, we inserted pipeline stages after the key XOR and
after the F5 step in the S-Box lookup (and added two more pipeline stages in the key
shift to maintain data alignment). This resulted in a 48-stage pipeline. Placement and
routing with high effort, multiple-pass place-and-route and a tightening clock period
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constraint yielded a designs that would operate at a data rate of 10.1Gbps in an
XCV300-6 (6.3ns clock period), and 12Gbps in an XCV300E-8 device (5.3ns clock
period).

4  Statistics

Both the 16-cycle and 48-cycle latency designs have these IO connections:

Data bus[1:64] Input data

Data out[1:64] Output data

Key[1:56] Key data to be applied to the following data block
Decrypt/encrypt The mode of operation on the current block

E data_ rdy Input data is valid this cycle

D data rdy Output data is valid this cycle

Clk Clock

Decrypt, E data rdy and D data rdy are presented simultaneous with the
data and are pipelined along with the data. The design can encrypt one cycle, and
decrypt the next cycle with no dead cycles. Key must be presented one cycle before
the data it operates on. Keys can also change every cycle with no dead cycles.

Here are implementation results for the two designs. Notice that the number of
LUTs does not increase with increased pipeline depth. Pipeline registers in the data
path require no additional logic, since the flip-flops in following the logic in the 16-
stage pipeline were unused. The additional pipeline registers on the key bits required
to maintain data alignment do add additional logic.

16-stage 48-stage

pipeline pipeline
Verilog Code Size (lines) 1106 1156
I/0 187 187
Design Size (LUTs) 4216 4216
Design Size (FFs) 1943 5573
Design Size estimated by Xilinx mapper (gates) 52936 72952
Data rate in XCV300-6 device (Gbps) 6.4 10.1
Data rate in XCV300E-8 device (Gbps) 8.4 12.0

5 Conclusion and Future Work

We designed a DES encryptor/decryptor core in Verilog and targeted it to an FPGA.
The resulting design with 16 cycles of latency runs at 8.4Gbps. The design with 48
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cycles of latency runs at 12Gbps. The speed of this design is approximately three
times faster than the previous fastest comparable FPGA implementation. It is faster
than an ASIC design reported only a year ago, and is comparable to a custom-key
encryptor that requires tens of microseconds to change keys.

Part of the reason for executing this design was to determine the performance
gained from various forms of optimizations to the design. We intend to use this
information to drive design automation software development. In this design we were
able to improve performance by more than a factor of two by applying an
understanding of the algorithm to force a preferred mapping of the logic, and by
changing the pipelining of the key. Although the former may be someday incorporated
into logic synthesis software, many designers may not appreciate software that
unilaterally changes the data alignment.

An observation of the delays in the final design shows that most of the delay in both
implementations is due to interconnect routing. The next step in this investigation is to
apply manual floorplanning and placement to reduce interconnect delay.

We are also interested in implementing additional encryption algorithms, with the
intent that a system would load the algorithm of choice into the FPGA as needed. This
strategy would permit, for example, fielding a system today that could be updated
when the advanced encryption standard becomes available.
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