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Abstract: 

It is known that for a memoryless mapping from GF(2)N into GF(2) the 
nonlinear order of the mapping and its correlation-immunity form a 
linear tradeoff. In this paper it is shown that the same tradeoff 
does no longer hold when the function is allowed to have memory- 
Moreover, it is shown that integer addition, when viewed over GF(2), 
defines an inherently nonlinear function with memory whose 
correlation-immunity is maximum. The summation generator which sums 
N binary sequences over the integers is shown as an application of 
integer addition in random sequence generation. 

1. Introduction 

Boolean functions from GF(2)” into GF(2) are commonly found in 
cryptographic applications. Usually they are designed to be nonlinear 
and to produce a balanced output, and, often one finds the additional 
requirement that from knowledge of the output bit it should not be 
possible to reliably guess one or more iqut bits. Consider for 
example DXS, where the S-boxes define nonlinear mappings from GF(2) 4 ,  

(Or GF(2) respectively), into G F ( 2 )  chosen in such a way that little 
statistical dependency is created between the output bit and one or 
more input bits. Or consider a classical running-key generator for 
Use in a stream cipher system. Such a running-key generator consists 
of N driving linear feedback shift registers (LFSRs) and some 
nonlinear function operating on the N output sequences in order to 
produce the running-key. Siegenthaler [l] has recently shown that 
several of the previously published rcnning-key generators employed 
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nonlinear functions which created statistical dependencies between 
single input and output variables and therefore allowed 'divide-and- 
conquer' attacks using correlation techniques . These results 
stimulated some interest in functions which can resist the 
correlation attack. The concept of m-th order corralation-immunity 
for combining functions [ 2 ]  was introduced as a measure of their 
resistance against such correlation attacks . (But correlation- 
immunity is not confined to running-key generators. In fact, if a 
boolean function is found to be m-th order correlation-immune, it 
means that there is no statistical dependency between the output 
variable and any subset of m input variables, provided the input 
variables are independent and uniformly distributed). Unfortunately, 
for such memoryless combining €unctions f there exists a tradeoff 
between the attainable nonlinear order and the attainable level of 
correlation-immunity [Zj. If k and m denote the nonlinear order and 
the order of correlation-immunity of f, respectively, then 

k + m < N-1 €or 1 c in 4 N-2.  (1) 

Thus, the more correlation-immunity, the smaller t h e  nonlinear order 
of f and consequently the smaller the linear complexity of the 
running-key, and vice versa. Moreover, functions which satisfy (1) 
with equality are difficult to find. 
In section 2 we shall show that this inconvenient tradeoff can be 
avoided by proper use of memory in the nonlinear combining function. 
In fact, one bit of memory suffices to obtain nonlinear combiners 
that are maximally correlation-immune and have maximum nonlinear 
order at the same time. In section 3 we shall demonstrate that 
integer (or real) addition, which is an extremely nonlinear operation 
when considered over GF(2), inherently defines a maximally 
correlation-immune combiner . Moreover, we will apply integer 
addition in random-sequence generation and give evidence that the 
resulting key stream is highly complex. 
Throughout most of this paper, GP(2) is taken a5 the underlying field 
of computation; therefore, unless otherwise stated, formulas are 
assumed to be compute6 over GF(2). 
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2 .  Correlation-Immunity of Nonlinear Combiners 

Nonlinear 
Combiner 
(memoryless 
or not) 

In order to investigate the statistical dependencies introduced by 
the nonlinear combiner itself (and not by the sources which feed it) 
we shall assume that the input sequences to the nonlinear combiner 
are sequences of independent and uniformly distributed binary random 
variables. 

Fig. 1. Information-theoretic model used to define correlation- 
immunity. (BSS = Binary Symmetric Source) 

Several authors ( [ 2 ] , [ 3 ] )  investigated the correlation-immunity of 
nonlinear combiners, but always under the assumption that the 
combiner is memoryless . A memoryless nonlinear function is termed 
correlation-immune of order m [2] if the mutual information between 
the output variable and any subset of m inpct  variables considered 
jointly is zero. F o r  a memoryless combiner time is immaterial, since 
at any time the output only depends on the current input variables. 
Now allow the nonlinear combiner to contain menory which, in fact, 
converts it into a finite-state machine (FSM) . Let So denote the 
initial content of the combiner's meaory and define 
X.l=X il,XiZ, . . , Xij , f o r  1 g i g N .  For any FSM we may write 

Zj = F(Xlj,. . . ,XNj,So) 
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As a natural extension of the above definition of correlation- 
immunity for memoryless combiners we shall say that a nonlinear 
combiner with memorv is correlation-immune of order m if the mutual 
information between the output sequence and any subset of m input 
sequences is zero, that is, if 

In this case the output sequence is statistically independent of acy 
m input sequences considered jointly . In many cryptographic 
applications it is required that the output sequence should resemble 
as closely as possible a truly random sequence. For example, in a 
running-key generator, it must not be possible to reliably guess the 
next key bit regardless of how many prior key bits have been 
observed . In the information-theoretic model this corresponds to 
requiring that ( 2 , )  forms a sequence of independent and uniformly 
distributed random variables. Under this constraint the definition 
( 3 )  is equivalent to 

I(zj;xi;,xl;, . . . , x~:,zJ-') o j > o  

l < i l < i 2 < .  . . <i ,<S 

Definition (4) is intuizively pleasing: knowing all prior output bits 
and knowing (or guessing) jointly any rn input sequences does not 
provide any information whatsoever on the next cutput bit. To prove 
the equivalence of ( 3 )  and (4), let m=l and decompose ( 3 )  in the 
following way, 

Mutual informations are always greater or ecpal to zero; hence it 
must hold 



264 

Taking into account that (Zj} forms an 1.i.d. sequence, we arrive at 

I ( z j d l z j - - 1 )  = I(zjixj,zj-l) = 

which establishes the equivalence. F o r  an in-depth treatment of the 
different definitions of correlation-immunity we refer to [S] . NOW 
let the function F of (2) have the f o r n  

N 

where the current input variables X l j ,  ..., X N j  are summed and added to 
an arbitrary function F' of all previous input variables and of the 
initial state S o  . Suppose we know the complete history of the 
nonlinear combiner F and all but one, say X i , ,  of the current input 
variables. We then may rewrite ( 5 )  as 

zj = xij + Yj ( 6 )  

where Y, summarizes our knowledge about the device. The fact that Xij 
is drawn independently of Y .  from a uniform distribution implies that 
Zj and Yj are statistically independent and that Z j  is also uniformly 
distributed. This can also be seen from the fact that (6) corresponds 
to sending Yj through a memoryless binary symmetric channel with 
capacity 0, thereby ensuring that Z j  is uniformly distributed and 
statistically independent of Y j  . Hence, any nonlinear combiner of 
the form ( 5 )  is (N-1)st-order correlation-immune, which is in fact 
the maximum order of immunity possible. Mcreover, the function F' in 
( 5 )  is not restricted in any way ar.d may consequently be chosen to be 
of maximum nonlinear order. In particular, one memory cell suffices 
in order to realize a combiner with maxinun correlation-imrr.unity and 
with maximum nonlinear order. For this case the FSM equations may be 
written as 

3 
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N 
z j  =)xij + s j - 1  

i=1 

Equations (7) describe an FSM with finite memory of 1 bit. If the 
next state is computed irrespectively of the previous state, then the 
FSM (7) is said to have a finite input memory of 1 bit (it can be 
realized with a pure feedfoniard structure). 
At this point it is illustrative to consider a practical example. 
Pless [ 4 ]  proposed in 1977 a running-key generator which contains as 
basic building block a 2-LFSR-subgenerator. In this subgenerator a J- 
K Flip-Flop acts as the nonlinear element which combines the 2 LFSR 

sequences. A J-X Flip-Flop defines a one-bit FSM whose state just 
contains the previous output bit and whose output and next-state 
functions therefore coincide. Its behavior is completely described by 

Considering Xljl X 2 j ,  and Z j - l  as the 3 input variables to a 

memoryless mapping f defined by ( 8 )  we may compute the Walsh 
transform Sf(w) [ 3 ]  of f. Fig. 2 displays the result 

0 1 2 3 4 5 6 7  

Fig. 2 .  Walsh transform of the boolean mapping defined by ( 8 )  



266 

The graph of Fig. 2 may be interpreted as follows: let (wolWl,W2) 
denote the binary representation of w, where 0 6 w 6 7 .  If the Walsh 
transform Sf(w) is nonzero at some w > 0 then the mutual information 
I ( Z j  ;w~Xlj+wlX2,+w2Zj-1) is greater than zero. Moreover, the value Of 
the Walsh transform at this w gives an exact account of how much 
statistical dependency is introduced. For instance, the peaks in the 
Walsh transform at w = 1 and w = 2 in Fig. 2 tell us that the output 
bit Zj is neither independent of xlj nor of X2j. The value -1/4 at 
Sf(1) tells us that the probability that Z j  coincides with X 1 j  is 
3/4 . Equivalently, the value +1/4 at S f ( 2 )  tells us that the 
probability that Zj coincides with X2, is 1/4. On the other hand, 
since S f ( 4 )  is zero Zj is independent of Zj-l. Consequently, if a J-K 
Flip-Flop is fed by two binary symmetric sources it will produce a 
sequence of independent and uniformly distributed binary random 
variables (as desired), but this output sequence will exhibit a 
strong correlation with either input sequence. Thus, the correlation- 
immunity of a J-K Flip-Flop is zero. 
Comparing ( 2 )  and (4) we notice that maximum correlation-immunity of 
F was obtained by separating the N current input variables from an 
arbitrary function F‘ of only prior input variables. In general, any 
desired level m of correlation-immunity can be obtained by separating 
m i l  input variables each taken from a different input sequence and 
possibly with a different time index, but disallowing their use in 
the arbitrary function F’. 

3 .  The Summation PrinciDle 

Let a and b be two integers, whose binary representation is given as 
a=an,12n-1+. . .+a12+a0 and b=bn-12n-1+. . .+b12+bo, respectively. Let z 
= a + b be the real sum of the two integers and assume that the sum 
is computed bit-serially in GF(2) from the binary representations of 
a and b. Then we may write, with increasing nonlinear order of the 
binary functions producing the j - t h  bit 
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z o  = a. + bo 
z1 = a1 + bl f aobo 
z2 = a2 + b2 + albl + alaobO + blaObO 

( 9 )  

or, we may express zj recursively f o r  Osj$n 

cj = f2(a,,bj,cj,l) = a,bj i. (aj + bj)cj-l (lob) 

where cj-l represents the carry-bit from the l e s s  significant bits to 
bit j of the sum. Fig. 3 illustrates the principle. 

Fig. 3 .  Time-sharing of a 3-bit adder to produce bit- 
serially the real sum of two n-bit integers. 

When the two input shift registers in Fig. 3 are initially loaded 
with the binary representation (least-significant bit first) of the  

two integers and when the feedback memory c e l l  is initially z e r o ,  
then after (ntl) clock cycles the ( n + l )  bits corresponding to the 
binary representation of the real sun will have appeared serially a t  

the output. In fact, the real adder of Fig. 3 defines a finite-state 
machine with output and next-state functions according to (LO) ,  and, 
surprisingly enough, it directly realizes a correlation-immune 
combining function as defined in ( 7 )  . Note that fl defines the 
GF(Z)-sum of the input variables and thus accounts f o r  the 
correlation immunity, while f2 defines the GT(2)-surn of all second- 
order products of the input variables and thus implements a 
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memoryless nonlinear mapping. The memory-cell is used to hold the 
carry-bit from the (1-1)-st to the j-th position of the sum and 
carries all the nonlinear influence of the less significant bits. 
These observations suggest that real addition could be useful in 
running-key generation. The simplest running-key generator based on 
this summation principle may be obtained by adding two (or in general 
N) infinite integers whose binary representations are periodic 
sequences generated by suitable LFSRS . We shall call any such 
generator a summation-senerator. It is apparent from the linear form 
of the output function (loa) that whenever at least one input 
sequence consists of independent and uniformly distributed random 
variables so will also the output sequence. Besides statistical 
properties of a generator one is often interested in the period of a 
generator and its linear complexity (that is, the length of the 
shortest LFSR that is able t3 emulate the generator for a given 
output sequence). 

ProDerty Ir 
Let (aj) and (bj} be two binary sequences with least periods T1 
and T2 respectively. When (zj] denotes the real sum of (aj) and 
{b,}, expressed in radix-2 form, and if gcd(T1,T2) =1, then (z,} 
has least period T1T2. 

Proof: 
Define the rational fraction s associated to a sequence {sj) of 

period T as T 
s,-jz-J 

j=1 P 

where gcd(p,q)=l . The period T may be found from q as the 
multiplicative order of 2 modu:o q . Therefore we may write 
a=pl/ql and b=p2/q2 . The real sum of the sequences directly 
corresponds to the real sum of the rational fractions. Thus 
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where we identify n/q1q2 as the rational fraction representing 
the real sum sequence (zj) and c, which is either 0 or 1, as the 
carry digit from one period of the sum sequence to the next. We 
note that gcd(n,qlq2)=1 because gcd(ql,q2) = gcd(pl,ql) = 

gcd(p2,q~)=l, and that gcd(2,qlq2)=l since q1 divides 2%-1 and 
q2 divides aT2-l. Then the period T of the real sum sequence 
{ z j l  is given by the multiplicative order of 2 modulo q1q2. 
Since q1 and q2 are relatively prime it follows from the Chinese 
remainder theorem that T is equal to the product of the 
multiplicative orders of 2 modulo q1 and 2 modulo q2. Hence 
T=TiT2. 

Property 1 may easily be generalized to the sum of N periodic 
sequences in radix-r representation. 
NOW assume that the real adder is fed by two maximum-length sequences 
whose minimal polynomials have relatively prime degree L1 and L a .  
This implies that their periods are relatively prime and thus, by 
property 1, the period T of the real sum sequence is (ZL1-l) (2L2-1) 
which value also provides an upper bound to the linear compiexity of 
{Zj}. when the above two m-sequences are multiplied termwise then the 
resulting product sequence will have a minirral polynomial of degree 
LILz (i.e. linear complexity LlL2) all of whose roots are from 
GF(2L1L2) - GF(ZL1) - GF(ZL2) . The interesting question now is how 
the feedback memory of the real adder affects the linear complexity 
of the real sum sequence. From (9) we see that the order of the 
products involved in the direct description of the function producing 
2, grows linearly with time. A finite-state machine is said to have 
finite input memory M if M is the least integer such that the output 
digit at time j may be expressed as a function of the input variables 
at times j - M ,  . . , ,j-l,j. Clearly the FsM as described by (10) has in 
general infinite input memory. But whenever the input sequences to 
the real adder produce a pair of zeros or ones, then the state of the 
adder FSM is set to a value independent cf the preceding states and 
input values. In particular, when periodic input sequences are used 
which produce at least a common pair of  zeros  or ones within the 
period of the output sequence (which is certainly true for the above 
pair of m-sequences), then the input memory M will be finite with 
respect to the particular driving sequences. This allows to convert 
the feedback structure of the nonlinear combiner (10) into a 
feedfomard structure of input memory M (corresponding to a maximum 
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nonlinear order of Mfl in the functional description (9)). From the 
feedforward function it is then possible to calculate (or at least 
bound) the associated linear complexity of the output sequence. In 
fact, one may prove that real addition of binary sequences is SO 
nonlinear that from the available L1 elements in GF(2Ll ) and L2 
elements in GF(2L2 ) ,  (which are the roots of the two primitive 
minimal polynomials), it may generate every element in G F ( 2 L 1 L 2 )  - 
GF(zL1)  -GF(ZL2). 

ProDertv 
Let {aj) and {bj) be two binary m-sequences whose primitive 
minimal polynomials have relatively prime degrees L1 and L2. 
When (aj ) and (bi ) are added over t h e  reals then the real sum 

sequence 
length, 

{zj } exhibits linear complexity LC close to its period 

Zj)) < (2L1-1) (2L2-1)  

with near equality. 

Instead of giving the proof which is straightforward but rather 
tedious, we will display some simulation results [6] which confirm 
that the bound (11) is extremely tight . In fact, no serious 
degeneracy w a s  ever found, which suggests that integer addition is an 
inherently good nonlinear function. 

N L1 L2 L3 T LC 

2 3 4 105 >,loo 
3 5 217 2200  
4 5 4 65 2455 

3 2 3 5 651 3641 

Table 1. Small-scale simulations giving evidence that the bound 
(11) is very tight (for explanation of the table see 
text below). 

In table 1, the column labeled N gives  the number of m-sequences 
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added over the reals; the columns labeled L1, Lz, and L3 give the 
degrees of the minimal polynomials of the m-semences which were 
added: the column labeled T gives the period of the sum sequences: 
the column labeled LC displays the smallest linear complexity 
obtained f o r  all possible combinations of different primitive minimal 
polynomials of the mentioned degrees. For instance, the first row 
tells us that each of the different m-sequences of degree 3 (there 
are 2 )  was separately added to each of the different m-sequences of 
degree 4 (there are 2 ) ,  and never was a linear complexity of smaller 
than 100 obtained. 
Although it seems counterintuitive, integer (real) addition is 
extremely nonlinear when viewed over GF(2) . The results in this 
section show that given two integers whose binaq representations 
have very low (linear) complexity then their real s'm may have very 
high (linear) complexity. This of course depends whether use was made 
of the nonlinear potential of real addition. Suppose, for example, 
we add the two integers whose binary representations are the 
sequences 0101. . and 1010. . each having linear complexity 2. The 
result is the all-1 sequence of linear complexity 1. Note that in 
this case the real sum and the mod-% sun of t>-e 2 sequences are 
identical and, in fact, never a nonlinear contribution through a 
carry occurred. 
Finally, we want to mention that a similar analysis applies to the 
O/l-knapsack with N weights [ 7 ]  . The i-th output bit of such a 
knapsack may be regarded as being produced by a boolean function from 
GF(2)N into GF(2) whose coefficients are determined by the weights of 
the knapsack. One can prove that the nonlinear ordsr of the function 
producing the i-th output bit is bounded form above by 1nin(2~,N). 
Therefore, roughly the logN least significant bits of a knapsack are 
considerably less nonlinear (are considerably weaker) then the 
remaining output bits. 
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