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Strong Primes arc Easy t o  f i n d  

John Gordon, Cybermation Ltd 

Sunmary 

A simple method i s  given f o r  finding strong, random, large 
primes of a given number of bits, for  use i n  conjunction with the 
RSA Public Key Cryptosystem. A strong prime p i s  a prime 
satisfying: 

* p = l m o d r  

* p = s-1 mad s 

i t  r = 1 mod t, 

where r,s and t are a l l  large, random primes of a given number of 
bits. It i s  shown that the problem of finding strong, random, 
large primes i s  only 1YL harder than finding random, large 
primes. 

Introduction 

The most promising public key cryptosystem BKC) since the idea 
was f i r s t  published u3 i s  almost certainly the RSA scheme t2L 

A brief description o f  the RSA scheme w i l l  now be given, but the 
interested reader should consult C23 for  more details. In what 
follows, the terms number, and integer are both t o  be 
taken as indicating either a positive integer or  zero. 

In implementing this scheme a person (say Bob) makes for  himself 
a set of three large numbers: m, E and D, (respectively the 
wdulus,  Public key and 

then 

Secret key) with the properties: 

i f  y = xu mod m 

for a l l  numbws x in the range (0, m-U. 

x = yp mod m 

The numbers E and m are published, and someone else (say Alice) 
wishing t o  send a secret message x (regarded for  the purpose of 
encryption as a large integer) t o  Bob, calculates y f r o m  x and 
sends t o  Bob the cryptogram y. Since Bob knows D he can 
recover the message. Anyone else wishing t o  eavesdrop m u s t  find D, 
or else discover x some other way. Both of these recourses appear 
t o  be computationally infeas ibk for  suitable choices of 
parameters. 

Bob makes m, E and D as follows. He chooses two very large primes 
p and q a t  random w i t h  p and q of roughly equal size (of say 256 

T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT '84, LNCS 209, pp. 216-223, 1985. 
0 Spnnger-Verlag Berlin Heidelberg 1985 



217 

b i t s  each). This  choice of  p and q is t h e  s u b j e c t  of t h i s  paper. 
He chooses E a t  random, r e l a t i v e l y  prime t o  @-Wq-1) and t h e n  
f inds D from t h e  relat ionship:  

ED = 1 mod (p-U(q-1) 

uhich he can d o  e a s i l y  and quickly using fuclid's algorithm 
C33, C41. Finally he forms  m using: 

Lp = pq. 

A potent ia l  e a v e s d r o p p e r  must it seems f i r s t  find I), which a p p e a r s  
t o  r e q u i r e  t h e  de te rmina t ion  of p and q, which in t u r n  seems t o  
imply t h a t  h e  must be able t o  f a c t o r i s e  m. To f a c t o r i s e  a product  
m=pq where p and q are v e r y  l a r g e  primes of s a y  256 b i t s  each  is 
one of t h e  h a r d e s t  known common problems L21, C31. 

The advanced t e c h n i q u e s  a c r y p t a n a l y s t  might u s e  t o  f a c t o r  m C31 
break down when p land s imilar ly  q) is n o t  only prime but  also h a s  
t h e  p r o p e r t i e s  t h a t  p-1 h a s  a l a r g e  prime f a c t o r  s a y  r, and p+l 
has a large prime f a c t o r  s a y  s. To make t h e  problem r e a l l y  hard 
r-1 should have  a l a r g e  prime f a c t o r  as w e l l .  For log is t ica l  
r e a s o n s  it is also n e c e s s a r y  to  be ab le  t o  choose p in some s e n s e  
a t  random b u t  with a given number of bits .  

There is t h u s  a c o n s i d e r a b l e  i n t e r e s t  in t h e  problem of finding 
primes with t h e s e  d e s i r a b l e  progert ies .  However t h e r e  d o e s  n o t  
appear  t o  b e  any  published way of finding primes with all t h e s e  
proper t ies ,  and in t h i s  p a p e r  w e  show how to s a t i s f y  all t h e  
requirements. In  p a r t i c u l a r  it is shown t h a t  t h e  extra condi t ions 
imposed upon p add only 19% t o  t h e  cost of t h e  t a s k  o f  finding p. 

The Technique 

We s e e k  t h e r e f o r e  a computationally economical cons t ruc t ion  for a 
large, randomly s e e d a b l e  i n t e g e r  p of given number of b i t s  and 
uith t h e  following p r o p e r t i e s :  

I) p is prime. 

* p-1 h a s  a l a rge ,  prime f a c t o r ,  s a y  r. 

* p+l h a s  a l a rge ,  prime f a c t o r ,  s a y  s. 

* r-1 h a s  a l a r g e ,  prime f a c t o r ,  s a y  t. 

Numbers s a s t i s f y i n g  t h e s e  criteria w i l l  be  known as Strong 
Primes. We now shaw, expl ic i t ly  how to  c o n t r u c t  s t r o n g  primes. 
We begin with t h e  following observat ions.  

If p-1 has a l a r g e ,  prime factor r, then  p = K r  + 1 f o r  some K. If 
K is odd (and assuming t h a t  r is g r e a t e r  than 2 and hence a n  odd 
prime), t h e n  p w i l l  b e  e v e n  (since a product of add numbers is 
odd), which is r i d i c u l o u s  s i n c e  p is g r e a t e r  than r. Therefore  K 
must b e  even. S i n c e  p, P s and t are all assumed t o  be l a r g e  w e  
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are only i n t e r e s t e d  in odd p m e s  p whose proper t ies  are in 
effect :  

U) p = 2Jr + 1 

(2) p = 2ks - 1 

(3) r = 2 L t  + 1 (or r = 1 mod 2t) 

(or p = 1 mod 2r) 

(or p = 5-1 mod 2s) 

f w  some j, k, L where r,s and t are primes. 

Our o r d e r  of  events  w i l l  be: 

* choose random s e e d s  a and b 

* 
* from t construct r 

from a and b g e n e r a t e  random primes s and t 

* from r and s c o n s t r u c t  p. 

I t  w i l l  be assumed t h a t  choosing random s e e d s  with any r e q u i r e d  
number of b i t s  doe5 n o t  p r e s e n t  any spec ia l  problems and t h i s  
aspect w i l l  n o t  be a d d r e s s e d  fur ther .  

Find s and r 

Finding 5 (and t) which are j u s t  random primes greater t h a n  a 
given s e e d  and of s p e c i f i e d  number of b i t s  is r e l a t i v e l y  
s t ra ightforward.  S t a r t i n g  from random s e e d  a, w e  w i l l  find t h e  
f i r s t  prime s (or t) g r e a t e r  t h a n  a. We now estimate t h e  
computational effort and t h e  time to complete tasks of t h i s  type. 

We know from t h e  
very  good estimate of t h e  number of primes less than  x. Hence t h e  
densi ty  of  primes in  t h e  neighbourhood of x is given by: 

Prime Number Theorem C41, t h a t  x/Ln(x) is a 

which is close to  l/Ln(x) f w  l a r g e  x. The mean separa t ion  between 
primes of magnitude x is t h e r e f o r e  about  LnW. If w e  s e a r c h  
through only odd numbers f o r  t h e  next prime g r e a t e r  than s w e  
w i l l  need to  examine on  average no more than  Ln(x)/2 numbers. If 
x=2" t h i s  amounts t o  0.3511 integers .  We are t h u s  unlikely t o  
need to  examine s a y  n i n t e g e r s  before  finding a prime. 

Eliminating mult iples  of 3 r e d u c e s  t h e  s e a r c h  by a f u r t h e r  factw 
of two-thirds and so on. Continuing in  t h i s  way w e  find t h a t  
eliminating mul t ip les  of t h e  f i r s t  54 primes, (2,3,5,..,2513, 
l e a v e s  only 10.035% of all i n t e g e r s  f o r  s e r i o u s  f u r t h e r  
examination. The r e a s o n  for being i n t e r e s t e d  in t h e  f i r s t  54 
primes resides i n  t h e  fact t h a t  t h e s e  are precisely t h o s e  primes 
which can be r e p r e s e n t e d  in one  8-bit by te  or less. They c a n  be 
s t o r e d  in  s ing le  b y t e s  and permit extremely rapid elimination 
using a divis ion algorithm which eff ic ient ly  exploi ts  a 1-byte 
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divisor. This algorithm need n o t  form a quotient. The typ ica l  
s e a r c h  w i l l  t h e n  pay s e r i o u s  a t t e n t i o n  to only 0.1003SLnIx) 
integers .  If x is a n-bit number t h i s  amounts to  less than 0.07n 
integers.  

Our technique is t o  test t h e s e  remaining, uneliminated i n t e g e r s  
using a n  efficient, statistical technique, f o r  example 
Rlgorith8-P in C33. Each s u c h  test c o n s i s t s  of v p a s s e s  
through a p r o c e d u r e  whose complexity is dominated by t h e  need  t o  
perform a modular exponent ia t ion uq(m0d.x) where v is a b o u t  
5, and q and x are n - b i t  quant i t ies .  

In point of f a c t ,  non-primes are almost invariably eliminated on  
t h e  f i r s t  p a s s  and so v=5 only for t h e  number finally chosen. 
If most numbers are eliminated then v=l is a more realistic 
estimate. 

Modular exponent ia t ion  on  a normal computer where multiprecision 
ar i thmetic  must be u s e d  r e q u i r e s  tr iple-nested loops a t  t h e  b i t  or 
word l e v e l  and t h e  time t o  perform such an exponentiation is of 
order O h %  Experiments on small computers using very  
e f f i c i e n t  assembly language programming indicate t h a t  t h e  t i m e  t o  
exponent ia te  f o r  l a r g e  n is about  

T,,,(n) = cTn3/w 

where c is a c o n s t a n t  of s i z e  about  8, T is t h e  t i m e  f o r  o n e  
i n s t r u c t i o n  and w is t h e  word size. (On a speual-purpose n-bit 
machine t h e  t i m e  would b e  of t h e  o r d e r  O(n")). The time 
t h e r e f o r e  needed t o  find s (or t) (ignoring t h e  time for  quick 
eliminations) is about 0.07n times cvTn3/w i.e. about: 

T,,,(n) = 0.07cvTn4/w. 

When w e  have  found s (or t), it is unlikely t o  have more b i t s  t h a n  
t h e  s e e d  a. We c a n  v i r t u a l l y  e n s u r e  t h i s  by picking o u r  v a l u e  
of a in t h e  range (2"-1,2n-1+2"-2-1). This 
e n s u r e s  t h a t  a starts with t h e  two d i g i t s  10 which l e a v e s  a 
run of 
increasing t h e  number of bi ts .  

i n t e g e r s  in  which t o  find a prime before  

We now s e e k  a prime r of t h e  form 2Lt+l. O u r  technique is to  
s e a r c h  through C?Lt+l)-space for success ive  va lues  of L. Since w e  
w i l l  only be  examining odd numbers, primes w i l l  appear  to  be  t w i c e  
as dense  as among all numbers, bu t  conversely twice as  many w i l l  
have non-trivial  divisor-s. Thus t h e  t i m e  t o  find r w i l l  again be 
be  TppL,dn) where n i n  t h e  number of b i t s  in r. 
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Controlling t h e  size o f  r 

We are likely to  use about  nln(2)/2 = 0.3% successive va lues  of L 
before  finding r. Every t i m e  L doubles another b i t  is added t o  
2Lt+l. If t h i s  p r o c e s s  is n o t  t o  leave great uncertaint ies  in  the 
final  number of b i t s  in  r w e  should start w i t h  a value to of 
of about n, so that L w i l l  increase on average by a f a c t o r  of b35 
which is less t h a n  2. The f ina l  s i ze  of r w i l l  be very close to 
Logd2Lo) + n bi ts .  We can inc rease  the cer ta in ty  of 
this by increasing L* 

A more soph i s t i ca t ed  approach is t o  arrange for 2 t  t o  be say 
Logn(n) b i t s  s h o r t e r  t han  t h e  desired length of r, then 
s t a r t i n g  with unity,  add in success ive  multiples or 2 t  unti l  the 
desired length of  r is reached, and then begin checking for 
primality a t  each  subsequent  addition of 2t. 

Find p 
We n o w  come to the f ina l  p a r t  of t h e  technique namely, given 
primes r and 5, find a prime p, close in s ize  to  a given number of 
bits, and satisfying: 

p = 2 i + l  = 2ks-1, for some j and k 

or 

p = 1 mod 2r =2s-1 mod 2s. w 
The key t o  solving t h e  problem of finding primes with these 
proper t ies  is contained in  t h e  following theorem. 

Theorem 1; 

If r and 5 are odd primes, then p sa t i s f ies :  

p = (1 mod 2r) = (5-1 mod 2s) 

i f  and only i f  p is of t h e  form: 

p = Po +2krs 

where 

po = u(r,s) :u(r,s) odd 

= u(r,s) + rs :u(r,s) even 
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Proof: 

Integers, prime or otherwise,  sa t i s fy ing  €11 clearly also s a t i s f y  
t h e  weaker  condition: 

p = jr + 1 = ks - 1 f o r  some j,k. c4> 

Numbers sa t i s fy ing  141 are a l t e rna te ly  odd and even. In tegers  
sat isfying C11 are just t h e  odd valued numbers sat isfying <41. The 
remainder of t h e  proof c o n s i s t s  in showing t h a t  numbers sa t i s fy ing  
C41 are of t h e  form u(r,s) + k r s .  Solving C43 is j u s t  a special  
case of an application of t h e  Chinese Remainder Theorem C4L 

Consider t h e  number u(r,s) of t h e  form C3> above. 

Now by Fernat's Theorea C43, namely: 

if q is prime and 0 <= x < q, then 

xq-I = 1 mod q = kq + 1, for some k, 

it is clear t h a t  s r - I  = 1 mod r, and similarly rm-I = 1 
mod s. 

Also of course sr-l = 0 mod s, and rr--l = 0 mod r. 

Finally r s  = (0 mod r) = (0 mod s). 

Thus u(r,s) s a t i s f i e s  C4). 

We now show t h a t  numbers no t  of the form u(r,s) + ksr cannot  
s a t i s f y  C41. 

L e t  u and u' s a t i s f y  €43 and consider t h e  difference: 

u - u' = (1 mod r) = (1 mod r) = 0 mod r = k r  

= (8-1 mod s) - (5-1 mod 5) = 0 mod s = k's 

for  some k and k'. Thus u-u' i5 a multiple of LCM(r,s) which is rs 
since r and 5 are prime. Since u(r,5) s a t i s f i e s  {41, u and u' must 
be of t h e  form u(T.5) + ksr. QED. 

Finding u(r,s) and hence po r equ i r e s  two exponentiations a t  a 
c o s t  of 2T,,,. Finding p amounts t o  finding a prime i n  
(po+2krs)-space and t h e  same considerations apply here as did 
t o  t h e  s ea rch  for r in QLt+l)-space, namely t h a t  w e  should s ta r t  
with PO and add i n  success ive  multiples of 2rs unti l  t h e  
desired size is reached, then  check f o r  primality a t  each 
subsequent addition. 



222 

Size o f  p,r,s and t 

The s ize  of p is a few b i t s  l a r g e r  t h a n  t h e  size of as. The 
d i f fe rence  is e n t i r e l y  d u e  t o  t h e  need t o  excercise some c o n t r o l  
in  t h e  size of p- Thus w e  should s t a r t  with 2rs of a s u i t a b l e  
size, s a y  Log&) b i t s  less t h a n  n, t h e  desired number of 
b i t s  in  p. This in  t u r n  tells u s  t h e  s ize  f o r  r and s. Presumably 
it is des i rab le  for r and s t o  b e  of about  equal s i z e  which w i l l  
be  a few b i t s  less t h a n  half  t h e  size of p. There is no problem 
with s, and t h e  method of finding r of su i tab le  s i z e  h a s  a l r e a d y  
been d e a l t  with earlier. 

Time t o  Find p 

The t i m e  s p e n t  s e a r c h i n g  f o r  primes dominates. We need t o  mount 
s e a r c h e s  f o r  p, of n b i t s ,  and for t, r and 5, each roughly of  n/2 
bits. Altogether,  ignoring all times except t h o s e  s p e n t  search ing  
for primes, t h e  t i m e  t o  f ind p should average 

Tp,-i-(n) + 3T,,-(n/2) 

13/rLT--(n) 

= l.19 x 0.07cvTn4/w. 

This r e p r e s e n t s  an increase of only 3/16 (=19X) over t h e  t i m e  t o  
find a random prime of  given s i z e  n bits.  

Exa.ple 

Using t h e  technique  descr ibed  here,  strong primes of about  256 
b i t s  such  a s  

p=7,918,324,333,004,77?,287,780,879,909,121,159,911,537, 
551,977,796,076,554,305,607,309,994,905,870,203 

where t= 83,106,713,586,449,986,154,292,642,419,182,973 
r= 7,645,817,649,953,398,726,194,923,102,564,833,517 

and ~=10,638,156,841,358,536,678,090,874,848,207,317,901 

can b e  g e n e r a t e d  in  a b o u t  20 minutes on a small microcomputer with 
lMHz clock (Apple-Ill us ing a n  extremely e f f ic ien t  modular 
ar i thmetic  package (CyMAS). 
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