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Abstract

A new matrix extension of the RSA algorithm is proposed which is based on
the Cayley-Hamilton theorem and a one-way function. The security of this algo-
rithm rests upon both that of the RSA algorithm and the one-way function. The
computational efficiency of the new algorithm depends on the dimension of the
matrix. The most efficient implementation is the 2X2 case in which both encryp-
tion and decryption use a single modulo arithmetic multiplication and single
evaluation of the one-way function.

1. Introduction
The Rivest-Shamir-Adleman (RSA) [8] algorithm is the best known public-

key cryptosystem. Although many papers have discussed efficient implementa-
tions of discrete exponentiation algorithms [5-7,9,11], the RSA runs substantially
slower than many secret-key cryptosystems such as the Data Encryption Standard
(DES) algorithm. V. Varadharajan and R. Odoni [10] proposed a matrix exten-
sion of the RSA algorithm, but did not carefully address security issues.

A new matrix extension is proposed that is based upon the Cayley-Hamilton
theorem and a one-way function. Under a chosen plaintext attack on the key, the
security of the new algorithm is equivalent to that of the RSA algorithm. Under
a known plaintext attack on the message, the security of the system rests upon
that of the one-way function.

The computational efficiency of the new algorithm depends upon the dimen-
sion of the matrix. The most efficient implementation is the 2X2 case in which,
both encryption and decryption use a single modulo arithmetic multiplication and
single evaluation of the one-way function. Thus these public-key cryptosystems
have the potential of a fast implementation.
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2. Background 

Hamilton theorem. Let A be an n X n  matrix. Define 
The main tool in computing the matrix RSA scheme will be the Cayley- 

to be the characteristic polynomial of A. 
states that 

Then the Cayley-Hamilton theorem 

P A  = A "  + a,-lA"-l + 3 . . + a,I = 0. 

One important use of the Cayley-Hamilton theorem is to evaluate powels of 
A M  

The Cayley-Hamilton theorem holds for matrices whose entries are from any com- 
mutative ring such as arithmetic modulo R 131. 

The eigenvalues are needed to calculate the coefficients c i ,  

i = 0, 1, . . . , n-1, in Eq. (1). To simplify the calculation, a triangular matrix 
is chosen to construct the matrijr RSA scheme because the diagonal entries are the 
eigenvalues of the matrix. 

3. Construction of the Cryptosystem 
With the above background, the matrix form of the RSA scheme is con- 

structed as follow: 
(1) Choose two large strong primes p and q as proposed by Gordon [2] and cal- 

culate R - p'q ; 

(2) Choose a large integer e as a public key such that O< e < (p-l)(q-1) and 
it is relatively prime to (p -1)(q-1); 

(3) Calculate d as a private key from d-e = l(mod(p-l)(q-1)); 
(4) Construct an n X n  triangular matrix A whose diagonal entries are all dis- 

tinct and the differences between diagonal entries are relatively prime t o  R ; 
( 5 )  The entries above (upper triangular matrix) or below (lower triangular 

matrix) the diagonal are reserved for messages (The details will be described 
later). 
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4. Encryption 
The encryption algorithm is as follow: 

(1) Choose diagonal entries at random subject to the constraints in step (4) 
stated above; 

(2) The number r is a function g(.) computed from the diagonal entries and the 
function t = (all+a22+ . . . +ann) mod R is suggested; 

(3) Set up the following equations, calculate the coefficients 
ct ,  a = 0, 1, * * * , n-1, and store them in a safe place; 

+ cg e - e n-1 n-2 + . . . 
ann = Cn-lann + ~:-2ann 

where ai i ,  i - 1, 2, * * * , n ,  denotes the i f h  diagonal entry. 

(4) (a) Let t = 1 and j - 2; 
(b) Calculate ( r )  using the number r;  

(c) Calculate j ( r )  @ m ; j  where mjj is the message and place the result in 
the ( i ,  j ) &  entry of the matrix where @ denotes bit-by-bit exclusive 
OR; 

(d) Update r = r + 1 mod R and j = j + 1. Repeat steps (b) and (c) 
until j = n ;  

(e) Let a = a + 1 and j = i + 1. Repeat steps (b), (c), and (d) until 
i = n -1; 

(5) Use the calculated coefficients in step (3) and Cayley-Hamilton theorem to 
encrypt the matrix. Send the ecrypted matrix to the recipients; 

(6) Let f = r + l  (mod R )  and repeat steps (4) and (5) until all encrypted mes- 
sages are sent out. 

5. Decryption 
After the legitimate recipients receive the matrices, the message is decrypted 

as follow: 
(1) Set up the following equations, calculate the coefficients 

d c; , a = 0, 1, . . . , n -1, and store them in a safe place; 
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where ah,  i = 1, 2 ,  * * . , n,  denotes the i f h  diagonal entry from the received 
matrix. 

(2 )  Use the coefficients calculated in step (1) and apply the Cayley-Hamilton 
theorem to  decrypt the matrix; 

(3) Calculate r E (a11+u22+ * 

(4) (a) Let = 1 and j = 2; 

(b) Calculate 1 (t) using the number r ;  
(c) Calculate the message from 

. +a,,) mod R and store i t  in a safe place; 

where aij is the ( i ,  j)fi superdiagonal entry of the received matrix; 

(d) Update t ~r + 1 mod R and j = j  + 1. Repeat steps (b) and (c) 
until j = n ;  

(e) Let a = i + 1 and j = i + 1. Repeat steps (b), (c), and (d) until 
i = n  -1 ;  

(5) Let r =t+l (mod R )  and repeat steps (2) and (4) until all messages are 
received. 

Only e ,  R ,  and the function I(.) and g(*) are revealed to the public. 
Knowledge of d ,  t, ui i ,  i = 1, 2, . . . , n, and the primes p and q remain secret. 
The aii's may be discarded. 

Exumple 1: 

sage are 124 and 150. 
Assume that e ,  d ,  and R are 47, 3983, and 7663, respectively and the mes- 

A. Encryption 

(1) 
(2) 

Construct a 2 x 2  matrix by choosing a l l  = 53 and a22 = 59. 
Set up the system of equations according to Eq. (2) as follow: 
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5347 = 2824 = c i  + 53 c E mod 7663 

5947 = 4194 = cg + 59 c i  mod 7663 

and solve this system of equations. The answer to c i  and c f  is 3494 and 
5337, respectively. 

(3) This step depends on f ( r ) ,  and we did not specifically define this function. 
So let us assume that the sequence generated by f (r) is 47 and 1447. 

(4) First calculate / ( r )@m and fill the result in uI2. For example, 
47 @124 = 83. Then encrypt the first block of message by calculating 

3494 0 53 83 
A' =A47 = [ 5337. [ ,,I mod 7663 

- = [28024 mod 7663 

(5) Encrypt the rest of the message in the same manner as step (4). The 
encrypted sequence is 6180 and 4194. 

B. Decryption 
Set up the system of equations according to  Eq. (3) as follows: (1) 

28243983 = 53 = cod + 2824 c lmod 7663 

4194== = 59 = cod -+ 4194 c :  mod 7663 

and solve this set of equations. The answer to  cod and c: is 1260 and 6645, 
respectively. 
Decrypt the fimt message by calculating the following equation (2) 

1260 0 2824 6180 = [ + 6645. [ mod 7663 

= pt mod 7663. 
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(3) 

(4) 

Recover the first message by calculating { ( r )  @ a l 2 ,  while in this case is 
m = 47 @83 = 124. 
Repeat steps (2) and (3), except calculating the sequence of { ( r ) ,  to recover 
whole the message as 124 and 150. 0 

6. Security 
The security of the matrix extension scheme is different from that of the ori- 

ginal RSA scheme. We have to carefully analyze the structure of matrix A when 
A is raised to the e& power. The structure of Ae  can be formally stated in the 
following theorem. 

Theorem 1: Let A be an n X n  upper triangular matrix. Denote ai,i+, and 
a,.(Tkj as the (i,i+jp entry and the (i,a+jp entry after matrix A raised to the 
e* power, respectively. Then a i z i , ,  1 5 i I n, 0 5 j 5 n-i, can be 
represented as 

j-1 e-1  e-1 e-1-i i,-il i,-l 
+ C ai,i+i,ai+/,,i+j C C a i i  

1 ,-l i li 2- i ,  
‘ai+i,,i+l,ai+j,i+j 

e-2e-2  e-2 e-2-i i,-, i -i i ,-1 C ‘a i +I  
i 1- li ,-i + p i  

a i ,i+ I la  i +I  ,,i +1 ,a i +I  Ir i + j C C a ii +I  i $1 w: +I  2a i +I ,i + j 

il-?. e- .+le- $ ‘+l . . . e-C+la[.-j-i,+l i -id- 
+ai,i+lai+l,i+2 * ’ * ai+j-l,i+j ai+l,i+l . * * a i + j , a + )  

il=l i p i ,  ij-i,-, 

where each term 

(-116 a k m  IT (am,m2-am ,m J 
ml,m2-i,i+il,i+iz ,..., i+i,,i+j 

ml.m2+m 
i s m  ,< m &i + j 

( a  m,m,-~m *m 1) 

C 
m-i,i+l l,i+l, ,..., i+lk,i+j 

. (5 )  - - 
m ,,m2-iVi+1 ,ffi,:..i+l ,,i+ j 

i s m  ,<m2<r + j 

where k = 1, 2, . . * , j-1, and 
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m = I  

m - i+fk,,kl = 1, 2, . . . , k . 
m = i + j  

Proof: This can be proved by induction by repeatedly multiplying the matrix by 
itself or with the aid of Cayley-Hamilton theorem. 0 

Note that in order to recover the original matrix after it being raised to the 
e l l  power, the denominator of Eq. ( 5 )  has to be relatively prime to R .  The con- 
straint of a 2x2 matrix is that the difference between diagonal entries is relatively 
prime to R (a 2x2  matrix is computational the most efficient case). 

The general form of the numerator of Eq. (5) can be decomposed and rewrit- 
ten in a different form. This statement can be formally summarized in the follow- 
ing lemma. 

Lemma 1: 
nonlinear combination of the lower order equations with the same form, i.e. 

The general form of the numerator of Eq. ( 5 )  can be written as the 

where s1 = n+m-1 and 

rn, < m 
n+ml-l, ml > m 6 2  = 

Proof: The proof can be found in [l]. 0 

In general, cryptosystems are most vulnerable to a chosen-plaintext attack. 
There is no exception in our case because under a chosen-plaintext attack all the 
superdiagonal entries of the matrices can be carefully selected by the attacker. The 
diagonal entries, however, are fixed for a particular set of messages only and are 
chosen by the sender. So the diagonal entries are secret to everyone except the 
sender. In this case, the best way of breaking the extension scheme is finding the 
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decryption key d .  This can be formally stated in the following theorem. 

Theorem 2: Consider a chosen-plaintext attack on the WCT& key d . If there is a 
polynomial time algorithm which can find the decryption key d and break the 
RSA algorithm, then one can find the value of the diagonal and superdiagonal 
entries and break the extension scheme. Conversely, if there is a polynomial time 
algorithm which can solve d from the equations which are set up according to 
Theorem 1 given 0 = a id  - aii mod R ,  one can break the RSA scheme using the 
same method. 

Proof: The encrypted diagonal entries have exactly the same form as that of the 
RSA algorithm. So if there exists a polynomial time algorithm which can find the 
decryption key d and break the RSA algorithm, then this algorithm can also be 
employed to  break the extension scheme. The proof of the first part of the 
theorem is done. 

First define a function f ( i ,  i + f l ,  i+fz, . * - , i+ fk ,  i + j )  as 

where k - 1, 2, * . * , j-1, and 

m =i 
m=i+lk, lk 1, 2, . ' * , j-1 I 

m=i+j  

The difference between Eqs. (4) and (7) is that the encryption key e in Eq. (4) is 
substituted by e d .  Now substitute Eq. (7) into Eq. (7) and rewrite Eq. (4) as 
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j - 1  
+ C Ui,i+liai+li,i+j 1 2( i ,i +I ,,i + j )  

11'1 

+ai,i+lai+l,i+2 . + ai+j- l , i+j  X 

! j ( i , i + l ,  * . * , i+j)]  mod R . 

It is clear that if Eq. (8) holds, then I1(i,  i + j )  = 1 mod R and 
i k ( i ,  i+f l ,  . . * ,;+Ik, i + j )  ~0 mod R, k -1, 2, . . , j .  Under this condition, 
f l ( i ,  i + j )  = 1 mad R can be explicitly written as: 

0 = (at$j , i+j  - ai+ j , i+ j )  - (a id  - aii) mod R . (9) 

The trivial solution to Eq. (9) is that d satisfies both 

0 = a id  - aii mod R 

and 

mod R . (11) 0 ai+j,i+j - ai+j,i+j 
ed 

Eqs. (10) and (11) have exactly the same form as that of the RSA algorithm. As 
discussed earlier, the solution to Eqs. (10) and (11) is a subset of the solution of 
Eq. (9). So if there exists a polynomial time algorithm which can find solutions to 
d given Eqs. (10) and (11) by solving Eq. (9), then this algorithm can also be 
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employed to find the decryption key d of the RSA algorithm in the same manner. 
If I k ( i ,  i + f l ,  . . . , i + j )  G O  mod R holds, Lemma 4.1 can be employed 

several times until the right hand side of Eq. (8) has the following form: 

where sgni, a = 1, 2, * * , k denotes the sign with respect to  each coefficient. 
The last summation term of Eq. (12) can be rewritten as: 

Eq. (13) is similar to Eq. (Q), 50 the solution of d subject to 
- - mod R is a subset solution ed - 

to Eq. (13). If there is a polynomial time algorithm which can solve Eq. (13) 
given Eqs. (10) and (11) to find solutions to d,  then the same algorithm can be 
employed to  break the RSA algorithm by finding its decryption key as in the 
proof of Theorem 2. This concludes the second part of the theorem. 0 

Clearly, from Theorem 2, finding the encryption key d from the extension 
scheme is as hard as finding it from the RSA scheme. Up to  this point, it was 
assumed that all the information except the decryption key d is known to the 
attacker. Now assume that the attacker chooses his own messages and sends 
them to h i  partner. After receiving the message, hii partner chooses the diagonal 
entries and extra messages and then sends the encrypted messages back to the 
attacker. Under this condition, the attacker has control only part of the messages 
and he tries to determine the remaining messages. The security of this scheme 
under a chosen-plaintext attack on the message can be summarized in the follow- 
ing theorem. 

amkmk = amkmk mod and a&t-lm)-l - at71k,lm)-1 

Theorem 5: Under a chosen-plaintext attack on the message, the extension 
scheme is secure when / ( a )  is a one-way function and satisfies the following p r e  
perty: 
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n 

i -1 
(Pl) Let r = C aii mod R .  It is infeasible to compute f ( r  + I mod R )  given 

f ( r  + i  mod R ) , O l i  < I .  

Proof: In order to analyze this problem, let us first set up two equations: 

a i l  G c0 + c l a l l  + * * * + ~ , , - ~ a ; i '  mod R 

a& E co + c1a22 + * . . + mod R 

(14) 

a:,, = co + clan, + * * +  rat,,-' mod R 

and 

j - 2  j -1  

1 y l l . p  1,+1 
+ C C ai,i+l,ai+l,,i+~,ai+l,i+j'g ( i ,  i+f l ,  i + f 2 ,  i + j )  

g ( i ,  i + l l , .  . . , i+$-1, i + j )  , j=1,2 ,..., n-i 

According to Theorem 1, g(-) is a function of diagonal entries which are constant 
for a particular set of messages and izi+kl,i+k2 can be represented as: 

where 
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for the kth matrix. 
Suppose there exists a polynomial time algorithm that can solve Eq. (15) 

given mi+t,,i+kz and uniquely determine the value of g(-). Consequently, the 
value of f (.) can be calculated. Since f (-) is a one-way function, it is infeasible to 
compute C;”-laii mod R from f(.). Lfithout knowing C;”I1ai; mod R ,  it is 
impossible to calculate the value of subsequent f (*)’s. Thus, the enemy still can- 
not compute the remaining messages. In general, there is more than one block of 
known message available. In order to prevent this scheme from being broken 
under this condition, f (.) has to satisfy a tighter restriction, i.e., Property (Pl). 

System of equations of Eq. (14) can be added up and represented as 

One can break the scheme under this condition if C;”I1aii mod R is known. So 
Crmla;; mod R can be considered as one variable and Eq. (17) can be rewritten 
as 

There are three unknowns r ,  k ,  and c ,  in Eqs. (16) and (18). It is practically 
impossible to enumerate the value of t for testing given Cr!.laB is fixed and 
known because there are too many possible combinations. So it is impossible to 
uniquely determine r from both Eqs. (16) and (18) simulta~eously. Thus the 
scheme is still secure even if there exists a polynomial time algorithm that can 
uniquely solve for g(.) and ai+t,,i+kz from Eq. (16). This concludes the proof of 
this theorem. 0 

7. Computational Complexity 
The main issue of this section is to  show that this scheme has much faster 

encryption and decryption algorithms than that of the RSA scheme. The encryp- 
tion and decryption algorithms were discussed in sections 3, 4, and 5. Now the 
speed with which one can raise the matrix A to the ea (for encryption) or to the 
d& (for decryption) power is considered. The encryption and decryption a lge  
rithms include two parts. The first part is to set up the Eq. (2) or Eq. (3) and 
calculate the coefficients cp and cf. The second part of the algorithm is to calcu- 
late the matrix raised to the high power. 
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A. Precalculation of Coefficienb 
The decryption algorithm has exactly the same computational complexity as 

that  of the encryption algorithm, so here we only discuss the computational com- 
plexity of encryption algorithm. Raising uii to the e& power requires at most 
2 log2e multiplications 141. Thus, to set up Eq. ( 2 )  requires a t  most I 1  

2n I 1  log2e + n ( n - 2 )  (19)  

multiplications. There are two ways to solve Eq. (2). One is using the Cramer’s 
rule and the other is using the Vandermonde algorithm. If Cramer’s rule is used 
to calculate the coefficient c i ,  then this stage needs at most 

multiplications and 

i l l  j -n- i  J 

additions. If one observes Eq. (2) carefully, one notices that it is a Vandermonde 
system, hence the Vandermonde algorithm can be used to calculate the 
coefficients. This algorithm has a distinct computational advantage when the size 
of the matrix is large (e.g. n 2 7 ) .  This stage needs at most 

multiplications and 

additions. 

B. Encryption and Decryption 
Eq. (1) shows that one only has to calculate A2, A3, * * - , A”-’ and multi- 

ply them with the corresponding coefficients and add them together. This stage 
takes 
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n (n +I)(. +2)(n -2) + n (n +l)(n -1) 
6 2 

multiplications and 

(25) 
n (n +l)(n -1)(n -2) 

6 
n (n +l)(n -2) 

2 + 

additions. In fact the diagonal entries are fixed for a particular set of messages 
and the encrypted diagonal entries are not functions of the superdiagonal entries. 
So only the superdiagonal entries from the second matrix on need to be calculated. 
Thus this stage can speed up the encryption and decryption even more. In this 
case, we can reduce the computational complexity to 

n (n +l)(n +2)(n -2) + n (n -1)' 
6 2 

multiplications and 

n (n +I)(. -l)(n -2) 
6 

n (n -1)(n -2) 
2 

+ (27) 

additions. 
We now give an example to  illustrate the computational advantage of this 

scheme. 

Example 2: Suppose o e choos two large primes p and q such that R-paq is a 
2Wdigit number, i.e. log,& 200. We assume that the block lengths of each 
message are the same in both the R A scheme and the extension scheme. The 
RSA scheme needs at most 2 logze multiplications for encryption. The RSA 
algorithm and the 2x2 matrix can encrypt or decrypt one block of message, and 
the 3x3 matrix can encrypt 3 blocks of messages each time, respectively. In this 
example, we compare how efficiently one can encrypt 1 block of message using the 
RSA algorithm, 2x2 matrix, and 3x3 matrix. The results of the comparison are 
listed in the following table. 

The results show that the extension scheme has more computational advan- 
tage with a smaller size and large encryption key.over the RSA scheme. El 

I F  
IT  
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Table 1. The computational complexity comparison
of RSA, 2X2 matrix, and 3X3 matrix.

llog2ej== 50

log2e = 100

log2e = 150

log2e = 200

RSA

X

100

200

300

400

P re-computation

2X2
matrix

X

3205

3405

3605

3805

+

2003

2003

2003

2003

3X3
matrix

X

3390

3690

3990

4210

+

2020

2020

2020

2020

Post-computation

2X2
matrix

X

1

1

i—
i

1

+

0

0

0

0

3X3
matrix

X

16
3

16
3

16
3

16
3

+

7
3

7
3

7
3

7
3

8. Conclusion
A new way of extending the RSA algorithm using a triangular matrix and a

one-way function was proposed. The security of this scheme has been shown to
be equivalent to that of the RSA algorithm under a chosen plaintext attack on
the key and a ciphertext only attack. Under a known plaintext attack on the
message, the security of this scheme rests on the security of the RSA algorithm as
well as the one-way function / (•). The fast encryption and decryption algorithms
of this scheme are based on the Cay ley-Hamilton theorem. The speed of this algo-
rithm depends on both the dimension of the matrix and the capability of evaluat-
ing the one-way function. The most efficient implementation is the 2*2 case in
which both encryption and decryption use a single modulo arithmetic multiplica-
tion and single evaluation of the one-way function.

In practice, the first block of the message can be transmitted using the RSA
scheme and then the remaining message can be encrypted by calculating
/ ( m i ) © m i + i - The extension scheme of the RSA algorithm was developed
independently from the above system. However, the matrix version of the RSA
algorithm turned out to have a similar form as that of the above system.

The criteria for choosing the one-way function is the efficiency of evaluating
this function. A question remains as to which one-way function should be chosen.
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Does this function has to be a one-way function in order to keep this scheme 
secure. This topic requires further investigation. 
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