
How to Make AdaBoost.M1 Work for Weak

Base Classifiers by Changing Only One Line
of the Code

Günther Eibl and Karl Peter Pfeiffer

Institute of Biostatistics, Innsbruck, Austria
guenther.eibl@uibk.ac.at

Abstract. If one has a multiclass classification problem and wants to
boost a multiclass base classifier AdaBoost.M1 is a well known and widely
applicated boosting algorithm. However AdaBoost.M1 does not work, if
the base classifier is too weak. We show, that with a modification of only
one line of AdaBoost.M1 one can make it usable for weak base classifiers,
too. The resulting classifier AdaBoost.M1W is guaranteed to minimize
an upper bound for a performance measure, called the guessing error, as
long as the base classifier is better than random guessing. The usability
of AdaBoost.M1W could be clearly demonstrated experimentally.

1 Introduction

A weak classifier is a map h : X → G (with G = {1, . . . , |G|}), which assigns an
object with measurements x ∈ X to one of |G| prespecified groups with a high
error rate. The task of a boosting algorithm is to turn a weak classifier into a
strong classifier, that has a low error rate. To simplify notation we define, that
arg max

g∈G
u(g) is the group g, which maximizes the function u.

Most papers about boosting theory consider twoclass classification problems
(|G|=2). Multiclass problems can then be reduced to twoclass problems using
for example error-correcting codes [1,2,4,5].

However if one has a multiclass problem and also a base classifier for mul-
ticlass problems like decision trees one would prefer a more direct boosting
method.

Freund and Schapire [3] proposed the algorithm AdaBoost.M1 (Fig.1), which
is a straightforward generalization of AdaBoost for 2 groups for the multiclass
problem using multiclass base classifiers. One of the main ideas of the algo-
rithm is to maintain a distribution D of weights over the learning set L =
{(x1, g1), . . . , (xN , gN); xi ∈ X, gi ∈ G}. The weight of this distribution on
training example i on round t is denoted by Dt(i). On each round the weights of
incorrectly classified examples are increased so that the weak learner h is forced
to focus on the ”hard” examples in the training set. The goal of the weak learner
is to find a hypothesis ht appropriate for the distribution Dt. The goodness of ht

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 72–83, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

How to Make AdaBoost.M1 Work for Weak Base Classifiers 73

is measured by its weighted error rate

εt =
∑

i

Dt(i)I(ht(xi) �= gi)

with I denoting the indicator function. In practice a subset of the training exam-
ples is sampled according to Dt, and these (unweighted) resampled examples are
used to train the weak learner. After ht has been received, AdaBoost.M1 chooses
αt, which measures the importance assigned to ht. The sampling distribution Dt

is next updated, where the weights of examples misclassified by ht are increased
and the weights of correctly classified examples are decreased. Thus, the weight
tends to concentrate on the ”hard” examples. The final hypothesis is a weighted
majority vote of T weak hypotheses where αt is the weight assigned to ht.

The most important property of AdaBoost.M1 concerns its ability to reduce
the training error. An exponential decrease of an upper bound of the training
error rate is guaranteed as long as the error rates of the base classifiers are less
than 1/2. This also leads to the criterion to stop, if εt is greater or equal to 1/2.

However for more than two groups the condition, that the error rate of the
base classifier is less than 1/2, can be too restrictive, if one uses weak base
classifiers as for example decision stumps.

Input: learning set L = {(x1, g1), . . . , (xN , gN); xi ∈ X, gi ∈ G},
G = {1, . . . , |G|}, classifier of the form h : X → G.
T : number of boosting rounds

Initialization: D1(i) =
1
N

.

For t = 1, . . . , T :

– Train the weak classifier ht with distribution Dt, where ht should minimize the
weighted error rate

εt =
X

i

Dt(i)I(ht(xi) �= gi) .

– If εt ≥ 1/2: goto output with T := t − 1.
– Set

αt = ln

�
1− εt

ε

�
.

– Update D:
Dt+1(i) = Dt(i)e

−αtI(ht(xi)=gi)/Zt

where Zt is a normalization factor (chosen so that Dt+1 is a distribution)

Output: Set the final classifier H(x):

H(x) = argmax
g∈G

f(x, g) = argmax
g∈G

TX

t=1

αtI(ht(x) = g)

!
.

Fig. 1. Algorithm AdaBoost.M1

74 Günther Eibl and Karl Peter Pfeiffer

Freund and Schapire [3] overcame this problem with the introduction of the
pseudo-loss of a confidence-rated classifier h : X ×G→ [0, 1]

pseudo − loss(h) =
1
2


1 − h(xi, gi) +

∑
g �=gi

1
G− 1

h(xi, g)


 .

In the algorithm AdaBoost.M2 each base classifier has to minimize the pseudo-
loss instead of the error rate. As long as the pseudo-loss is less than 1/2, which
is a very weak condition, an exponential decrease of an upper bound of the
training error rate is guaranteed. The drawback of this approach lies in the need
to redesign the base classifier in order to give confidences and to minimize the
pseudo-loss.

In this paper we make a simple modification in AdaBoost.M1 in order to make
it applicable for weak base classifiers. We call this algorithm AdaBoost.M1W.
The modification consists of a change in only one line of the code, which considers
the definition of αt(εt). First we give an ad-hoc derivation of the algorithm.
Then we derive a theorem, which states, that an upper bound for a performance
measure, called the guessing error, is guaranteed to be minimized as long as the
base classifier is better than random guessing. Finally we performed experiments
with multiclass datasets to look, if the algorithm also works in practice. We can
clearly show, that this is the case, because for all 8 datasets, where the base
classifier is too weak for AdaBoost.M1, AdaBoost.M1W still works.

2 Ad-hoc Derivation of AdaBoost.M1W

When we analyzed AdaBoost.M1 we wondered, why AdaBoost.M1 does not work
with weak base classifiers and if it is possible to modify AdaBoost.M1 to make
it work with weak base classifiers.

We start by looking at the combination step

H(x) = arg max
g∈G

(
T∑

t=1

αtI(ht(x) = g)

)
.

There each base classifier ht gives a vote for the group ht(x), to which it would
assign x. The votings are weighted by the factor αt, which is bigger, if the base
classifier is better. The key point for the modification is the property of the
algorithm AdaBoost.M1, that

αt = ln
(

1 − εt
ε

)
≥ 0 ⇔ εt ≤ 1

2
. (1)

If the error rate is bigger than 1/2, the weight αt gets negative, so the ensem-
ble classifier H does the opposite of what the base classifier ht proposes. In
AdaBoost.M1 αt does not get negative, because in the derivation of the bound

How to Make AdaBoost.M1 Work for Weak Base Classifiers 75

for the training error of AdaBoost.M1 αt is assumed to be positive and Ad-
aBoost.M1 stops, if εt ≥ 1

2 (and therefore αt ≤ 0 because of (1)). Nevertheless
this was the starting point for our modification.

If one has a base classifier h with error rate greater than 1/2 but better than
random guessing (which has an expected error rate of 1 − 1/|G|), the ensemble
classifier H should not do the opposite of what the base classifier h proposes. So
we wanted to find a choice for αt(εt) such that

αt ≥ 0 ⇔ εt ≤ 1 − 1
|G| . (2)

To derive αt(εt) we assumed αt(εt) to be basically of the same form as αt in
AdaBoost.M1, so we set

αt(εt) = ln
(
anεt + bn
adεt + bd

)
=: ln (z(εt)) (3)

where n and d are subscripts for the nominator and denominator respectively.
Then we wanted αt to fulfill (2) and two additional conditions, which are also
fulfilled by αt(εt) of AdaBoost.M1:

αt(1 − 1
|G|) = 0

αt → −∞ for εt → 1
αt → ∞ for εt → 0 .

For z(εt) this means that

z(1 − 1
|G|) = 1

z(1) = 0
εt = 0 ⇒ Denominator of z = 0 .

These conditions directly results in the following conditions for the 4 constants

an

(
1 − 1

|G|
)

+ bn = ad

(
1 − 1

|G|
)

+ bd

bn = −an

bd = 0 .

Substitution for bn and bd in the first equation and solving for ad leads to

an = ad(1 − |G|) .
Now we substitute the constants an, bn and bd in (3), ad gets cancelled, and we
get

αt = ln
(

(|G| − 1)(1 − εt)
εt

)
. (4)

76 Günther Eibl and Karl Peter Pfeiffer

Note, that up to this point this is just an ad-hoc modification without any
proof for a decrease in the error rate. So we also don’t have a stopping criterion
any more. An intuitive ad-hoc stopping criterion would stop, if

εt ≥ 1 − 1
|G| .

For the experiments we stopped after a big, prespecified number T of boosting
rounds and investigated, if the stopping criterion above would have done well.
Since the rest of the algorithm AdaBoost.M1 is left untouched we can already
write down the algorithm in Fig. 2.

Input: learning set L = {(x1, g1), . . . , (xN , gN); xi ∈ X, gi ∈ G},
G = {1, . . . , |G|}, classifier of the form h : X → G.
T : number of boosting rounds

Initialization: D1(i) =
1
N

.

For t = 1, . . . , T :

– Train the weak classifier ht with distribution Dt, where ht should minimize the
weighted error rate

εt =
X

i

Dt(i)I(ht(xi) �= gi) .

– Set

αt = ln

�
(|G| − 1)(1− εt)

εt

�
.

– Update D:
Dt+1(i) = Dt(i)e

−αtI(ht(xi)=gi)/Zt

where Zt is a normalization factor (chosen so that Dt+1 is a distribution)

Output: Set the final classifier H(x):

H(x) = argmax
g∈G

f(x, g) = argmax
g∈G

TX

t=1

αtI(ht(x) = g)

!
.

Fig. 2. Algorithm AdaBoost.M1W

3 Theoretical Analysis of AdaBoost.M1W

Due to suggestions of the reviewers we also made a theoretical analysis of Ad-
aBoost.M1W. We can show, that the algorithm doesn’t minimize an upper bound
for the training error, but an upper bound for a new performance measure, which
we call the guessing error. This performance measure compares the final classifier

How to Make AdaBoost.M1 Work for Weak Base Classifiers 77

with random guessing, which has a training error rate of 1 − 1/|G|. The guess-
ing error guesserr is defined as the proportion of examples, where the classifier
performs worse than random guessing.

Definition 1. A classifier f : X ×G→ [0, 1] makes a guessing error in classi-
fying an object x coming from group g, if

f(x, g) <
1
|G| .

The corresponding estimate of the expected guessing error using the training set
is called guesserr:

guesserr :=
N∑

i=1

I

(
f(xi, gi) <

1
|G|
)
.

Note, that by dividing f from AdaBoost.M1W by
∑

t αt we ensure, that f(x, g) ∈
[0, 1].

The following theorem guarantees an exponential decrease of the guessing
error of AdaBoost.M1W as long as the base classifier is better than random
guessing.

Theorem 1. If all base classifiers ht : X → G satisfy

εt =
∑

i

Dt(i)I(ht(xi) �= gi) ≤ 1 − 1/|G| − δ

for δ ∈ (0, 1 − 1/|G|), then the guessing error of the training set for Ad-
aBoost.M1W fulfills

guesserr <
∏

t

ε
1−1/|G|
t (1 − εt)1/|G|

(1 − 1/|G|)1−1/|G| (1/|G|)1/|G| ≤ e−δ2T .

Proof. (i) Similar to the calculations used to bound the error rate of AdaBoost
we begin by bounding guesserr in terms of the normalization constants Zt: We
make a guessing error for example i, if

f(xi, gi)∑
t
αt

<
1
|G| ⇒ e

−(f(xi,gi)−
P

t
αt/|G|)

> 1 .

So

guesserr :=
N∑

i=1

I


f(xi, gi)∑

t
αt

<
1
|G|


 <

N∑
i=1

e
−(f(xi,gi)−

P

t
αt/|G|)

. (5)

78 Günther Eibl and Karl Peter Pfeiffer

Now we unravel the update rule

1 =
∑

i

Dt+1(i) =
∑

i

Dt(i)
e−αtI(ht(xi)=gi)

Zt
= . . .

=
1∏

s
Zs

1
N

∑
i

t∏
s=1

e−αsI(hs(xi)=gi) =
1∏

s
Zs

1
N

∑
i

e−f(xi,gi) .

So we get ∏
t

Zt =
1
N

∑
i

e−f(xi,gi)

and, together with (5), we get

guesserr ≤
(∏

t

Zt

)(
e

P

t
αt/|G|)

=
∏

t

eαt/|G|Zt . (6)

(ii) Now we bound
∏
t
eαt/|G|Zt:

∏
t

eαt/|G|Zt =
∏

t

(
eαt/|G|∑

i

Dt(i)e−αtI(ht(xi)=gi)

)
.

=
∏

t

eαt/|G|


 ∑

i;ht(xi)=gi

Dt(i)e−αt +
∑

i;ht(xi) �=gi

Dt(i)




=
∏

t

eαt/|G| (e−αt(1 − εt) + εt
)

=
∏

t

(
(|G| − 1)(1 − εt)

εt

)1/|G|(
εt

|G| − 1
+ εt

)

=
∏

t

ε
1−1/|G|
t (1 − εt)1/|G|

(1 − 1/|G|)1−1/|G| (1/|G|)1/|G| .

So together with (6) we get

guesserr ≤
∏

t

ε
1−1/|G|
t (1 − εt)1/|G|

(1 − 1/|G|)1−1/|G| (1/|G|)1/|G| . (7)

(iii) Now we show, that this bound for guesserr decreases exponentially, if εt =
1 − 1/|G| − δ with δ ∈ (0, 1 − 1/|G|) for all t. We can rewrite (7) as

guesserr ≤
∏

t

(
1 − δ

1 − 1/|G|
)1−1/|G|(

1 +
δ

1/|G|
)1/|G|

How to Make AdaBoost.M1 Work for Weak Base Classifiers 79

and bound both terms using the binomial series. The series of the first term have
only negative terms. We stop after the term of first order and get

(
1 − δ

1 − 1/|G|
)1−1/|G|

≤ 1 − δ .

The series of the second term have both positive and negative terms. We stop
after the positive term of first order and get

(
1 +

δ

1/|G|
)1/|G|

≤ 1 + δ .

Thus
guesserr ≤

∏
t

(1 − δ)(1 + δ) =
∏

t

(1 − δ2) .

Using 1 + x ≤ ex for x ≤ 0 leads to

guesserr ≤ e−δ2T . (8)

��
Due to the theorem not only the algorithm but also the ad-hoc stopping

criterion of the previous section is theoretically confirmed now.
There are some generalization possibilities of AdaBoost.M1W: the definition

of the guessing error and the theorem can be generalized for any C ∈ (0, 1/2]
replacing 1/|G| in a straightforward way leading to the performance measure

errC :=
N∑

i=1

I (f(xi, gi) < C)

and

αt = ln
(

(1 − C)(1 − εt)
Cεt

)
.

This generalization also contains AdaBoost.M1 by setting C = 1/2. One can
easily verify, that for this case the theorem above and the theorem given in [3]
coincide.
Another apparent generalization would regard confidence-rated base classifiers
h : X × G → [0, 1] instead of base classifiers h : X → G. We are currently
working on generalizing the algorithm and the theorem to this case and are very
confident to finish this work soon.

4 Experiments

In our experiments we analyzed 9 multiclass datasets (Table 1) with both the al-
gorithm AdaBoost.M1 and AdaBoost.M1W using decision stumps as base classi-
fiers. The aim is to compare AdaBoost.M1 with AdaBoost.M1W. We decided not

80 Günther Eibl and Karl Peter Pfeiffer

Table 1. Properties of the databases, initial and minimal training error of Ad-
aBoost.M1W, Ht :=

∑t
s=1 αshs

database N � groups � variables err(h1) argmin
t

err(Ht)

digitbreiman 5000 10 7 81.1% 25.6%
letter 20000 26 16 92.4% 53.0%
optdigits 5620 10 64 79.7% 0.0%
pendigits 10992 10 16 79.3% 21.8%
satimage 6435 6 34 55.3% 20.7%
segmentation 2310 7 19 71.1% 6.8%
vehicle 846 4 18 58.1% 32.6%
vowel 990 11 10 82.8% 49.8%

waveform 5000 3 21 42.7% 15.1%

to compare it with AdaBoost.M2, because the latter uses confidence-rated base
classifiers, which could give it a spurious advantage especially for big datasets [6].
However we plan to compare the generalization of AdaBoost.M1W, which also
uses confidence-rated base classifiers, to AdaBoost.M2.

The main question to be answered by the experiments is, if AdaBoost.M1W
is able to boost base classifiers with error rates greater than 1/2. The answer to
this question is yes. For the 8 datasets, where the error rate of a single decision
stump exceeds 1/2, AdaBoost.M1 failed, because for all 8 datasets it couldn’t
decrease the training error rate at all, whereas AdaBoost.M1W worked for all 8
datasets (Table 1 and Fig.3).

Since AdaBoost.M1 didn’t work for any of these 8 datasets we wanted to
make an additional check, that the algorithms are programmed properly. The
waveform dataset is the only one, where the error rate of a single decision stump
is less than 1/2 and therefore AdaBoost.M1 (which was programmed without
stopping criterion) is expected to work. This is the case, both algorithms can
decrease the training error from 42.7% below 20 % (Fig. 4)(the Bayes error for
this dataset is about 14%).

It was surprising, that AdaBoost.M1W was better than AdaBoost.M1 for this
dataset. The base classifiers of AdaBoost.M1 had error rates greater than 1/2
already at iteration 35, the error rates of the base classifiers of AdaBoost.M1W
were greater than 1 − 1/|G| from iteration 165 on. So AdaBoost.M1W is an en-
semble of weaker trees, but the ensemble is bigger than the one of AdaBoost.M1.
We don’t want to overrate the result, that AdaBoost.M1W also outperformed
AdaBoost.M1, when the weak classifier had an initial error rate below 1/2, be-
cause it is a result for just for one dataset. Further experiments with other
datasets and other base classifiers are necessary to confirm this result.

We also investigated the stopping criterion, which would stop the algorithm
at the first round tstop, where εt ≥ 1 − 1/|G|. Figure 3 shows, that the stopping

How to Make AdaBoost.M1 Work for Weak Base Classifiers 81

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

digitbreiman

10
0

10
1

10
2

10
3

0.6

0.8

1

letter

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

optdigits

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

pendigits

10
0

10
1

10
2

10
3

0.2

0.4

0.6

satimage

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

segmentation

10
0

10
1

10
2

10
3

0.3
0.4
0.5
0.6
0.7

vehicle

10
0

10
1

10
2

10
3

0.5

0.6

0.7

0.8

vowel

Fig. 3. Training (solid) and test error (dash-dotted) of AdaBoost.M1W depen-
dent on the number of boosting rounds. The vertical line denotes tstop

criterion is reasonable, but often stops before the training error has reached its
minimum. This fact can be explained by Fig. 5. The training errors of the base
classifiers by definition reach 1 − 1/|G| the first time at tstop, but then they can
get below 1 − 1/|G| again. When the training errors of the base classifiers are
consistently above 1− 1/|G| (right of the second vertical line) the training error
of the ensemble isn’t improved any more. So the stopping criterion makes sense,
but should be treated in a softer way. For example one could stop, if the last 5
training errors of the base classifiers are all above 1 − 1/|G|.

82 Günther Eibl and Karl Peter Pfeiffer

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of boosting rounds

Tr
ai

ni
ng

 e
rro

r

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of boosting rounds

Tr
ai

ni
ng

 e
rro

r
Fig. 4. Training error of the base (dashed) and the ensemble classifier (solid) for
the waveform dataset for AdaBoost.M1W (left panel) and AdaBoost.M1 (right
panel). The vertical line denotes tstop

5 Conclusion and Future Work

In this paper we proposed a new boosting algorithm AdaBoost.M1W, which
directly boosts multiclass base classifiers for multiclass problems. The algo-
rithm comes from the well known algorithm AdaBoost.M1. The difference to
AdaBoost.M1 considers the definition of the weights of the base classifiers, which
results in a change of only one line of the programming code. So everybody, who
has implemented AdaBoost.M1, can easily get AdaBoost.M1W.

We introduced a performance measure, called the guessing error, which is the
proportion of examples, where the final classifier is worse than random guessing.
Then we derived an upper bound for this guessing error, which gets minimized
exponentially fast by AdaBoost.M1W as long as the base classifiers are better
than random guessing. A generalization, which contains both AdaBoost.M1W
and AdaBoost.M1 and which leads to the already known upper bounds for the
corresponding performance measures is straightforward.

The change of this one line has much impact, because it makes the algorithm
work for weak base classifiers, which could be clearly demonstrated with exper-
iments. AdaBoost.M1W also had a slightly better result for the one dataset,
where the base classifier is strong enough for AdaBoost.M1 to work.

To explore this further we plan to make more experiments with Ad-
aBoost.M1W for stronger base classifiers. We will also work on generalizing the
algorithm for confidence-rated base classifiers.

How to Make AdaBoost.M1 Work for Weak Base Classifiers 83

10
0

10
1

10
2

10
3

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of boosting rounds

Tr
ai

ni
ng

 e
rro

r

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of boosting rounds
Tr

ai
ni

ng
 e

rro
r

Fig. 5. Training error of the base (dashed) and the ensemble classifier (solid)
for the vehicle (left panel) and letter (right panel) dataset. The first vertical line
denotes tstop

References

1. E. L. Allwein, R. E. Schapire, Y. Singer 2000. Reducing multiclass to binary: a
unifying approach for margin classifiers. Machine Learning 1, 113-141. 72

2. T. G. Dietterrich, G. Bakiri, 1995. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2, 263-286. 72

3. Y. Freund, R. E. Schapire, 1997. A decision-theoretic generalization of online-
learning and an application to boosting. Journal of Computer and System Sciences
55 (1), 119-139. 72, 74, 79

4. V. Guruswami, A. Sahai, 1999. Multiclass learning, boosting, and error-correcting
codes. Proceedings of the Twelfth Annual Conference on Computational Learning
Theory 145-155. 72

5. R. E. Schapire, 1997. Using output codes to boost multiclass learning problems.
Machine Learning: Proceedings of the Fourteenth International Conference, 313-
321. 72

6. R. E. Schapire, Y. Singer, 1999. Improved boosting algorithms using confidence-
rated predictions. Machine Learning 37, 297-336. 80

	How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code
	Introduction
	Ad-hoc Derivation of AdaBoost.M1W
	Theoretical Analysis of AdaBoost.M1W
	Experiments
	Conclusion and Future Work
	References

