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Abstract. For a variety of applications, machine learning algorithms
are required to construct models that minimize the total loss associated
with the decisions, rather than the number of errors. One of the most
efficient approaches to building models that are sensitive to non-uniform
costs of errors is to first estimate the class probabilities of the unseen
instances and then to make the decision based on both the computed
probabilities and the loss function. Although all classification algorithms
can be converted into algorithms for learning models that compute class
probabilities, in many cases the computed estimates have proven to be
inaccurate. As a result, there is a large research effort to improve the
accuracy of the estimates computed by different algorithms. This pa-
per presents a novel approach to cost-sensitive learning that addresses
the problem of minimizing the actual cost of the decisions rather than
improving the overall quality of the probability estimates. The decision
making step for our methods is based on the distribution of the indi-
vidual scores computed by classifiers that are built by different types of
ensembles of decision trees. The new approach relies on statistics that
measure the probability that the computed estimates are on one side
or the other of the decision boundary, rather than trying to improve
the quality of the estimates. The experimental analysis of the new algo-
rithms that were developed based on our approach gives new insight into
cost-sensitive decision making and shows that for some tasks, the new
algorithms outperform some of the best probability-based algorithms for
cost-sensitive learning.

1 Introduction

The general framework for supervised learning assumes that a set of labeled ex-
amples (x;,y;) (called training data) is available, where x; is a vector of contin-
uous or discrete values called attributes and y; is the label of x;. The framework
further assumes that there exists an underlying, unknown function, f(z) = y
that maps the attribute vectors to the set of possible labels. A learned model
outputs a hypothesis i(z) which is an approximation of f(x), and minimizes the
expected loss on previously unseen examples. In the case of classification, the
labels are elements of a discrete set of classes {1,2,..., K}.
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The last few years have seen supervised learning and classification methods
applied to an increasing variety of applications, such as fraud and intrusion
detection, medical and biological data analysis, remotely-sensed image analysis,
prediction of natural disasters, time series prediction, and text analysis.

While most of the research efforts in classification have studied algorithms
that learn models that try to minimize the proportion of errors (mistakes) that
are made (or, 0/1-loss), for most (if not all) of the practical applications men-
tioned above, the learned classifiers are required to minimize a non-uniform loss
function that is different from the 0/1-loss. Indeed, in all practical situations
different kinds of prediction errors have different costs and a more realistic per-
formance measure of a classification system is the total loss, calculated as the
sum of the costs of all errors made by the system.

The algorithms described in this paper assume that, for a K-class problem,
a K-by-K loss matrix L is available at learning time. The contents of L(i,7)
specify the cost incurred when an example is predicted to be in class ¢ when
in fact it belongs to class j. We will further assume that L is stationary, that
is, none of the values in L changes during the learning or the decision making
process.

To illustrate the properties of a loss matrix, let us consider the 2 x 2 cost
matrix shown in Table 1. In this example the loss matrix indicates that if an
example is labeled by the classifier as to be in class 2 when in fact it belongs to
class 1, there will be a loss of about 100.5, while labeling an example from class
2 as being in class 1 incurs only a cost of 3.0. Without loss of generality we can
assume that the values in L represent dollar amounts (see [15] and [22] for more
detailed discussions), and that there are no costs associated with correct decisions
([22] shows that a loss matrix can always be transformed into an equivalent one
with zero values on the diagonal).

Conceptually, given the general supervised learning framework, there are
three major types of strategies for cost-sensitive learning.

The most common practical approach to cost-sensitive classification is to
manipulate the training data (i.e., modify its distribution) in order to make the
0/1-loss learning algorithm output a hypothesis that minimizes the costs of the
decisions for future examples. For two-class problems, the simplest and most
common way to do this is to present the learning algorithm with a training set
in which the proportions of examples in the two classes are changed according

Table 1. Example of a loss matrix for a 2-class problem

Correct Class
Predicted Class 1 2
1 0.0 3.0
2 100.5 0.0
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to the ratio of the cost values [3]. This procedure is called stratification (or rebal-
ancing), and it is usually implemented by undersampling the examples from the
less expensive class, or by oversampling the examples from the more expensive
class [18]. Another method that uses training data manipulation to learn a cost-
sensitive classifier is Domingos’ MetaCost [11]. MetaCost is an algorithm that
employs the learned class probability estimates for the training instances and
relabels them. Then, it trains a 0/1-loss classification algorithm on the relabeled
data to output the cost-sensitive hypothesis.

The second approach to the cost-sensitive learning problem is to change the
internal mechanisms of the algorithm that compute the output hypothesis such
that the algorithm will make use of the cost function (as an input parameter)
to build the classifier [12,4,16,21,19].

Finally, the third approach uses the class probability estimates on the unseen
(test) instances computed by the learned model. If the probabilities for each class
given an example x, P(y;|x) are available, x should be labeled with ¢, the class
that minimizes the conditional risk of the labeling decision [13,20]:

K

Yopt = argmin R(y|x) = argmin »  P(j[x)L(y, j). (1)
yey yey =1

For this strategy, there are two distinct steps: estimating the class probilities
and making the decision. No information about the loss function is used in during
the probability estimation process, and therefore, there is no need to retrain the
models if the loss function changes.

It is important to observe that any loss matrix defines precise decision bound-
aries - points for which the minimum conditional risk is reached two or more
classification deicisions. In general, for a K-class task the decision boundaries
are defined by points x for which there exist at least two distinct class labels j
and k such that (the class probabilities of = satisfy) R(j|x) = R(k|z); R(i|x) >
R(j|z),¥i,1 <4 < K;Zfil P(ilz) = 1. For two-class problems (with classes
0 and 1) with loss matrices L having zero values on the diagonal, the decision
boundary is defined by 8 = P(0|z) =1 — P(1|x) = %. If the estimate
for an instance happens to be exactly on the decision boundary, the label of that
instance is assigned by tossing a fair coin.

This paper presents a new approach to the cost-sensitive learning problem
that relies on a learned probabilistic model, but with the specific target of mini-
mizing the cost incurred by the decisions rather than attempting to improve the
overall quality of the probabilities. To achieve this target, our methods compute
confidence estimates for the class probabilities, and make the decisions based on
those estimates.

The next section presents the challenges of using decision tree algorithms
for learning probabilistic models. Section 3 describes the new methods for cost-
sensitive learning and gives an overview of the random forest algorithms that are
used. Section 4 presents an experimental analysis of the new methods. Section 5
summarizes the paper and draws the conclusions.
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2 Decision Trees for Probability Estimation

Decision tree algorithms [8,27] are among the most popular tools for building
classification models. Any decision tree D can be transformed into a class prob-
ability estimator. The probability estimate of class j for an arbitrary instance x
is

Nj(Dw)
ND,)’ (2)

where D, is the leaf of tree D that is reached by z, N(D,) is the total
number of training examples that are assigned to D, and N;(D,) is the number
of training examples belonging to class j that reach leaf D,.

As noted by several researchers [29,5,26,6,25], the class probability estimates
of the decision trees are poor. There are three major factors that cause this de-
ficiency. First, the greedy induction mechanism that splits the data into smaller
and smaller sets leads to probability estimates that are computed based on
very small samples, and this leads to inaccurate estimates. Second, most of the
existing decision-tree induction algorithms focus on minimizing the number mis-
classifications (through the purity-based heuristics) and on minimizing the size
of the model (through the pruning procedure). This causes the learned models
to compute class probabilities that are too extreme (i.e., close to 0.0 and 1.0), as
in the example above, and therefore incorrect. The third factor is the shape of
the decision tree hypotheses (piecewise linear decision boundaries). This kind of
decision space assigns uniform probability values to points that are in the same
region and will not differentiate between points that are closer to the boundary
of the region and points that are farther from the boundary.

Lately, several researchers have addressed the problem of improving the prob-
ability estimates computed by decision trees and other classification methods.
One solution [4,30] is to apply a Laplace correction (or Dirichlet prior) as follows

P(jlr) =

P(jle) = —22D T A (3)
N(Dy)+ YA
i=1
The Laplace correction [17,9] will smooth probability estimates that are too

extreme because of the small size of the sample that reaches the leaf. This
smoothing permits reducing the effects of the second cause for inaccurate es-
timates (extreme probabilities), described at the beginning of this section.

To handle the other two sources of inaccuracy of tree-based probability esti-
mates, one of the most effective techniques has proven to be the averaging of the
probabilities computed by multiple models generated by Bagging [8]. Each of the
models is trained using a bootstrap replicate [14] of the training data. Provost
and Domingos [25] have developed one of the best tree-based class probability es-
timation algorithms by combining Laplace correction and Bagging. They called
resulting method Bagged Probability Estimation Trees (or, B-PETS).
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3 Learned Probabilistic Models and Decision Making

The truth is that, while research efforts for improving the overall quality of
probability estimates computed by different learning algorithms are worthwhile,
making the best (cost-sensitive) classification decision does not always require
highly accurate probabilities. For example, consider a (two-class) problem (for
which the class labels are 0 and 1) that has a loss of fifty associated with mis-
predicting a positive (1) example and a loss of one associated with the opposite
error. For an arbitrary instance x, any estimated probability value P(1]|x) that
falls in the interval (%7 1.0] will lead to diagnosing x as belonging to class 1.
Therefore, if a system estimates that the likelihood of P(1|x) falling in the inter-
val [0.8,1.0] is 99%, we should be more confident classifying « into class 1, than
in a situation in which the system estimates that the likelihood of P(1]x) > £%
is about the same as the likelihood of P(1[x) < &%.

In other words, accurate probability estimates are sufficient but not necessary.
In order to minimize the costs associated with different decisions, it is impor-
tant however to know how much confidence we can have in the computed class
probabilities, and, if possible, to use the confidence estimates to make better
decisions especially in the case of points that lie close to the decision boundary,
or in the case of points that have a wide confidence interval for the probability
estimates.

Given that we are dealing with estimates of a variable (the class probabil-
ity), these observations have led us to combining estimates of the shape of the
distribution of the (probability) estimates together with the loss function, for a
decision making procedure.

Based on these observations, we propose the following decision making pro-
cedure for two-class problems. Let x be an arbitrary instance, and L the loss
matrix. Let 8 (0 < 8 < 1)be the decision boundary defined by L. First, compute
an estimate of the probability P(0|x, L) that the learner will output a class prob-
ability estimate P(0|x) that is smaller than 3. Next, use the computed estimate
to decide on the class of x by using Equation 1.

Training a series of probability estimators provides a good means to empiri-
cally estimate the distribution of the class probabilities for an arbitrary instance.
In particular we use Bagging to compute the estimates.

The pseudo code of the procedure is presented in Table 2. We have called
this generic procedure CONFIDENCE-BASED PROBABILITY ESTIMATION (or C-
PE) because it makes the classification decision based on the “confidence” in the
probability estimates (given by the probability distribution of the probabilities)
and their values relative to the decision boundary.

One way of computing the probability from line [7] of the code is to ap-
proximate it by the proportion of models whose estimate is smaller than (. The
second possibility is to compute the normal approximation of the distribution of
the estimates A (p) and to assign

B8
P .= /O N (p)dp.
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Table 2. Pseudo code for the proposed algorithm for making cost-sensitive de-
cisions with CONFIDENCE-BASED PROBABILITY ESTIMATION (C-PE)

Input: a set S, of m labeled examples:
S =< (zi,yi),1=1,2,...,m >,
labels y; € Y = {1, 2},
A (a learning algorithm that computes class probability estimates),
L (a loss matrix),
z (an unlabeled example),

1] fort =1to T do

2 S¢ := (Bootstrap) sample of S;

3 6 := Train A(S;); // the learned model

4 PO) = 20 P (1]0) = 1 P(Ofe);
endfor

(1
2]
3]
(4]
[5]
[6] B := DecisionBoundary(L);

[7] P(Olz, L) := Pr(P(jlz) < B); P(l|z, L) := 1 —P(0|z, L);
[8] endfor

yey

1
Output: hopp(z) = argmin Z P(jlx, L)L(y,7)
J=0

// the optimal prediction w. respect to L and P

As base learning algorithm A\ we have used decision trees. However, given that
we were not only interested in having unbiased estimates of the mean but also a
good estimates of the variance of the computed probabilities, we have explored
adding different sources of randomness to the original tree learning algorithm:
random split selection, and random attribute selection. Breiman has proposed a
unified view of these techniques under the name of Random Forests [7] and has
analyzed them in the context of 0/1-loss classification.

In the case of random splits, during the tree learning procedure, instead of
selecting the best potential split, the algorithm will choose a split at random
from among the N best potential splits. This procedure was introduced by Di-
etterich [10] and used classification problems. For the random attribute selection
procedure, at each node, a subset of size F' of the attributes is selected at random
and the best potential split (the one that gives the highest gain ratio) on those
attributes is chosen. Amit and Geman [1] have first explored this technique.

4 Experimental Analysis

We have implemented the methods described in the previous section by using
Quinlan’s C4.5 decision tree learning algorithm [27] as base learner. The first
implementation of C-PE (denoted as Bag) grows each tree using the standard
procedure. The second implementation (RS) selects randomly in each node a
split from among the ten best splits. The third implementation selects at each



276 Dragos D. Margineantu

node a random subset of the attributes of size F'. Two versions of this method
were tested: RA-1 (F = 1) and RA-logN (F = log(N), where M is the number
of attributes). Pruning was never used in the algorithms that were tested.

We have also implemented Provost and Domingos’ B-PET algorithm to com-
pare the decisions made by the C-PE methods (relying on P(y|x, L)) with the
decisions that rely on class probability estimates (P(y|x)).

We have tested all algorithms on ten data sets (see Table 3). Except for
the Donations-bin data set, all were drawn from the UC Irvine Repository [3].
Donations-bin is the binary version of the KDD Cup 1998 data [2] for which the
goal is to determine whether a person has made a donation after a direct mail
campaign. The format of the data is similar to the one used in other studies:
seven attributes, 95412 instances for training and 96367 instances for testing.

Unfortunately, these data sets do not have associated loss matrices L. There-
fore, we generated loss matrices at random according to some loss matrix models.
Table 4 describes four loss models, M1 through M4. The second column of the
table describes how the misclassification costs were generated for the off-diagonal
elements of L. In all cases, the costs are drawn from a uniform distribution over
some interval. The diagonal values are always 0.

Given that the new methods presented here were specifically designed to
minimize the loss associated with the classification decisions, we have used the
BDELTACOST paired test presented in [23]. Appendix A gives a more detailed
description of the test.

We have chosen to use the BDELTACOST test rather than ROC methods
because the ROC methods give an overall measure of the quality of the rankings,
whereas in our case we needed a statistical test for comparing models when the
loss matrix is known. In other words, we focus on the analysis of the quality of
the decisions of the different models.

Table 4. The models em-
ployed for generating the loss
matrices used in the exper-

Table 3. Data sets studied in this paper

Data Evaluation | . ..
Name Set Size Mothod  iments. Uniffa,b] indicates a
Donations-bin 95412/96367  test set unlfo%"m dlStnbuthI} over the
Breast cancer (Wis.) 699 10-fold xval [@,b] interval. The diagonal el-
Breast cancer (Yug.) 286 10-fold xval ements of the loss matrices are
Hepatitis 155 10-fold xval always zero
Horse colic 200 10-fold xval
King-rook vs. king-pawn 3196 10-fold xval Loss | L(i, )
Labor negotiations 57 10-fold xval Model| i #j
Liver disease 345 10-fold xval M1 | Unif[0, 5]
Sonar 208 10-fold xval M2 | Unif[0, 7]
Voting records 435 10-fold xval M3 |Unif[0, 10]

M4 |Unif[0, 20]
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Performance was evaluated either by 10-fold cross validation or by using a
test set (as noted in Table 3). For each cost model we generated ten loss matrices,
and performed 10-fold cross validation on the Irvine ML data sets. This gives
us 10 (matrices) x 4 (models) x 10 (folds) = 400 runs of the algorithms for
each Irvine ML data set. In the case of the Donations-bin data, the evaluation
was performed on the test set, resulting in 80 runs. For each of the runs, we
performed the BDELTACOST statistical test to determine whether the learned
models had statistically significant different expected losses, based on the 95%
confidence interval.

Initially we have set the number of bagging rounds to be T" = 100.

We tested separately two versions of the C-PE algorithms. The first ver-
sion (C-PE-counts) estimates P by using the counts of the individual computed
class probabilities P on each side of the decision boundary. The results for the
Donations-bin data are shown in Table 5. The results for the Irvine sets are pre-
sented in Table 6. Each cell of the tables represents the percentage of wins, ties,
and losses (respectively) for the algorithms that are tested. For example, the cell
in row RA-1, column B-PET from Table 6 indicates that when RA-1 and B-PET
were compared, for 20.2% of the runs RA-1 outperformed B-PET, in 22.3% of
the runs B-PET outperformed RA-1 and for 57.5% of the runs BDELTACOST
could not reject the null hypothesis based on a 95% confidence interval.

The second version of our algorithms (C-PE-normal) estimates P by comput-
ing the normal approximation N of P. The results for the Donations-bin data
are presented in Table 7. The results for the Irvine sets are shown in Table 8.

Next, we tested the influence of the size of the ensemble on the performance
of the algorithms. We reran all experiments for 7' = 50, and T" = 200. While,
the quality of all C-PE decisions was slightly worse (compared to the B-PETS)
for T' = 50, it has improved for T' = 200 only for the smaller Irvine data sets.

Table 5. Results on Donations-bin for C-PE-counts (7" = 100)

B-PET Bag RS RA-1
RA-logN[20-75-5 | 20-75-5 |20-80-0[20-80-0]
RA-1 [15-60-25]20-60-200-100-0
RS  [15-60-25[20-65-15
Bag [0-80-20

Table 6. Results on the UCT data sets for C-PE-counts (7' = 100)

B-PET Bag RS RA-1
RA-logN[ 44.8-42.2-11 [17.4-52.5-30.1] 17-59.8-23.2[48.2-43.4-8.4]
RA-1 [20.2-57.5-22.3 9.3-48.9-41.8 |6.3-45.1-48.0|
RS [42.1-487-9.2 [22.6-51.9-25.5]
Bag [43.2-48.6-8.3
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Table 7. Results on Donations-bin for C-PE-normal (7" = 100)

B-PET Bag RS RA-1
RA-logN| 20-75-5 | 25-75-0 [25-75-0]20-80-0]
RA-1 |15-60-25|20-60-20| 5-95-0
RS  [15-60-25|20-60-20
Bag | 0-75-25

Table 8. Results on the UCI data sets for C-PE-normal (7" = 100)

B-PET Bag RS RA-1
RA-logN[ 45.9-43.1-11 [20.7-48.6-30.7] 25-56.8-18.2 [44-47-9]
RA-1 [18.9-58.1-23 | 9.7-51-30.3 [8.7-45.8-45.5|
RS  [44.4-44.5-11.1]19.8-50.6-29.6]

Bag |46.3-46.2-7.5

5 Summary and Conclusions

We have presented a new approach to cost-sensitive classification. The methods
that we proposed make a decision not only based on an estimate of the mean of
the probabilities computed by the models in the ensemble, but they employ the
distribution of individual probability estimates of the classifiers together with
the loss matrix. Instead of outputting the average of the individual estimates
of the component classifiers the way B-PETSs do, the C-PE algorithms compute
an estimate of the distribution of class probabilities and makes a decision based
on that estimate and the loss function. C-PE provides a mechanism to make
accurate cost-sensitive decisions even if accurate class probability estimates are
hard or impossible to compute (because of inherent deficiencies of the algorithms,
or because of the distribution of the data). C-PE is sensitive not only to the loss
function, but also to the hypothesis learned by the base algorithm.

In the case of the UCI data sets we can observe that, the RA-logN, RS
and Bag versions of C-PE outperform the Bagged Probability Estimation Trees
(B-PET). However in the case of the very large Donations data set, B-PET is
marginally outperformed only by RA-logN and performs much better than Bag.
This shows that for larger data sets, B-PET is able to compute more accurate
probabability estimates P(y|x), whereas in the case of smaller data sets the
confidence-based estimates are better for different amounts of randomness.

If we were to rank the C-PE methods based on the amount of randomness
that they add to the procedure, RA-1 adds the largest amount, and the results
show that this might lead to larger losses associated with the decisions. The
best overall performance belongs to the RA-logN implementation of C-PE. This
might be the case because it adds the right amount of randomness to the bagging
procedure. It would be interesting to analyze the performance of RS for different
values of the number of splits (among which the random selection is made).
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The experiments also show that a larger value for T' (the number of bagging
rounds) helps improving the quality of the decisions on the smaller data sets.

6 Discussion

To our knowledge, the only decision making approach that has used a confidence
measure for probability estimates was presented in the work of Pednault et
al. [24].

Saar-Tsechansky and Provost [28] compute an estimate of the variance of the
class probabilities for unlabeled examples to decide on the set of instances to be
labeled next, within an active learning procedure.

Preliminary experiments show that combining C-PE with uncertainty sam-
pling in a cost-sensitive active learning procedure improves in terms of the num-
ber of examples that are needed to achieve similar performance, over a an active
learning procedure that relies on probability estimates computed by B-PETs.
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A BDeltaCost

BDELTACOST is a paired test that computes a confidence interval for the ex-
pected difference in cost of two classifiers. The test is based on the idea of boot-
strap [14], a computational method that is used for estimating the standard error
of a parameter of an unknown distribution, based on a random sample S drawn
from that distribution. The bootstrap works by drawing with replacement 7'
samples for S, each consisting of a number of data values equal to the number
of elements in S. The value parameter of interest is computed for each of these
samples. The standard error is estimated by the sample standard deviations of
the T replicates (also called bootstrap replicates).

In a similar way, BDELTACOST tests the null hypothesis Hy that two clas-
sifiers have the same expected loss (on new test data) against the alternative
hypothesis H; that the two classifiers have different losses. The test draws re-
peated samples of the data and calculates the differences in loss for the two
classifiers, sorts the resulting values in ascending order and rejects the null hy-
pothesis if 0 is not contained by the interval defined by the middle ¢% values,
for a ¢% confidence interval (e.g. for a 95% confidence interval and T' = 1000
the test will check the interval between the 26th and 975th value). The way the
test has been designed, Laplace corrections can be used to correct for zero values
(that occured because of the small size of the test set) in the confusion matrices.

Margineantu and Dietterich [23] have shown that the BDELTACOST test
works better and gives tighter confidence intervals, than the standard tests based
on the normal distribution.
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