Modular Analysis of Dataflow Process Networks

Yan Jin!, Robert Esser!, Charles Lakos!, and J6rn W. Janneck?

L School of Computer Science, University of Adelaide, SA 5005, Australia
Fax: +61 8 8303 4366
{yan,esser,charles}@cs.adelaide.edu.au
2 EECS Department, University of California at Berkeley, CA 94720-1770, USA
Fax: +1 510 642 2739

jwj@acm.org

Abstract. Process networks are popular for modelling distributed computing and
signal processing applications, and multi-processor architectures. At the architec-
ture description level, they have the flexibility to model actual processes using var-
ious formalisms. This is especially important where the systems are composed of
parts with different characteristics, e.g. control-based or dataflow-oriented. How-
ever, this heterogeneity of processes presents a challenge for the analysis of process
networks. This research proposes a lightweight method for analysing properties
of such networks, such as freedom from unexpected reception and deadlock. The
method employs interface automata as a bridge between the architectural model
and heterogeneous processes. Thus, the properties are determined by a series of
small tasks at both the architecture level and the process level. This separation
of concerns simplifies the handling of heterogeneous processes and alleviates the
potential state space explosion problem when analysing large systems.

1 Introduction

In recent years, component-based development has emerged as a significant factor in
the production of large-scale software applications. By building systems from indepen-
dently developed components, a promising means of achieving software reuse, rapid
development and complexity management is provided.

Typically, components are black-box entities that encapsulate services behind their
interfaces. The specifications of these interfaces tend to be rather limited, often capturing
only the signatures of components, i.e. the names, data types and direction of ports ex-
cluding any information about communication protocols. Even with additional informal
descriptions, such specifications are not adequate for designing reliable and evolving
software systems. Instead, more rigorous specifications are needed, which capture in-
terface behaviours of components, including the services that a component provides,
the information about how it can be properly deployed, and the dependencies between
its inputs and outputs. Naturally these specifications must not disclose implementation
details of their components.

Having suitable specifications for the components is only part of the story — it is also
necessary to provide flexible composition schemes. Direct composition is often difficult
and sometimes impossible [1]]. Instead, it is preferable to provide flexible connectors so

M. Pezzé (Ed.): FASE 2003, LNCS 2621, pp. 184-T99] 2003.
(© Springer-Verlag Berlin Heidelberg 2003

Modular Analysis of Dataflow Process Networks 185

that component-based systems can be constructed using various design strategies [2],
where suitable architectural styles, e.g. pipe-and-filter and client/server architectures,
can be employed. The major challenge is then to ensure that the resulting systems
are consistent (namely, all components are properly deployed in the design) and that
these systems meet global functional and nonfunctional requirements such as structural
invariants, reliability and security.

This paper presents a step towards the component-based development and modular
analysis of dataflow process networks. Such networks support flexible interconnection
strategies as mentioned above. In our presentation, components (or processes) communi-
cate through their input and output ports and the interconnection of components specifies
a causality relation between data flow through input/output ports of the components.

In order to avoid the state space explosion problem, the composition of components
is not analysed directly. Instead, interface automata [3] are used to specify not only the
interface behaviour of components but also their assumptions about the environment.
Abstracting away implementation details of components, interface automata are much
simpler and easier to handle. Firstly, we ensure that each component is consistent with its
corresponding interface automaton, namely, each component is able to fulfil the output
guarantee of the automaton under the environmental assumptions of the automaton.

Secondly, we check the consistency of the network comprising these interface au-
tomata. This consistency can in turn justify that the process network is free from unex-
pected reception and deadlock. The former property indicates that the data flow between
its components is directed in a way which is consistent with the assumptions made by the
components. The latter refers to the absence of deadlock where the system cannot make
any further progress. By adopting such a divide-and-conquer approach, the potential
state space explosion problem can be alleviated.

The presented research is motivated by previous work on the Moses tool suite [4].
Moses presents an additional challenge to component-based development in that it sup-
ports the modelling and simulation of heterogeneous discrete-event systems, where com-
ponents are modelled by different formalisms. For example, components can be defined
[4)7]9]] as process networks, Petri Nets, Statecharts, etc. The proposed approach can also
largely simplify the analysis of such heterogeneous systems.

This paper is structured as follows. In Sect. 2] our approach is compared with the
related work. In Sect. Bl we define discrete-event components (or processes), interface
automata and the consistency between them, and present a practical method for checking
the consistency. In Sect. @] we define dataflow process networks and interface automaton
networks and present our method of modular analysis of dataflow process networks.
Finally, we conclude this paper in Sect. 5]

2 Related Work

Interface automata were first introduced in [3]]. The authors established a simple and well-
defined semantics for them and defined their composition by two-party synchronization.
Also, alternating simulation was proposed to determine a refinement relationship be-
tween interface automata. This relationship takes an optimistic view of the environment
by assuming that it is always helpful, only supplying inputs expected by an automaton.

186 Y. Jin et al.

This optimistic view allows more possible implementations than a pessimistic approach
where the environment can behave as it pleases.

We take this optimistic view and adapt alternating simulation to define the consis-
tency of components with interface automata, taking into account data values used in
components. In order to prove properties such as deadlock freedom, an additional restric-
tion is imposed which requires a component to produce at least one of the outputs that the
corresponding interface automaton can produce. Also, a simpler method of checking the
relation is presented, which does not require the construction of the Cartesian product
of their state spaces as [3] does — only the reachable states in the product need to be
constructed. Additionally, in contrast to the simple composition scheme in [3], we allow
interface automata to be composed in many more ways reflecting how process networks
can be constructed in practice.

Our adaptation and checking method of alternating simulation is inspired by [[13],
where a similar relation was proposed to check the conformance (or refinement) re-
lationship between CCS models. However, this relation is more restricted than ours,
as it requires that both specification and implementation models have no mixed states
(where both input and output transitions can occur), while in our approach this is only
required of the specification, i.e. interface automata. Furthermore, because of the pres-
ence of blocking outputs, models in their approach are different in nature from ours
where a component is in full control of its outputs. In addition, in our approach the
substitutability of heterogeneous components can be checked with the aid of interface
automata.

There are some other approaches which also utilize the environmental assumptions
of components for verification. In [5l6], the assumptions and the actual behaviours
of components are derived from component specifications. The deadlock freedom of a
system is determined by pairwise matching between the assumptions of a component and
the actual behaviour of another component. However, the proposed method is incomplete
and limited to one-to-one communication or synchronization.

The approach in [16] requires additional models of the environmental assumptions
of components. The models are used to restrict the behaviour of the environment so
that system deadlock can be discovered by detecting undesirable usage of components.
However, the global state space needs to be built, which would easily lead to the state
space explosion problem.

3 Consistency of Components

In this section, general reactive systems are first introduced. These are specialised as
discrete-event components in Sect.[3.2]and as interface automata in Sect.[3.3] In Sect.3.4]
the consistency of discrete-event components with interface automata is defined. A prac-
tical method of consistency checking is presented in Sect. 3.3l

3.1 Reactive Transition Systems
Definition 1. A reactive transition system (RTS) is defined as L = (s°, S, 3} —), where

— S is a set (possibly infinite) of states and s° € S is the initial state;

Modular Analysis of Dataflow Process Networks 187

— X is a set (possibly infinite) of events, consisting of three mutually disjoint sets of
input events X1, output events X°, and internal events X ;
- — C 8§ x X x Sis a set of transitions.

This definition draws an explicit distinction between input, output and internal events.
This is because a system has control over its internal and output events only, but no control
over its input events. Instead, when an input event occurs is decided by the environment.
In other words, the system cannot prevent the environment from producing an input event
if it wants to do so. In the following, we let yobs — »1 1y 3O be a set of observable
events and X! = YO U ' be a set of controllable events of L.

Definition 2. A trace o of a RTS L from s; € S is an event sequence eyes . . . €, such
thatVj: 1<j<m, 3(s;, €j, sj41) €—. State 5,11 is called reachable in L (via o) if
o is from s°. Also, a trace is said to be internal if Vj: 1 <j<m,e; € XH and to be
empty if m = 0. An empty trace is denoted as .

The restriction o | E of o on an event set E is an event sequence obtained by removing
from o all events not in E.

In the sequel, we write s — s’ to denote (s, e, §) €—. We also write s => s’ if s’
is reachable via a (possibly empty) internal trace of L from s, and s == s’ for e € X°%*
ifs = s"Ns" 5 5.

A RTS L is called deterministic if Ve € 5,5 ',s" € S, s 5 s' As < s implies
s’ = s”. Tt is said to be nondeterministic otherwise. Also, the sets of enabled input and
output events at a state s € S are defined by en! (s)={e € X! | 35’ € 3, (s,¢,d) €=}
and en©(s) = {e € X9 | 3s' € S, s==5'}, respectively. An event ¢ € X' is said to
be refused at s if e ¢ enl(s). L is said to be input-universal if Vs € S,en!(s) = X1,
Additionally, a state s is called a terminal state if }(s, e,) €—.

3.2 Discrete-Event Components

A Moses component is a discrete-event component that consumes data streams fed
to its input ports, and produces data streams through its output ports. The input and
output ports form a component’s view of the rest of the system and decouple the outside
world from the component. This separation allows the behaviour of the component to be
described independently of its ultimate context. Likewise, the outside world learns about
a component only from the communication through its ports. In defining components,
we assume a universal set UP°"t of ports, and a countable universal set U/ val of values
of data flowing through ports.

Definition 3. Given two disjoint finite sets of its input ports o' C UP°"* and its output
ports o® C UP", a discrete-event component (DEC) is defined as an input-universal
RTS C = (s°, 8, 5 —), where X1 = of xU*", X9 C a® x U and X" is a set of
[fresh labels for transitions with no external effect.

In the definition, an input/output event of C'is regarded as an occurrence of data flow-
ing through an input/output port of C, while internal events of each DEC are considered
to be unique to that DEC. Also, a DEC is an input-universal RTS, i.e. it never refuses

188 Y. Jin et al.

deliver

Function:ns =s - q query
payable Guard: s >= g delivered <7
> 4]

req

ns r
stockLevel s

S |nitialTokens: [100]
S

outOfStock

purchase ~
q '{>| stockLevel

>

deficit

g -
quantity Guard: s <q
fail

—|

isRejected

Fig. 1. A store component

an input and hence writing to a component will never block. Typically, each component
has one or more input buffers (generally of infinite length), which are either implicit or
explicit depending on the modelling language. For instance, a Petri Net component may
have multiple places acting as explicit buffers [7], while a UML Statechart component
has only one implicit buffer for all input ports [9]. These built-in buffers ensure the input
acceptance of components. In the sequel, we assume a universal set 2/%*“ of DECs and
ports of each DEC to be unique to the DEC.

Figure[Tlgives an example of a Petri Net component in Moses, where triangles repre-
sent the input/output ports of components and where the body of the component is given
in the usual Petri Net notation with circles, boxes and arcs representing places, transi-
tions and the flow relationships, respectively. When data comes into a component via its
input port, it is added to the place(s) connected to this port. A transition (e.g. “deliver”
in Fig.[1)) becomes enabled once all its input places have enough tokens and its guard
evaluates to true. As is the case for other high-level Petri nets (e.g. [8]), this binds the
tokens to the variable names (e.g. “a”,“q” and “s”) on its incoming arcs, and finally the
transition fires. While firing, the transition binds the variable names (e.g. “ns” and “a”)
on the outgoing arcs depending on the values of the variables on the incoming arcs.
When a firing transition is connected to an output port (e.g. “delivered”), data is sent
out via the port to all connected componentsﬂ. For a Petri Net component, we require
input ports to be connected to places and output ports to transitions to ensure that any
component output can be meaningfully connected to any component input. Assuming
the interleaving semantics of Petri Net components [7], the interpretation of such com-
ponents in terms of discrete-event components is straightforward and we omit this for
the sake of brevity. See [14]] for the basic concepts of Petri Nets, and [4l7] for more
descriptions of the Moses approach to compositional Petri Nets.

This example models an online store that waits for a purchase request from a customer
and payment acceptance from the customer’s bank before delivering the goods. If the
bank refuses to pay or the goods are out of stock, the request fails. The store also reports

[T}
S

! Ports can be considered to segment arcs into three — that part of the arc prior to the output port,
that part between output and input port(s), and that part following the input ports.

Modular Analysis of Dataflow Process Networks 189

the stock level when being queried. Initially, the store holds 100 pieces of goods. A
successful order will result in the stock level being decreased by the ordered quantity.

3.3 Interface Automata

Usually, a component is designed under some environmental assumptions about how the
component can be properly deployed, e.g. interaction protocols. The assumptions are
useful for analysing the behaviour of the component, especially when the component is
independently developed and analysed. However, an input-universal component cannot
constrain the environment as to when and what kind of input to provide. Therefore, these
assumptions cannot be captured by component models. In this approach we employ
interface automata [3] to solve this problem.

Definition 4. An interface automatorl (IA) is defined as a deterministic RTS A =
(s°, S, 3} —), where S and X, are finite and X = ().

Like [I3/T7], we exclude IAs with mixed states, i.e. states where both input and output
transitions can occur. Also, we assume a universal set 4/*® of 1As.

The information captured by an interface automaton is twofold. On the one hand,
the behaviour of the automaton is observed through a sequence of its output events. On
the other hand, the assumption is implicitly captured that the environment should never
provide an input if the automaton is in a state where the input is refused. Also, when the
automaton wishes to produce an output, the environment should be ready to accept it.

As an example, suppose that we have the automaton in Fig. 2(a)] as the interface
specification of the store component of Fig. [l This captures the assumption that the
environment cannot provide a second purchase request before the first one has been
processed. Also, after the store receives a purchase request, the environment can either
provide a “payable” message indicating that the customer can pay for the purchase
or a “deficit” message indicating otherwise. On the other hand, it guarantees that the
store produces either a “delivered” or “outOfStock” message but definitely not a “fail”
message immediately after receiving a “payable” message.

delivered

purchase delivered
delivered i | N ‘
purchase delivered 5 payable. R
0 payable > pagﬁle purc has\;\ i outOfStock
payable ouOfStock | aia AG \
|§ deficit // deficit </ fail
deficit deficit fail | | . K >
! /
g
payable, deficit
(@) (b)

Fig. 2. A store automaton [(a)|and its input-universal RTS

2 Originally defined in [3], IAs can have internal events and be nondeterministic. We believe that
Definition[]is sufficiently expressive for our purpose.

190 Y. Jin et al.

DefinitionsBland@lindicate a similarity in behaviour between interface automata and
discrete-event components. Here, we consider an input event of an IA corresponds to an
occurrence of data flow with an arbitrary value through an input port of a component.
Similarly, an occurrence of data flow with an associated value at an output port of the
component corresponds to an output event of the IA. In other words, when relating the
behaviour of IAs and DECs, the events of the IAs correspond to an abstraction of the
events of the DECs, an abstraction which ignores the data values. While abstracting
away the implementation details of components, the high-level interface specifications
can help simplify the analysis of process networks. They are also very useful in archi-
tecture analysis since component models are often not available when designing system
architectures.

3.4 Consistency of Discrete-Event Components

The association of interface automata with discrete-event components leads to the most
important issue in this approach, that is, the consistency of DECs with IAs. The consis-
tency refers to the fact that an IA can safely be substituted by a DEC without compro-
mising the properties which previously hold.

The consistency cannot be defined by traditional refinement relations, e.g. trace con-
tainment and simulation. This is because these only allow the implementation to have
less input and output behaviour than the specification, whereas input-universal compo-
nents are able to handle more inputs than IAs. Hence, we adopt alternating simulation
[3] to define consistency.

Alternating simulation is concerned with the relation of an IA with a (helpful) en-
vironment. It can be considered as a two-person game, where the automaton will try to
perform some action which will cause the environment to block and the environment
will try to respond so that the automaton does not succeed in its attempt. Thus, the en-
vironment can limit the behaviour of the automaton by not offering certain inputs and
the automaton can make things easier for the environment by not generating certain
outputs. If an environment is helpful enough for an automaton, then it should also be
helpful for a refinement of the automaton. The refinement can offer less outputs (since
this will not make as many demands on the environment) and accept more inputs (since
the environment will not offer them).

Originally, alternating simulation was used to define the refinement between two
TAs, where no data values were involved [3]. We extend this refinement relation to
accommodate the implementation (or DECs) with data values. Also, in order to prove
properties like deadlock freedom, an additional restriction is imposed which requires
the component to generate at least one of the outputs that the automaton can possibly
produce.

Definition 5. Consider an IA A and a DEC C such that 5% C ol and X9 2 o8. C
simulates A, written C' < A, if there exists a relation < C S¢c X Sz such that soc < 5?4
and for q = s, the following conditions hold:

1. enQ(s) # 0 implies enZ.(q) # 0;
2. Y(f,v) e eng(q) U (end (s) xUval), ¢ <ﬂ:ﬂ>>oq’ impliesds' €54, s LA s'Ng <.

Modular Analysis of Dataflow Process Networks 191

Basically, C' simulates A if C' is able to fulfil the output guarantee of A when the
environment provides C' only enabled inputs of A. In other words, the environment
provides an input to C' at a state ¢ € S only when A at astate s € S4 (s.t. ¢ < §) is
able to accept the input. Also, fulfilling the output guarantee of A indicates two facts.
First, every possible output, which C' can produce at ¢ or at a state reachable via an
internal trace from ¢, must also be allowed by A at s. Second, C' from ¢ should be able
to produce at least one of the outputs that A can produce at s. The definition implies
an input and output duality that C' at state ¢ allows more input events but produces less
output events than A at state s. It is worth noting that en’,(q) D en, (s) x &% always
holds for all ¢ € S¢, s € S4, because C is input-universal. Note also that condition 21
implies en&(q) C enQ(s) x U,

Definition[3allows DECs with equal or less output ports to be the implementation of
an IA. However, DECs often have not only more input ports but also more output ports
in practice, especially when third-party components are deployed which may provide
more services than needed in an application domain. To solve this, we define instantiated
components for these DECs and relax the conditions of Definition [3 in defining the
consistency of DECs with IAs. Note in the following definition that C'(0) = C' if
ag Cc 0.

Definition 6. Arn instantiated component of a DEC C with respect to a set O C ag is
defined by C'(O) = (s°, S, Xa, — @) where Zé =Xk, Eg ={(f,v) € X9 | f €O}
andﬂg =XHEux9\ Eg.

Definition 7. Consider anIA A and a DEC C such that X1, C ol,. C is consistent with
AifC(29) < A

3.5 Practical Consistency Checking of Discrete-Event Components

In this section, the method of checking consistency of DECs with IAs is presented, which
utilizes the environmental assumptions captured by these IAs.

Derived Interface Automata. Before presenting the method, we need to have two
auxiliary definitions — mirrors and input-universal RTSs of interface automata. The
mirror of an IA A is built to represent all helpful environments with which A can be
composed. A helpful environment of A is one that can always provide inputs expected
by A and accept outputs generated by A. Also, any helpful environment of A should
be an implementation of the mirror. In addition, we make explicit the environmental
assumptions of IAs by building their input-universal RTSs, where a refused event will
now be accepted but lead to an error state.

Definition 8. Given an IA A, the mirror of A is an IA M = (s%, Sa, X, —a) with
E]IV[= X9 and ZAO/[= X1 ; The input-universal RTS of A is a deterministic RTS
U= (5%, SaU{L}, X4, —r), where

—u=—a U{(L f.L) | feZh} U{(s, L) [s € Sa, f ¢ eniy(s)}.

192 Y. Jin et al.

Basically, the mirror of A has the input and output events of A interchanged. Hence
enl,(s) = en9(s) and en§;(s) = enl(s) hold for all s € S4. The input-universal RTS
of A is constructed by adding a transition outgoing from a state s € S4 to a single error
state 1 ¢ S4 for all refused input events at s. As an example, the input-universal RTS
of Fig.[2(a)is shown in Fig. where the white triangle “/\” represents the error state

and “x” matches any of input events of the RTS.

Consistency Checking. In the following, a two-step method of consistency checking
is presented. Firstly, the input-universal RTS of the mirror of an IA is constructed. Next
the product of the component and the RTS is built. The consistency is then determined
by checking in the product for the absence of error and illegal deadlock states and the
possibility of continuing interactions. This is justified by Theorem [Tl (below).

Definition 9. Consider a DEC C' and an input-universal RTS U such that 28 C ozé.
The product of C and U is a RTS Lg = (s%, Sg, g, —g), where:

- s = (s, s)) and Sz C Sc x Sy is the smallest set such that s € Sg and
Vs € Sg,s —g s impliess' € Sg.

- XL =59 =0 and X = XU (29 xUvh);

- TR= {(<Q7 s>7 ev<q,7 S>) le€ Zgl \ (21{7 o uval)’ q i>C C]/}

va f(“

U{(a 8), (Fs), as)) | (o) € S xurel g 200 g nos Loy o)
Theorem 1. Consider a DEC C and an IA A such that Zi C aé. Let Lg, be the
product of C' and the input-universal RTS U of A’s mirror. Then C is consistent with A
if Y{q, s) € Sg, the following conditions hold.:

1. sis not an error state, i.e. s # L;

2. If {q, s) is a terminal state, then s is a terminal state of A.

3. If {q, s) is not a terminal state, then s’ # s,{q',s') € Sg such that (¢, ') is
reachable from (q, s) in Lg,

Proof. Let C represent C'(X9), ¢ be a relation {(q, s) € Sg | ¢ € Sa,s € Sa}, we
prove ¢ is a simulation relation between C' and A by induction. First, (5§, 5%) € 9.
Next, suppose (g, s) € ¢,

1. If enQ(s) # 0, s is not a terminal state in A. Due to condition 2} (g, s) is not a

terminal state in Lg either. Because mixed states are assumed to be absent in A,

en’y (s) = en9(s) = 0. Because of condition[3, 3(g”, s) M@ (¢, ¢') such that
g =g ¢" and f € X}, (note that X}, = X9). From Definitionl (f, v) € eng(q)
holds, i.e. eng(q) # 0.

2. Fore € XM\ (2}, xUv),if ¢ S¢ ¢/, then ¢ =g ¢'. Hence (¢, s) € ¢;

3. For (f,v) € eng(q) U (enf (s) xUval),ifq MC q',thengq M@, q.3s" € Sy,

5 LU s’ holds for f € en,(s). It also holds for (f,v) € eng(q) since eng (9) €

Y9 x Y and U is input-universal w.r.t. ¥9. From Definition [, we can get
(¢, §') € Sg. Due to condition[l] (¢’, s') € ¢ holds.

Modular Analysis of Dataflow Process Networks 193

Therefore, ¢ is a simulation relation between C and A. From Definition[7] C is consistent
with A. O

In the theorem, condition [[indicates the input and output duality between C' and
A. Condition 2] requires the absence of illegal deadlock states in the product. Finally,
condition 3 states a requirement on the reactive nature of C, that is, C' should be active
in communication.

Now we are able to check the consistency of the store component of Fig. [l with
the store automaton of Fig. [2(a)l We calculate the product of the component model
and the input-universal RTS of the automaton’s mirror and check it against the above
conditions. If these conditions are satisfied, then Theorem [T] allows us to conclude that
the store component is consistent with the store automaton. At the time of writing, this
algorithm has been implemented in the context of Moses.

4 Modular Analysis of Component Networks

4.1 Dataflow Process Networks

There are many kinds of process networks [10I1 IIT2IT5]]—they differ, e.g., in their model
of communication (explicit FIFO buffers between processes vs synchronous communi-
cation), or in their model of execution (as an interleaving of atomic and non-blocking
firings of processes vs a continuous and possibly blocking thread-like execution of each
process in parallel with all other processes).

In this paper we consider the form proposed in [[15]. Basically, a process network
consists of a collection of concurrently executing processes with ports and a set of
channels connecting the output and input ports of these processes. Often, the channels
represent FIFO buffers between processes, but we consider that the buffers are encapsu-
lated in their destination processes and the channels represent only the causality of data
flow between processes. Due to the localization of buffers, the semantic definition of
process networks is simplified and thus facilitates modular analysis. Furthermore, it also
gives us the flexibility to model a variety of buffers thanks to the diversity of component
modelling formalisms.

Definition 10. A dataflow process network (DPN) is defined by D = (P, R), where
P C U< is a set of processes and R C UpeP ag X UpeP azl) is a set of connections

relating the output ports to the input ports of the processes, such tha

- (o0, 1) € Rimplies p(o) # p(i);
- (0,1),(0,7) € RNi# 1 implies p(i) # p(i');

where p(f) =pl'fp€Pandf€OtII)UO(pO.

3 The function p(f) returns the process associated with port f. Here, we exclude the situations
where R connects an output port and an input port of one process and where more than one
connection originating from one output port ends at two or more input ports of a process. This
is because these introduce true concurrency at component boundaries, which in turn contradicts
the interleaving semantics of interface automata. This will be addressed in future work.

194 Y. Jin et al.

Ny]
purchasel | . ¢ustomer purchase
purcha\s? hetivere—eiverset > bank |\m—"”
| | | | ayable
paya/bﬁ e-store | aeficit
def icif Lail

Fig. 3. An online purchase DPN

A DPN can be depicted as a directed graph. At this level of abstraction, each node
represents a process, each triangle associated with a node represents an input/output
port of the node, and each edge represents a connection between ports. Figure[3 shows
an example: an online purchase DPN. When a customer sends a purchase request, the
request goes simultaneously to the store and the bank. These then collaborate to process
the request and finally report back to the customer whether the purchase succeeds or
fails (detail will be given later).

A variety of communication structures are supported by DPNs where data can be
relayed, duplicated, and merged among processes. For example, two connections starting
from the port “purchase” of the customer and the connections ending at the port “fail”
of the customer in Fig.Bldemonstrate the last two situations, respectively. Furthermore,
disconnected input and output ports of processes in a DPN are allowed. A disconnected
input port will receive no data, while a disconnected output port will discard all data
sent to it. We further define the sets of connected input and output ports of a process
pePinaDPNDasal ={ica)|(o,i) e R}andal = {o € af | (o) € R},
respectively.

Definition 11. Consider a DPN D = (P, R). Let R° = {({0,v), (i,v)) | (0,4) € R,
v € UV} be a causality relation between output and input events. Then the product of
D is defined as a RTS Lp = (s°, S, 3] —p), where

- 8% = Iepsh)and S C Il,cpSy. We let projections my: S — Sy and lets, = m,(s)
and s, = my(s') forp € P,s,s' € S;
— yO _ — l.
-2 =329=0and £ =, cp X5
- —-p={(s,e,8') | e € E;’”,sp i>p s, A\Vg € P,g#pAs, =0d(sg,p,€)}

where §(sg4, p, €) = q fifee EPO A3’ e Eér’ q € Sg,(e,¢) € R A Sg Lg 1
) sg otherwise

The product of a DPN captures the semantics of the DPN. According to the definition,
a state of a DPN is a vector of states of all its processes, and a DPN transits between
states by simply executing one of its processes and directing data flow, if any, according
to the connections R. A transition of the DPN is either an internal transition or an output
transition of a process. The latter may involve synchronous execution of multiple input
transitions of other processes, depending on R.

Modular Analysis of Dataflow Process Networks 195

In order to facilitate further analysis, we define projections of traces of DPNs, which
relates the behaviour of a DPN to that of its processes.

Definition 12. Given a DPN D = (P, R) and a trace o of Lp from s%,, the trace
projection of o on p € P is a trace of p from sg, denoted as m,(o), obtained by first
removing from o all events not in EIC,“ U X and then renaming all events x € X to
yeXlst (z,y) € RY, where X = {z | Jy € 2L (z,y) € R 1.

4.2 Interface Automaton Networks
We define the composition of the IAs by interface automaton networks as for DECs.

Definition 13. An interface automaton network (IAN) is defined as N = (W, R), where
W cUand R C U,y X9 X Upen XL is a causality relation between the output
and input events of the IAs, such thaE%

- (o, 1) € Rimplies p(0) # p(i);
- (0,1),(0,7) € RNi# 1 implies p(i) # p(i');
where p(f) =aifa € Wand f € X,.

The semantics of IANS is captured by their products defined below.

Definition 14. Consider an IAN N = (W, R). Let B be the set of input-universal RTSs
ofall IAs in W. Then the product of N is defined as aRTS Ly = (s°, S, 3] —), where:

-0 = HbeBsg and S C ISy, is the smallest set such that s° € S and Vs €
S,s LN s’ implies s’ € S. We let projections m,: S — Sy and let s, = 7,(s) and
s, = m(s") forb € B,s,s’ € S;

=X =39=0,and X" =y X2;

- TN= {(Svasl) | f S El?vsb i>b SZ/\V}L S Bah#b/\slh :5(Shaf)}y

. . I . 7
where5(sh,f): q leZGZh,QGSh,(f,Z)ER/\Sh —h q
S, otherwise

As an example, suppose that we have an IAN where W consists of the interface
automata of Figs. and and R defines their composition as shown in
Fig.[Bl Then the product of the TAN is shown in Fig. 5]

Definition 15. Consider an IAN N = (W, R). Let Ly be the product of N. Then N is
consistent if no error or deadlock states are reachable in Ly, i.e. Vs € Sy, the following
conditions hold:

1. Ya € W, m,(s) # L;
2. Ifs is a terminal state of L, then Va € W, enl(7,(s)) = 0.

4 These well-formedness rules are introduced for the same reason as in Definition[I0,

196 Y. Jin et al.

ok \ delivered payable

ok purchase
purchase delivered payabie
fail O purchase O | Jefion) &k|
|D - outOfStock g
fail | fail outOfStock |
(a) (b)

Fig. 4. The customer automaton|(a) and the bank automaton

ok delivered

fail ~~outOfStock

Fig. 5. The product of the example IAN

Basically, the consistency of IANs ensures the absence of mismatches of environ-
mental assumptions and output guarantees of processes and also the freedom of deadlock
at a high level of abstraction. For example, as the product state space shown in Fig. Bl
contains no error or deadlock state, the IAN is consistent.

Since IAs can specify the interface behaviour of DECs, IANs can capture the inter-
action behaviour of DECs in DPNs. Hence, as we shall see, the consistency of [ANs can
serve as the basis of analysis of DPNs. Also, it is cheaper to determine the consistency
of IANS, because IANs generally have smaller state space than DPNs.

4.3 Properties of Dataflow Process Networks

In this section, we define the properties of DPNs such as safety and deadlock freedom.
The safety considered here refers to the fact that the environmental assumptions made
by processes are respected in executions of DPNs. More specifically, no unexpected
reception of data at any input port ever occurs. Additionally, a DPN is said to be dead-
locked if it reaches a state where no process can make any progress, generally because
each is blocked waiting for an input from others, while the event cannot occur. Deadlock
freedom refers to the ability of DPNs to make progress or perform computations.

Definition 16. A dataflow process network D is sketched by a total function A: P — U™
ifV(p,a) € A, XL = al X9 = a9 and p is consistent with a, where &y, denotes the
connected ports of p in D as defined in Sect.

Consider a DPN D sketched by a total function A. Let Lp be the product of D, o
be a trace of Lp from s, p € P, a = A(p), p represent ﬁ(&f), & = mp(o) [Zﬁbs
be the observable sequence of the trace projection of ¢ on p, and £, be the sequence
of ports involved in &, (Note |£,| = |£,|). Then we can formulate properties of D in
Definitions [[7]and [I8] below.

Modular Analysis of Dataflow Process Networks 197

Definition 17. A trace o is free of unexpected reception in D if €, is a trace of a from
s forall p € P. D is free of unexpected reception if all traces of Lp from s% are free
of unexpected reception.

Lemma 1. Consider a trace o which is free of unexpected reception. Let q € Sp be a
reachable state via o in Lp and s, be a reachable state via £, in a, then (1) s, is the
only state reachable via &, in a and (2) m,(q) = S,.

Proof. (1) holds because Ef = () and «a is assumed to be deterministic. Also, because
every event f in £, corresponds an event (f, v) in ,, (2) holds from Definition[7] O

Definition 18. Consider a DPN D which is free of unexpected reception. Let q € Sp
be a reachable state via o in Lp and s, be the reachable state via &, in a forall p € P.
q is a deadlock state if it is a terminal state in Lp and Ip € P, enl(s,) # 0. D is free

of deadlock if no deadlock state is reachable via any trace from s%.

4.4 Property Deduction

Theorem 2. A DPN D = (P, R) is free of unexpected reception and deadlock if there
exist both a total function A: P — U' s.t. D is sketched by A and also a consistent
IAN N = (W, R), where W = {A(p) | p € P}.

. . . O
Proof. We prove this theorem by induction over the length of any trace o from s7,.

Let q € Sp be a reachable state via o, p € P, a = A(p), p represent 13(541?),
& =mp(o) [Egb"” and £, be the sequence of ports involved in &,. At each step, we
prove that (1) o is free of unexpected reception; (2) s € Sy, Va, 7,(s) is the reachable
state via £, in a; and (3) q is not a deadlock state.

1. If o =), then q = s%. Clearly, (1) holds. Let s = s%;, then (2) holds. Sup-
pose that q is a terminal state in Ly, i.e. Vp, fe € E;”, (mp(a), e, q) €—,. Hence,
Vp, eng (m,(q)) = 0. Because 7,(q) < ma(s), Va € W, en (w4 (s)) = 0 and thus
s is a terminal state. Because s € Sy and thus s is not a deadlock state, we have
Va, enl (7, (s)) = 0. Therefore, (3) holds.

2. Suppose o = ej€s. .. 6, s.t. (1-3) hold on o. Given a trace ¢’ = o - e, we shall
prove (1-3) hold on o’. Let s € Sy be the state satisfying (2), q, = 7,(q) and
Sa = ma(s) forall p € P, and £, and &, are defined over o’. Then from Lemma [I]
we have Vp, q, < s,.

a) ife € X5\ (X9 x*!), then &, = &, and (1) holds. Lets’ = s, thens’ € Sy
and s’ is reachable via ¢’. Thus (2) holds. Same as item[I] we can prove (3).
b) if e € X x U and q, , q),, let e = (f, v), then Js/, € Sa,s, ENy s/ A
q;, ='s/, (because q, <'s,). Thus§,, = ¢, - fisatrace of a. Forg € PAg # p,
we let b = A(g). Then,
(f'<v)

i if3(f" v) € Zé, (f, f') € R, then 3q;, € Sy,q, —4 q;- Since no er-

ror state exists in Ly (def.[[3), f* € en (s;,) and thus 3s), € Sy, sy, Lh s},
such that q; <'sj,. Hence & = 5, - (f’, v) is a trace of h.
ii. otherwise, £, = &, is a trace of h.

198 Y. Jin et al.

Therefore, (1) holds on ¢’. From def.[[4] 3s’ € Sy, Va, m,(s’) = s,, and s/, is
reachable via £,. Hence, (2) holds on ¢’. (3) can be proved on ¢’ as in item[Il

Therefore, the theorem holds. O

With this theorem, we can conclude the example process network of Fig. Blis free
of unexpected reception and deadlock, provided that the concrete component models of
the bank and the customer are consistent with their corresponding interface automata,
respectively.

In the context of Moses, we have also implemented the check for consistency of
IANS. This, together with the check based on Theorem[I] gives us the ability to analyse
DPNss for properties such as freedom from deadlock and unexpected reception.

5 Conclusion

In this paper a modular analysis method for dataflow process networks has been pre-
sented, where interface automata are associated with processes (or components) to spec-
ify both their interface behaviour requirements and possible environmental assumptions.
Based on the TAs, we deduce the properties of DPNs, such as freedom from unexpected
reception and deadlock, by checking the consistency of components and of interface
automaton networks. As these checks only need to handle smaller state spaces than the
traditional single monolithic check, the state space explosion problem can be alleviated.
At this stage, we have implemented the algorithms for checking these two kinds of con-
sistency in the Moses tool suite, with the development of a visual notation for interface
automata and tools for their composition and compatibility checking.

The introduced interface automata can specify the behaviour of components at a
high level of abstraction and serve as the contracts between architecture designers and
component developers. In this way, highly independent development of components and
the communication structure among components is supported. Also, this acknowledges
that a system is usually designed with assumptions made about the abstract behaviour of
components and that components are designed assuming particular interaction patterns
with their environment.

In addition, the proposed method simplifies substitutability checking between het-
erogeneous components using an intermediate interface automaton. That is to say, a
component can be substituted by another component in a process network if they are
both consistent with the same interface automaton. Hence, the evolution of systems is
supported both at the abstract level by the substitutability of interface automata and also
at the component level by the substitutability of components.

The research presented here is a step towards the automated consistency checking
of heterogeneous systems where system components as well as system architectures are
potentially expressed in different description languages. We are investigating the appli-
cation of this method to architectural models described in other languages such as Petri
Nets. Currently, the assumptions of components on data values are not captured in this
method. A possible way to improve this is to enhance the formalism of interface au-
tomata to support data values on input and output events. Furthermore, true concurrency
at component boundaries is not considered here and will be the subject of future work.

Modular Analysis of Dataflow Process Networks 199

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

M. Anlauff, P. Kutter, A. Pierantonio, and A. Siinbiil. Using domain-specific languages for the
realization of component composition. In Proc. of the Fundamental Approaches to Software
Engineering (FASE 2000), LNCS 1783. Springer.

. F. Bachman, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and

K. Wallnau. Volume II: Technical concepts of component-based software engineering. Tech-
nical Report CMU/SEI-2000-TR-008, 2000.

. L. de Alfaro and T. Henzinger. Interface automata. In Proc. of the Foundation of Software

Engeneering (FSE 2001), pages 109—122. ACM Press.

. R. Esser and J. Janneck. Moses - a tool suite for visual modelling of discrete-event systems.

In Symposium on Visual/Multimedia Approaches to Programming and Software Engineering,
2001.

. P. Inverardi and S. Uchitel. Proving deadlock freedom in component-based programming. In

Proc. of the Fundamental Approaches to Software Engineering (FASE 2001), LNCS 2029.

. P. Inverardi, A. Wolf, and D. Yankelevich. Static checking of system behaviors using derived

component assumptions. ACM Trans. on Software Engineering and Methodology, 9(3):239—
272, 2000.

. J. Janneck and R. Esser. Higher-order Petri Net modeling—techniques and applications. In

Workshop on Softw. Eng. and Formal Methods of ICATPN 2002.

. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, vol-

ume 1 of Monographs in Theoretical Computer Science. Springer-Verlag, 1997.

. Y. Jin, R. Esser, and J. Janneck. Describing the syntax and semantics of UML statecharts in

a heterogeneous modelling environment. In Proc. of the Diagrammatic Representation and
Inference (Diagrams 2002), LNAI 2317. Springer.

G. Kahn. The semantics of a simple language for parallel programming. In Proc. of the IFIP
Congress 1974, pages 471-475. North-Holland Publishing Co.

R. Karp and R. Miller. Properties of a model for parallel computations: determinacy, termi-
nation, queuing. SIAM J. Appl. Math., 14:1390-1411, 1966.

E. Lee and T. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773-801, 1995.
S. Rajamani and J. Rehof. Conformance checking for models of asynchronous message
passing software. In Proc. of the Computer-Aided Verification (CAV 2002), LNCS 2404.
Springer.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, Advances in
Petri Nets, LNCS 1491. Springer-Verlag, 1998.

D. Skillcorn. Stream languages and data-flow. In Advanced Topics in Data-Flow Computing.
Prentice Hall, 1991.

S. Uchitel and D. Yankelevich. Enhancing architectural mismatch detection with assumptions.
In Proc. of the Eng. of Computer Based Systems (ECBS 2000).

D. Yellin and R. Storm. Protocol specifications and component adaptors. ACM Trans. on
Programming Languages and Systems, 19(2):292-333, 1997.

	Modular Analysis of Dataflow Process Networks
	Introduction
	Related Work
	Consistency of Components
	Reactive Transition Systems
	Discrete-Event Components
	Interface Automata
	Consistency of Discrete-Event Components
	Practical Consistency Checking of Discrete-Event Components

	Modular Analysis of Component Networks
	Dataflow Process Networks
	Interface Automaton Networks
	Properties of Dataflow Process Networks
	Property Deduction

	Conclusion

